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1. GENERAL INTRODUCTION
With the recent developments in advanced materials 
and nanostructures, particularly in those designed for 
 electronics, it is becoming increasingly evident that their 
successful application will depend not only on their 
 electrical properties, but also on their mechanical char-
acteristics (whose defi ciency would lead to long-term 
reliability problems), as pointed out earlier by Hiraoka 
[1]. An examination of the mechanical properties of these 
so-called new materials is not an easy task, since their 
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mass availability for experiments is normally very small, 
they appear in the form of thin fi lms, multilayer systems, 
or tiny crystals used as a substrate for such complex struc-
tures as large-scale integrated systems (LSIs), laser diodes 
(LDs), and so on. Moreover, an evaluation of the mechan-
ical properties of new ultrahard coatings (e.g., diamond, 
nitrides, or ion beam–modifi ed surfaces) has become 
nowadays an issue of great importance, owing to the wide 
application of thin solid fi lms in modern technologies. 
The indentation test appears naturally to be an  invaluable 
and unique method for examining all these materials, as it 
requires a small volume of the solid and probes the surface 
layers of particular interest.

Hundred years ago, the hardness test was fi rst consid-
ered the simplest and fastest technique for characterizing 
the mechanical properties of solids. Various standard 
hardness tests (see Table 1, for details refer to [2, 3]) have 
been extensively used to estimate the plastic properties of 
metals.

The physical signifi cance of the hardness value is in the 
simple relationship between hardness and the yield stress �Y 
in ideally plastic solids. The Meyer hardness H, being equal 
to pressure p over a fully plastic indentation, is defi ned as 
the indentation load Pmax divided by the projected area Ap 
of the indentation mark (for a spherical impression with a 
diameter size equal to d: Ap 5 �d2/4):

 H
Pmax

Ap

Pmax

d2� �
4
p

 (1.1)
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2 Nanoindentation Examination of Crystalline Solid Surfaces

The H2�Y dependence was discovered as early as 1948 by 
Tabor [4, 5], based on empirical results, while in 1989 theo-
retical work (fi nite element method (FEM) calculations) 
by Hill et al. [6], and Storåkers and Larsson [7] confi rmed 
“Tabor’s relationship,” which reads:

 H p� 3�Y� . (1.2)

Although the idea of Tabor [eqn (1.2)] in all its 
simplicity is still valid for metals, it does not hold for most 
ceramic materials, which are normally hard and brittle 
and exhibit considerable elastic recovery during indenta-
tion unloading. Further, the initiation of cracks during the 
indentation process performed either with sharp and blunt 
indenters compromises the measurements and makes it 
diffi cult to provide an accurate estimation of hardness of 
ceramics. This resulted in the development of microhard-
ness testers with maximum indentation load range from 50 
mN to 30 N (refer to Table 1).

However, conventional hardness measurement is often 
insuffi cient for estimating the plastic properties in the near-
surface region, because of its limited accuracy, particularly 
for the ultralow load interval. This is owing to the limita-
tions in the resolution and effi ciency of the optical systems 
attached to the hardness testers of conventional type. 
Indeed, one can fi nd it very diffi cult to measure small-size 
residual impressions, with a diameter of a few micrometers 
and less, by means of an optical microscope. Normally, the 
low-load hardness data exhibit signifi cant scattering with 
a serious error. The results of measurements of hardness 
anisotropy of the ( 1010 )�  plane of sapphire (Fig. 1) serve 
as an example of the ineffi ciency of conventional low-
load hardness test [8]; the anisotropy registered for the 
maximum indentation load of 2 N remains undetected if 
load Pmax of 500 mN is used.

Further developments of the testing equipment enabled 
the users to monitor continuously the load experienced by the 
indenter during the indentation process and the depth of penetra-
tion. This not only made it possible to overcome the li mitations of 

Table 1. Static indentation tests.

Commercial name of the 
method Nominal load (kgf) Indenter Hardness formula*

Brinell hardness test 500–3000 Spherical, steel
H

P

D D D d
5

2 2

2
2 2 1 2

p ( )⎡
⎣⎢

⎤
⎦⎥

/

Vickers hardness test Less than 120 Diamond pyramid with a square base (apex 
angle 136°) H

P

d

P

d
V � �

2
2

1 85442 2⋅ ⋅sin .
H

Rockwell hardness test Less than 150 Diamond cone with a spherical tip
H

�d2�
4P

Berkovich test 
(microhardness)

0.005–3 Diamond pyramid with a triangular base (angle 
between the vertical axis and the facet 658) H

P

l
5

1570
2

⋅

Knoop test
(microhardness)

0.005–3 Diamond pyramid with a square base
HK

P

d1

�
�7 028 10�3 2⋅ ⋅

* P, D, d, d1, and l defi ne applied load, sphere diameter, diameter of the impression, the lengths of the long diagonal of the indent, and the perpendicular distance from a 
corner to the opposite base of the triangular impression, respectively.

Figure 1. Hardness of the (1010) plane of sapphire measured for vari-
ous orientations of the Knoop indenter. The position of the  penetrator 
was determined by the angle � between its long diagonal and the (1210) 
direction.
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Nanoindentation Examination of Crystalline Solid Surfaces 3

the optical system (the measurement of the size of an  impression), 
but also allowed the researchers to derive new information on 
the complex mechanical behavior of materials deformed in a very 
shallow surface region. Thus, the depth-sensing indentation tech-
nique appears to be a unique method for studying the mechanical 
properties of solids close to their surfaces, and consequently is 
very useful for nanostructured materials.

The idea of depth-sensing indentation measurements, which 
allows the estimation of Young’s modulus of tested materials, 
was fi rst realized more than two decades ago [9, 10], while the fi rst 
nanoindentation testers were designed 10 years later [11–13]. 
Furthermore, the pioneering results of nanoindentation tests 
reported by Pethica et al. [12] resulted in a rapid development of 
the new research area, the surface deformation of solids.

Certain examples of depth-sensing indentation early studies 
include in situ observations of the nucleation and propagation 
of indentation cracks in ceramics, together with the ability to 
measure the indentation load vs. depth curves [14, 15], applica-
tion of the nanoindentation method to measurements of residual 
stress [16] and adhesion [17] of surface coatings,  determination 
of Young’s modulus and hardness of high-temperature super-
conductors [18], research of the electrical resistance of metallic 
contacts on semiconductors during phase transformation [19–23], 
observations of structural changes in nanoindented sapphire by 
means of electron microscopy [24–27] and Raman spectroscopy 
[28], and studies of  deformation and fracture of ion-implanted 
ceramics [8, 29–32].

It is worth noting that these experiments achieved a 
“new level,” owing to the concentration on the phenomena 
available for study because of the recent developments in 
research equipment. This has stimulated an urgent need 
for a general theory of indentation-induced deformation 
and fracture (particularly concerning hard brittle mate-
rials as well as thin films), which would yield a sound basis 
for interpreting various types of experimental results. 
Considerable effort has already been expended on 
analyzing data from depth-sensing tests and relating them 
to the observed phenomena [12, 33–35]. Unfortunately, 
all the above-mentioned approaches were deduced from 
conventional methods, and were thus based on previous 
experiments. Taking the residual plastic indentation depth 
remaining after indentation unloading as an example, the 
linear extrapolation of the upper part of the unloading 
curve in order to estimate the “true value of plastic inden-
tation depth” proposed by Doerner and Nix [33] seems a 
somewhat approximate approach that has been criticized 
by Oliver and Pharr [36]. The latter provided a compre-
hensive analysis, while still using the contact area func-
tion that prevailed in conventional indentation science 
results nowadays in serious confusion [37, 38] owing to 
the widespread application of this method in virtually all 
the existing nanoindentation equipment.

Signifi cant progress has been achieved in this area through 
numerical modeling based on the FEM [39, 40]. However, the 
critical issue of this approach lies in the formulation of the 
pertinent constitutive equations (a kind of elastic or pseudo-
elastic approximation is normally applied) as well in the anal-
ysis of contact mechanics. The weakness of these approaches 
lies in the diffi culty in estimating the elastic–plastic stress 
state near the contact zone. The only case solved analytically 
is the pure elastic contact of spherical (Hertzian indentation 

[41]) and axisymmetric sharp indenters (cone indentation: 
the Boussinesq stress fi eld [42]).

With the ongoing development of nanoindentation 
equipment toward ultralow loads and high-measurement 
accuracy that reached recently 0.2 nm of vertical-depth 
resolution [43], the atomistic simulations became essen-
tial in interpretation of the nanoindentation data [22, 
44–46] which will be shown in this review that presents 
the  development of this specifi c fi eld of research in its 
 chronological order.

2. GENERAL REMARKS ON EXISTING 
MODELS AND CONVENTIONAL 
ANALYSES OF DEPTH-SENSING 
INDENTATION DATA

The recently developed nanoindentation technique (the maxi- 
mum indentation load Pmax of less than 100 mN, while recently 
the nanoindentation term is used for Pmax ,10 mN) allows one to 
determine the mechanical properties of materials on a very small 
scale and serves as a powerful tool for the mechanical character-
ization of thin fi lms and solid surface layers. Among the routinely 
measured parameters are still traditionally hardness and elastic 
modulus. However, there are a number of alternative indentation 
techniques which enable one to draw conclusions about the strain 
rate sensitivity, submicron fracture behavior, or even thermally 
activated plastic fl ow (see, e.g. [47]).

Indentation methods and the associated theoretical anal-
yses may be broadly classifi ed according to the shape of the 
indenter used in experiments. Sharp indenters such as the 
Berkovich pyramid are frequently used to assess mechanical 
properties in the smallest possible region [47], while spheri-
cally tipped indenters allow one to obtain a complete quan-
tifi cation of elastic–plastic properties, particularly for brittle 
solids [48]. However, the contact area typical for nanoinden-
tation experiments is very small, so that even the sharpest tip 
with a radius smaller than 100 nm should be considered blunt 
or rounded [43].

2.1. Determination of Elastic Modulus

2.1.1.  The Analysis of Indentation Data Based 
on the Theory of a Punch Contact

Depth-sensing indentation allows one to register indenta-
tion load and depth as a function of time. Typical examples 
of load–displacement data obtained in the experiments 
are shown in Figure 2. They refer to metallic and ceramic 
crystalline materials, namely, zinc (Fig. 2(a)) and sapphire 
(Fig. 2(b)). Since the Hertzian theory [41] of contact between 
two nonrigid bodies yields the following relationship between 
their Young’s moduli (E1, E2) and Poisson ratios (v1, v2):

 
1 1 12 2

E E2E1eff

�
�2�1�

�
�

 (2.1)

where Eeff is the effective elastic modulus which may be 
 determined by means of load–depth indentation results (to 
be precise, from the unloading part of the curve, see Fig. 2, 
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4 Nanoindentation Examination of Crystalline Solid Surfaces

one is able to determine the elastic modulus of the tested 
solid E1). Although eqn (2.1) was derived for a spherical 
indenter, it can similarly be applied to sharp tips for reasons 
described in the preceding section.

The penetration of a sharp indenter into a solid 
surface inevitably involves elastic and plastic deformation 
followed frequently by cracking of the investigated mate-
rial, which makes it difficult to model the  indentation 
process and analyze the experimental data. Since an 
analytical solution of the elastic–plastic contact problem 
is not available [42], and the elastic contact between 
axisymmetric punches and isotropic and anisotropic half-
spaces has been the subject of thorough theoretical inves-
tigations (see, e.g. [49–51]), most researchers assume that 
the solution obtained for elastic punch contact is suitable 
for modeling elastic–plastic surface deformation. Conse-
quently, the existing approaches are normally based on 
the Boussinesq solution of 1885 [52, 53] (a linearly elastic 
Boussinesq problem is to find the solution to linearized 
equations for an elastically isotropic halfspace under a 
point load of magnitude P perpendicular to the boundary 
(see [50])) or on its modification proposed by Sneddon for 
punches of axisymmetric profile [54]. The latter approach 
allowed the author to draw conclusions about the shape 
of the elastically deformed surface and stress distribution 
under a loaded punch.

Further, the experimental work of Bulychew et al. [55] 
proved that the relationship between stiffness S, effective 
elastic modulus Eeff, and the projected area of the contact A:

 S
dP
dh

Esff� �
2
�

A  (2.2)

which was derived originally for elastic contact of a conical 
indenter, equally holds for cylindrical, conical, and spher-
ical tips. The validity of eqn (2.2), for all indenter shapes 
being a body of revolution of smooth function was proved 
by King [56], who provided elastic analyses for punches of 
various shapes using the integral equations method (see 
also [34]).

Based on these pioneering considerations, Oliver and 
Pharr [36] proposed their method of analysis of sharp 
indentation data. The authors assumed entirely elastic 
deformation to occur during the unloading cycle of the 
penetration process, which enabled them to employ the 

relationships derived for elastic contact of axisymmetric 
punch to a case of sharp indentation. They additionally 
took advantage of earlier work carried out by Doerner and 
Nix [33], and Loubet et al. [57]. The analysis of indentation 
data performed by Oliver and Pharr [36] seems to be the 
most widely used method nowadays, while it is coming quite 
recently under serious criticism when applied in nanodefor-
mation region [37, 38, 58].

2.1.2.  The Conventional Approach by 
Doerner–Nix and the Classical 
Oliver–Pharr Model

The approaches of Doerner and Nix [33] or Oliver and Pharr 
[34, 36] are based on the analysis of data recorded during the 
unloading cycle of an indentation experiment. Consequently, 
these procedures disregard the information registered while 
loading the indenter, which recently created confusion in 
nanoindentation database [38, 58]. The methods are based 
essentially on the assumption that a considerable part of the 
unloading P2h curve possesses a linear character, which 
suggests that plastic deformation of the material does not occur 
when unloading. Furthermore, the authors believed that elastic 
modulus of the tested sample does not change with the inden-
tation depth making it possible to apply Sneddon’s solution to 
the unloading process, that is, the solution for the elastic punch 
contact proposed by Sneddon [54]. Thus, eqns (2.1) and (2.2) 
derived for axisymmetric punch problem hold for the unloading 
part of P2h curve obtained by sharp indentation.

The assumptions made by Doerner and Nix [33], followed 
by those of Pharr and Oliver [36], have physical meaning, 
and cause discrepancies between the results of the proposed 
analysis and experimentally determined values. The crucial 
point of the approach lies in the assumption that the linearity 
of an unloading curve points toward a constant contact area, 
which remains unchanged during the indentation cycle. This 
seems to be appropriate for metals, essentially plastic mate-
rials (see, e.g. [12]), in contrast to solids with a high value 
of hardness to the modulus ratio H/E, that is, most ceramic 
materials, which exhibit signifi cant elastic recovery within the 
contact zone. Hence, the essence of the discussed approach 
lies in the assumption that elastic recovery occurs exclusively 
outside the contact with an indenter, as opposed to plastic 
fl ow, which is thought to be restricted to the contact region.

Doerner and Nix [33] argue that the fi nal residual indenta-
tion depth hr (see Fig. 3) is affected by elastic recovery within 
the contact and it should not be used to determine the contact 
area. Furthermore, in order to estimate the size of the plastic 
contact region and to determine the residual plastic depth of 
indentation hp, they suggest subtraction of elastic contribu-
tion from the maximum indentation depth hmax:

 Pmaxhmaxhp
S

� � , (2.3)

where S stands for the original slope of the unloading cycle  
(S = dP/dh ), while Pmax defi nes the maximum indentation load. 
According to Doerner and Nix [33], the above-mentioned 
operation (subtraction) may be accomplished geometrically by 
linear extrapolation of one third of the unloading curve to zero 

Figure 2.  Typical load–displacement curves registered with moder ately 
loaded Berkovich indenter penetrating into the basal plane of zinc 
(a) and sapphire (b) crystals.

CH-192.indd   4CH-192.indd   4 11/24/2009   1:30:42 AM11/24/2009   1:30:42 AM



Nanoindentation Examination of Crystalline Solid Surfaces 5

load (refer to Fig. 3). Consequently, the elastically recovered 
depth can be obtained from eqn (2.3), which yields:

   Pmaxhmaxhe hp
S

�� � , (2.4)

while elastic modulus of the examined solid E1 [eqn (2.1)] 
may be obtained by combining eqns (2.1), (2.2), and (2.3), 
which consequently provides:

 
1 1 1 2 12 2 2�

� �
�2

�2�1 �
� �

�

�E1 E2 E2Eeff S
A , (2.5)

where the contact area A may be estimated from the indenta-
tion plastic depth [eqn (2.3)].

The Oliver–Pharr analysis of depth-sensing indentation is 
based on the approximation of the unloading curve by a power-
law relationship [34, 36]. The key parameters used in their 
method comprise initial stiffness S, the maximum load Pmax, 
and the maximum penetration depth hmax. The authors found 
that the load–displacement dependence derived by Sneddon 
for perfectly elastic contact [54] leads to the relationship:

 P � �hm , (2.6)

where � is constant and m takes values between 1 and 2 for 
various indenter shapes (for example, when a fl at punch is 
considered m 5 1, and in the case of the rotated parabola tip 
profi le, m 5 2). Taking into account the plastic deformation 
that occurs prior to the elastic unloading, Oliver and Pharr 
[36] conclude that the unloading curve should fi t the power-
law relation:

 P B h hf

m
� � )( , (2.7)

where hf is the residual displacement after complete 
unloading determined by the curve fi tting with B and m 
values used as fi tting parameters.

In order to calculate the contact depth hc (refer to Fig. 4), 
the authors exploited the dependence of hc on the tip shape, 
taking advantage of the e-coeffi cient from the Sneddon 
theory of the elastic punch contact problem [54]. Moreover, 
Oliver and Pharr found that the depth hc (Fig. 4) appears 
to be dependent on the initial unloading slope S as well as 
the maximum displacement exercised by the sharp indenter 
hmax [36], which yields the simple relationship for the hc 
pa rameter:

 �
Pmaxhmaxhc

S
� � , (2.8)

where � equals 1, 0.75, and 0.73 for a fl at punch, the 
Berkovich tip, and the cone-shaped indenter, respectively. 
The differentiation of the eqn (2.7) allowed Oliver and 
Pharr to determine the stiffness S at maximum penetration 
depth:

 S
dP
dh

B hmax hfh hmax

m�1
� � �� )( . (2.9)

The principal focus of the Oliver and Pharr analysis [36] 
is the evaluation of the shape function A 5 f(dc), which 
defi nes the shape of the indenter through the relationship 
between the projected contact area A and its distance dc 
from the indenter tip. In order to conclude on hardness, it is 
necessary to determine the value of f function at the contact 

Figure 3. Schematic of the indentation load–displacement curve with 
the parameters used in the Doerner and Nix analysis [33].

Figure 4. Schematic of the indentation load–displacement curve with 
the parameters used in the Oliver and Pharr analysis [36].
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6 Nanoindentation Examination of Crystalline Solid Surfaces

depth hc. Therefore, Oliver and Pharr developed a simple 
empirical calibration procedure that resolves accurately 
the f function, despite avoiding the imaging of indents. 
It requires, however, that the P2h data are obtained for 
a model specimen (normally fused quartz). Furthermore, 
Oliver and Pharr [36] determined the contact area A using 
eqn (2.2) and assumed Young’s modulus to be independent 
of indentation depth. Therefore, they estimated the value 
of effective elastic modulus Eeff:,

 Eeff
S
A

�
�

�2 , (2.10)

where � depends on the geometry of the indenter and equals 
1.034 for the Berkovich tip.

The results of the measurement of Young’s modulus 
of glass and metals according to the method proposed by 
Oliver and Pharr [36] accord with the conventionally deter-
mined values of elastic constants. However, the estimation of 
elastic modulus of highly anisotropic materials, for example, 
sapphire or silicon wafers that the method provides – appears 
to be less accurate or simply erroneous [38, 58].

2.1.3.  Stepwise Indentation with Partial 
Unloading of a Spherical Indenter

An alternative measurement of Young’s modulus was 
proposed by Field and Swain [59–61], who used a spheri-
cally tipped indenter for a stepwise indentation with 
multiple partial unloading. This is expected to produce 
a well-defi ned and regular stress fi eld approximating to 
deformed solid surface [59–66] in contrast to the sharp 
tips [67], as advocated by Swain and coworkers in their 
numerous reports. The authors argue that, in the case of 
spherically tipped indenters, (i) the initial penetration at 
contact is better estimated, (ii) the radius of the tip may 
be selected to control the depth of penetration in a partic-
ular material, and (iii) the use of such a penetrator enables 
one to follow the transition from elastic to elastic–plastic 
response of the indented solid. Moreover, the indentation 

with multiple partial unloading allowed Field and Swain 
[59–61] to separate the elastic and plastic components of 
indentation (Fig. 5), and as a consequence, to estimate the 
elastic modulus at each step of the penetration process.

In order to achieve the main goal, that is, to evaluate effective 
elastic modulus, Field and Swain analyzed the geometry of the 
contact between an elastic rigid sphere (the model of a spherical 
indenter) and the surface of an elastic and elastic–plastic half-
space (the model probed material), during an elastic unloading 
cycle [60, 61] – as illustrated in Figure 6. They took advantage of 
the basic relationship between the force P and the depth of elastic 
penetration of a spherical indenter � (see Fig. 6(a)), derived orig-
inally by Hertz [41] and recently reviewed by Johnson [42]:

 ��
3

4

2
3

P
R

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟Eeff

, (2.11)

where an effective Young’s modulus Eeff is defi ned by eqn 
(2.1), and R stands for the radius of the spherical tip. Further, 
Field and Swain used the simple formula that holds for shallow 
spherical indentations with a contact radius of a [42]:

 �� a2

R
, (2.12)

Figure 5. Typical load–partial unload force–displacement data obtained 
for an elastic–plastic material (data for GaN crystal [196]). Reprinted 
with permission from [196], R. Nowak et al., Appl. Phys. Lett. 75, 2070 
(1999). © 1999, American Institute of Physics.

Figure 6. The geometry of penetration of spherical indenter with the 
radius R into an infi nite solid surface being a target of the analysis by 
Field and Swain [60, 61] for perfectly elastic contact (a), elastic–plastic 
deformation (b), and elastic unloading process (c).
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Nanoindentation Examination of Crystalline Solid Surfaces 7

which provided them with a near-continuous assessment 
of the effective Young’s modulus Eeff with the depth of 
 penetration [60]. Such a result was obtained from application 
of stepwise indentation with partial unloading, in which the 
Eeff value is readily obtained from the simple relationship:

 Eeff
P

a ht hr

�
�

0 75.

)( , (2.13)

where ht – hr denotes the elastic depth recovery (refer to 
Figs. 6(a) and 6(b) ). It is worth emphasizing that the proce-
dure proposed by Field and Swain [60] allows one to deter-
mine the Eeff value, when one defi nes merely two different 
points in the partial unloading curve, suffi cient to evaluate 
the residual indentation depth hr.

The indentation with a partial unloading enables separation 
of the elastic and plastic components of the indentation defor-
mation at each loading–unloading cycle. This is of great signif-
icance for the application of the method, since it appears to be 
essential for extracting information relating to material prop-
erties [61]. The elastic component is obtained by measuring the 
recovery, as the indenter is already unloaded. Thus, stepwise 
indentation with a spherical tip facilitates the quasi-continuous 
measurement of the changes in the effective elastic modulus 
Eeff for various penetration depths. The approach of Oliver 
and Pharr [36] discussed in the previous section was modifi ed 
in such a way as to make it possible to monitor variations of 
Young’s modulus with indenter displacement [47], while it was 
recently found to be incorrect for determination of Young’s 
modulus in a case of nanoscale deformation [38].

2.1.4.  Other Methods for Determining the 
Elastic Modulus 

The determination of the elastic modulus by indentation experi-
ments has frequently been addressed in the literature since 1881, 
when Hertz discovered the relationship [eqns (2.1) and (2.11)] 
between Young’s modulus and the geometry of the solids that 
remain in elastic contact [41]. The methods of Oliver and Pharr 
[36, 47] or Field and Swain [48, 60], however, are widely quoted 
since they are included in the software package of the commer-
cially available indentation testers (Oliver and Pharr fi gure 
among the inventors of the commercially most popular Nanoin-
denter (Nano Instruments Inc., Knoxville, Tennessee, USA), 
while Field and Swain were involved in the production of UMIS 
2000 (CSIRO, Lindfi eld, Australia)). Therefore, the interesting 
procedure proposed in 1998 by Gerberich and coworkers [68] is 
still less frequently used than the above-mentioned two methods. 
Consequently, the present review would not be complete 
without presenting several alternative approaches that permit 
one to estimate the elastic modulus of the tested surfaces.
The Analysis of Söderlund, Rowcliffe, and Coworkers.  
In order to separate the machine compliance from the re-
sponse of the investigated surface, Söderlund and Macmillan 
propose [69] an advanced analysis of sharp indentation results 
based on mathematical modeling of the combined behavior of 
the material–indenter system. They determined elastic contact 
stiffness as a continuous function of the effective displacement 
of the indenter by employing differential technique. This per-
mitted them to evaluate Young’s modulus of the investigated 
material when the appropriate contact model was in use.

The particularly important remark by Söderlund and 
Macmillan concerns the occurrence of plastic  deformation 
(almost inevitable with sharp indenters), which might 
considerably affect the unloading behavior. This problem, 
studied thoroughly by Rowcliffe, Söderlund, and coworkers 
[70–72], was commonly dismissed in other approaches 
(refer to the preceding sections). Furthermore, their 
study concerning strain hardening, which occurs during 
 indentation process, proved that a tip of Berkovich type is 
quite useful when either plastic or elastic properties of a 
solid surface are investigated [71].
The Method of Hainsworth et al. The original method 
that enables one to evaluate Young’s modulus of the exam-
ined material using the loading, rather than unloading, part 
of an indentation cycle, is proposed by Hainsworth et al. [73]. 
The authors of the procedure claim that for a range of mate-
rials, including stiff, hard materials, inhomogenous systems, 
and thin hard fi lms (HFs), the unloading indentation curve 
that is normally used to determine the elastic modulus ex-
hibits unsatisfactory behavior. Hainsworth et al. found that 
unloading cycle scarcely fi ts the  existing models by Oliver and 
Pharr [36, 47] or Field and Swain [48, 60]. Consequently, they 
concluded that the pertinent information on elastic and plas-
tic properties of an indented solid might be extracted from 
the loading curve. The latter was found to follow the power-
law (quadratic) relationship, for sharp tips [73].

Hainsworth et al. [73] accepted the simplifi ed assump-
tion that the tested material is rigid plastic and its hardness 
H remains constant (hardness parameter does not represent 
a material constant. The measured conventional hardness H 
markedly increases with decreasing maximum load Pmax, an 
effect clarifi ed by Begley and Hutchinson [74]) with decreasing 
indentation load P. In such a case, the relationship between the 
contact radius a, indentation load, and the hardness reads:

 a
P
H

5 . (2.14)

Following the approach of Loubet et al. [75] for sharp 
indenters, the plastic hp and elastic he components of the 
indentation depth h depend on the contact radius:

 h hp h a
P

Ea
P
H

P
E

H
P

� � � � � �g g	 	e , (2.15)

where 
 and 	 which depend on the indenter geometry, were 
empirically determined by Hainsworth et al. [61], while E 
stands for Young’s modulus of the investigated material. 
eqn (2.15) yields the power-law dependence between the 
indentation load and the depth:

 P Km h2
� , (2.16)

where

  

Km E
E
H

H
E

� �

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

�2

	
.
 (2.17)
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8 Nanoindentation Examination of Crystalline Solid Surfaces

Hainsworth et al. [73] empirically verifi ed eqn (2.16) for a 
number of materials with widely varying E/H ratio. The tests 
were performed for various metals (steel, bronze, copper, 
and iron), silicon crystals, and for TiN and CNx thin fi lms. 
The authors found that the P–h2 relationship holds when 
the constant parameters take particular values of 
5 0.194 
and 	5 0930.

In summary, Hainsworth et al. [73] claimed to be able 
to predict the shape of the loading indentation curves, 
which allows one to determine the commensurate value of 
Young’s modulus E of the indented material in cases when 
hardness H is known. Further, their model enabled them to 
foresee the indentation response of the material when its 
elastic modulus and hardness are already determined.
Determination of the Elastic Modulus Supported by 
FEM Analysis. A simple relationship between the elas-
tic modulus of the indented surface and the P–h unloading 
data was derived by Taljat et al. [76] who investigated the 
ball-indentation process by combining the FEM simula-
tion and the so-called “surface response approach” (SR). 
The latter concerns the stress–strain curve of the indented 
 material used as an independent variable (input) in FEM 
calculations. Taljat et al. [76] defi ne Young’s modulus of 
the indented solid as a functional dependence on a normal-
ized unloading slope Su and the estimate of deformation d/D 
(ratio of the diameter of the impression and the indenter):

 E f Su Su
d
D

C
d
D

C

� �,⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′

1 , (2.18)

where C1 and C’ were determined using fi nite element analysis 
of the indentation process. The unloading slope Su was eval-
uated by SR procedure (details in [76]), that is, the authors 
estimated the indenter deformation employing an analytical 
solution for the displacement of the center of the contact 
circle. The obtained value was subtracted from the total 
indenter compliance, a correction that plays a major role in 
the calculation of elastic modulus. Importantly, Taljat et al. 
[76] confi rmed the validity of their proposal by performing 
experiments on three materials with quite different Young’s 
moduli, namely, aluminum, copper, and steel.
The Method of Elastic Loading and Elastic–Plastic 
Unloading. The complete analysis of elastic loading and 
elastic–plastic unloading of a spherical indenter was  devised 
by Gerberich et al. [68] who propose a novel method deriv-
ing Young’s modulus evaluation suitable for nanoinden-
tation experiments (ultralow loads). The essence of the 
 approach lies in the original analysis of elastic displacement 
above (h1) and below (h2) the contact line (refer to Fig. 7). 
The method proposed by Gerberich proved to be equally 
suitable for metals and ceramics (see examples in [68]).

The authors considered both loading and unloading 
indentation cycles, and studied penetration accompanied by 
pileup of the material adjacent to the impression, as well as 
when such a pileup is absent (see Fig. 8). The pileup affects 
the value of Young’s modulus estimated from the inden-
tation data, since its presence causes difference in elastic 
displacement above and below the contact line (h1>h2, 
refer to Figs. 7 and 8). Such an approach contrasts with the 

elastic analysis of Field and Swain [61], who assume the 
displacements above and below the contact line to be equal 
(h15h2). Furthermore, Gerberich et al. [68] were aware of 
the fact that elastic displacement above the contact line h1 is 
proportional to the total elastic displacement of a spherical 
tip hE into an elastic–plastic material (refer to Fig. 8), which 
yields:

 h1
hE

ht

hE� ��
max

� , (2.19)

where hE
max  (hE ht hr

max � � ) is the elastic displacement 
during unloading, while ht represents the maximum inden-
tation displacement (ht = hmax). The constants � and � 
may be evaluated by considering the respective boundary 
conditions for an elastic contact:

   hEh2� � 2, h hE2 2,� �  ht
maxmax � hE , (2.20)

or for a rigid-plastic contact:

   hf � 0 , h2 0� , ht hthp
max � � . (2.21)

The solution of elastic and rigid-plastic contact problems 
with the imposed boundary conditions allowed the authors 
to determine elastic displacements (h1 and h2) and contact 
radius (a) for a particular indentation load (P):

 h1
hEhE

ht2
�

max

max

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , 

 h2 h1
hEhE hE
ht

max

max1
2

,� � � �
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Figure 7. The geometry of elastic penetration of spherical indenter into 
a solid surface – model by Gerberich et al. [68].
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where R is the radius of the tip. Further manipulation with 
eqn (2.22) led to a formula proper for the entire unloading 
curve, which allowed Gerberich et al. [68] to evaluate exactly 
the effective elastic modulus Eeff:

 RPEeff
3

4 RhE� � �2 1
2

2
⎛

⎝
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max max
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�
 

(2.23)

The authors emphasize that their approach describes accu-
rately the unloading curve, and consequently they are able to 
estimate the elastic modulus at each point of the unloading 
cycle. Moreover, Gerberich et al. [68] compare their results 
with the data obtained when applying the Doerner and Nix 
[33] or Field and Swain [60] method to fused quartz, poly-
crystalline aluminum, and a single crystal of tungsten. Their 
estimation of Young’s modulus and hardness of the tested 
materials appears to be precise as far as the relatively high 
loads are considered.

2.1.5.  Elastic Modulus Derived from a 
Nanoscale Deformation: A Dilemma in 
Nanoindentation

The nanoindentation experiments coupled with a 
complete and anisotropic 3D finite element simulation 
provide the first exposure of a consistent difference in 
nanomechanical response of the various crystallographic 
planes of sapphire loaded with spherical indenters 
[38, 77]. The available analytical solutions for the elastic 
contact between rigid diamond indenter and sapphire 
were negatively verified by the indicated tests, in contrast 
to the finite element calculation with deformable tip. The 
main conclusion of these findings [38] is that although 
nanoindentation is frequently claimed to be a nonde-
structive testing method, it is – in fact – not. The authors 
found that the accuracy of the experiments available 
today is compromised by the structural changes induced 
during loading. The result is an erroneous estimation a 
using2the commonly accepted Oliver–Pharr method 
[34] of the elastic characteristics of the sapphire surfaces 
(refer to Fig. 9).

Indeed, their precise nanoindentation experiments 
supported by FEM simulation of the elastic contact between 
the spherical tip and the anisotropic Al2O3 crystal prove that 
the elastic modulus and its anisotropy cannot be correctly 
determined using the unloading cycle of the elasto-plastic 
indentation curve [38], as routinely exercised within the 

Figure 8. The schematic of elastic–plastic contact of spherical indenter 
discussed by Field and Swain [60, 61] – the case with and without pileup 
of material.

Figure 9. The nanoindentation P2/3–h curves recorded for sapphire 
(Nowak et al., unpublished) that display the difference between Young’s 
moduli determined by Hertzian relationship [41] and Oliver and Pharr 
[36] method. The latter approach provides erroneous evaluation of elas-
tic parameter.
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10 Nanoindentation Examination of Crystalline Solid Surfaces

widely accepted procedure by Oliver and Pharr [34]. This 
paper recommends determination of elastic properties from 
the perfectly elastic nanoindentation cycle recorded prior 
to the point at which the pop-in event occurs, using simple 
Hertzian calculations, FEM inverse analysis, or something 
like a three-parameter constitutive low approach [78]. The 
unloading response of the crystal volume that was partly 
transformed during pop-in event would be, in general, 
different than elastic recovery of the virgin sapphire 
surface.

2.2. Determination of Hardness

As was mentioned in Section 1, the physical importance 
of hardness H, denoted according to Meyer’s concept eqn 
(1.1), lies in the relationship between the H value and the 
fundamental physical parameters such as yield strength 
rY [eqn (1.2)] or Young’s modulus E. While hardness is 
widely used by engineers, it appears to be ill defi ned and 
neither represents material constant nor describes a single 
material property. The latter concern was expressed in the 
comprehensive review by Söderlund and Rowcliffe [70], 
who point out that the measured hardness H is affected by 
indentation-induced cracking, densifi cation, strain hard-
ening, and creep of the tested solid. Consequently, H is a 
function of Young’s modulus E, yield strength rY, tough-
ness KIC, work hardening exponent n, or stress-dependent 
creep rate �c

.

Hence, hardness appears as an engineering parameter 
that depends even on the applied maximum indentation 
load Pmax (refer to the footnote in page 18), that is, its value 
should not be viewed exclusively as a material character-
istic. Furthermore, Pethica et al. [12] report a particularly 
signifi cant increase in hardness when the indentation size 
drops below 1 lm, which they related to alteration of the 
acting yield mechanism for ultralow load deformation. The 
above-mentioned examples persuade one to conclude that 
hardness should not be considered in the same way as other 
material properties such as strength, yielding limit, resis-
tance to crack propagation, or electrical resistivity.

With the advent of depth-sensing indentation 
 instruments, confusion arose as to how to determine the 
hardness parameter from the monitored displacement of 
the indenter. Should it be deduced, for example, from the 
maximum depth hmax (refer to Fig. 3) or calculated using the 
residual penetration depth hr? Starting with the pioneering 
work by Oliver et al. [79], efforts were made to determine 
the characteristic contact area A’ at each step of the pene-
tration and consequently, to obtain Meyer’s hardness using 
eqn (1.1):

 H 5 P/A’, (2.24)

Therefore, the estimation of the depth-hardness profi le 
became the standard procedure recommended to users of 
commercially available depth-sensing testers (the methods 
are discussed in the following sections).

It is worth emphasizing that an alternative defi nition 
of hardness HT, which appears as a load-independent 
pa rameter, was introduced by Sakai and Nowak [44–46]. In 
contrast to the other approaches, HT is a physical parameter 
defi ned according to the energy consumed for an irrevers-
ible deformation of an indented material. The formula for 
HT was derived from constitutive equations for the ideal 
geometry of axisymmetric contact [44].

2.2.1.  Hardness under Load: A Concept of 
Doerner and Nix 

Doerner and Nix [33] consider hardness, defined 
according to eqn (2.24), to be equal to the average pres-
sure under the acting indenter (7p8 5 H). They suggest 
that the elastic contribution he to the entire indentation 
depth h should be subtracted, in order to evaluate the 
level of hardness associated essentially with plastic defor-
mation. According to these authors, plastic indentation 
depth hp may be determined (refer to Section 2.1.2) by 
extrapolating to zero load the line that is fit tangent to the 
unloading P2h curve (see Fig. 3). Doerner and Nix [33] 
assumed ideal indenter geometry (Vickers and Berkovich 
pyramids) that remains unchanged during the penetra-
tion process, and estimated the projected contact area Ap 
that quantifies the permanent deformation (plastic) of 
the tested solid. The hardness determined according to 
the plastic part of the penetration depth hp (Fig. 10) was 
expected to approach the conventional H value defined 
by eqn (1.1).

Doerner and Nix were aware of the drawbacks that stem 
from their assumption of a perfectly rigid indenter [33]. 
In order to determine precisely the profi le of the loaded 
penetrator, they used two-stage carbon replica imaging of 
the deformed surface, the approach originally proposed 
by Pethica et al. [12]. Thus, the low-load impressions were 
observed by means of transmission electron microscopy, 
and the calibration of an indenter shape was achieved by 
empirical determination of the relationship between the 
cross-section area A’

exp and indentation depth h for Vickers 
and Berkovich diamond tips. Doerner and Nix [33] argue 
that, during a single indentation cycle, tip-shape correc-
tion allows one to determine precisely the hardness-depth 
dependence for bulk and thin-fi lm crystalline materials. 
They concede, however, that the estimation of the infl uence 
of strain rate on the obtained results is beyond the resolu-
tion of the proposed method.

Figure 10. The schematic of the analysis by Doerner and Nix [33], 
where hr, ht, and hp represent fi nal, total, and plastic indentation depth, 
 respectively (see Fig. 3).
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Nanoindentation Examination of Crystalline Solid Surfaces 11

2.2.2.  Estimation of Hardness According to 
Pharr and Oliver 

Since depth-sensing indentation equipment allows one 
to monitor the load experienced by a diamond tip during 
the penetration process, the principal diffi culty associated 
with evaluation of hardness lies in the estimation of the 
projected area A’ of permanent indentation according to 
eqn (2.24). Pharr, Oliver, and coworkers advocate deter-
mination of their shape function A 5 f(dc), that is, the 
empirically assessed shape of the indenter at the contact 
depth hc [34, 36], an issue discussed earlier in Section 2.1.2. 
The f(dc) function denotes the relationship between the 
cross-sectional contact area A and the distance dc from the 
indenter tip, which locates the cross section, as shown in 
Figure 11. The A2dc dependence can be assessed from the 
depth-sensing indentation data, which allow one to evaluate 
readily the relationship between the area A and the contact 
depth hc (refer to Fig. 11).

Pharr et al. were aware that hardness results, particu-
larly those obtained under ultralow load, contain system-
atic error owing to deviation of the shape of the tip from 
ideal Berkovich geometry [47]. Indeed, the tip rounding 
of a triangular penetrator was discovered as early as 1983, 
when Pethica et al. estimated the tip radius to equal 15 nm 
[12]. Four years later, the corrected value of 50 nm was 

reported for the radius of the Berkovich tip [80], while 
the work of Doerner and Nix [33], and Pharr et al. 
[14, 34, 36, 47] provided the basis for believing that the 
value in question ranges from 10 to 100 nm. A thorough 
study of the effect of tip radius on nanoindentation results 
was carried out by Shih et al. [81], and more recently by 
Bei et al. [82], who presented a finite element simula-
tion of the indentation process based on continuum solid 
mechanics.

Oliver and Pharr [34] used the f(dc) shape function 
derived for perfect Berkovich tip geometry, which reads:

  f dc dc( )� 24 56 2. , (2.25)

for an initial estimation of the contact area. To determine a real-
istic shape of the sharp indenter, Pharr et al. used a  standard 
specimen, that is, they carried out indentation experiments 
under various loads Pmax in fused quartz or silica, the materials 
with well-defi ned isotropic properties [34, 36, 47]. Finally, the 
function f(dc) was calculated according to the formula [34]:

 dc dcdcdcdcf dc C8C3C2C1( )� � � � � �� � �24 56 2 1 1 2 1 4 1 128. ... ,  (2.26)

where C12 C8 denote constants.

Figure 11. The parameters used in evaluation of the indenter shape function by Pharr and Oliver [34, 36]. The parameters h, hc, dc, P, and a stand for 
indentation depth, depth to the contact, distance of cross section from the indenter tip, indentation load, and a radius of the contact area, respectively.
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12 Nanoindentation Examination of Crystalline Solid Surfaces

The function f was determined from the P2h data, 
assuming that Young’s modulus of the standard sample 
does not vary with indentation depth. The above restric-
tion imposed on the model does not undermine the validity 
of the approach employed by Oliver and Pharr unless we 
do not deal with nanoscale deformation [38]. The former 
authors proved that a single area function determined 
according to their method fi ts the experimental results 
obtained for aluminum, quartz, soda-lime glass, sapphire, 
fused silica, and tungsten [34, 36, 47]. eqn (2.26) is not a 
fi nal output of the analysis proposed in studies by Pharr 
et al. [36], since the procedure of multiple fi tting was exer-
cised within the iteration method to achieve satisfactory 
accuracy. Once the f(dc) function was determined, it was 
possible to evaluate the hardness from the indentation 
results according to eqn (2.24).

In order to provide a fresh insight into hardness anal-
ysis, Pharr and coworkers [83] investigated the infl uence 
of material pileup on hardness of the indented solid, using 
fi nite element simulation of the axisymmetric contact 
between the rigid indenter and elastic–plastic mate-
rial with constant Young’s modulus (70 GPa) and yield 
strength ranging from 0.114 to 26.62 GPa [47, 83]. The 
authors registered a pronounced pile-up effect on the 
hardness level when the ratio of residual to the maximum 
indentation depth exceeded 70% (h/hmax . 0.7), and the 
solid did not work-harden signifi cantly. In such a case, the 
error in estimating the hardness value might be as great as 
50%. Consequently, the procedure developed by Oliver, 
Pharr, and coworkers [34, 36, 47] allows one high-accu-
racy evaluation of hardness for materials that obey the 
empirical criterion (h/hmax , 0.7), that is, those that do not 
produce signifi cant pileup during indentation.

2.2.3.  Evaluation of Hardness Aided by Finite 
Element Calculations

Numerical simulation of the indentation process frequently 
provides results that could not be obtained directly from 
experiments, as mentioned earlier in Sections 2.1.1 and 2.2.2 
of the present review. Indeed, once the penetration is simu-
lated, there is no obstacle to estimate the contact area (the 
parameter essential for the calculation of hardness, which 
cannot be assessed experimentally) at any possible stage 
of the indentation process. This argues for the capability 
of the fi nite element approach to explore the theoretical 
foundation of hardness. Moreover, numerical simulation 
of indentation allows one, nowadays, to draw conclusions 
about a variety of mechanical characteristics of the tested 
solid, such as contact stiffness, the effective elastic modulus 
(see Section 2.1.4.3), and yield strength. Alternatively, it 
may be used to predict the surface profi le (the pileup or 
sink-in effects, refer to Fig. 8 ) around the contact with the 
indenter, and the shape of the plastic zone created directly 
under an acting tip.

Recent interest in fi nite element analysis of indentation 
data stems from the advantages of such an approach and 
from the fact that high-speed computational capabilities 
are readily available nowadays. It is becoming increas-
ingly popular among users of nanoindentation systems 

to employ the FEM method to estimate the mechanical 
characteristics of advanced and new materials, and clarify 
their indentation behavior. In the case when one goes 
into nanoscale deformation, even the FEM approach is 
insuffi cient and the analysis based on atomistic simulation 
must be used, while a few years ago this subject was exer-
cised exclusively by specialists. A concise, yet complete, 
historical review of the computer simulation of the inden-
tation process is given in following sections of the present 
review.
Finite Element Simulation of a Spherical (Brinell) 
Indentation. The fi rst attempts to resolve deformation 
and stresses during spherical indentation of an elastic– plastic 
 halfspace using FEM calculations were made by Hardy et al. 
[84], and independently by Lee et al. [85]. The latter cal-
culated load–displacement (P2h) response for frictionless 
indentation and drew conclusions about  pressure distribu-
tion and the shape of the plastic zone created under the act-
ing tip. The numerical results concerning P2h data for a 
steel specimen were verifi ed by the authors using the tester 
of their original design, equipped with a WC ball ( radius 
of 10 mm). Consequently, Lee et al. [85] found that the 
representative strains (the parameter used in Tabor [4, 5]) 
coincide with the mean effective strains in the plastic zone 
created directly under the indenter, which supports Tabor’s 
concept of H–rY relationship, as in eqn (1.2). It should be 
emphasized that the report by Lee et al. [85] was published 
in 1972, that is, long before the idea of depth-sensing hard-
ness measurements had become generally accepted.

The spherical and frictionless indentation in an elastic–
plastic halfspace was further studied by Follansbee et al. 
[86]. The authors calculated stresses, strains, and displace-
ments generated at different load levels as well as surface 
displacement profi les using the theory of incremental 
elasto-plasticity for homogenous, isotropic, and elastic–
incompressible–plastic solids that comply with the von 
Mises yield criterion, and in consequence, satisfi ed the 
conditions of strain rate–displacement rate relations for 
small strains. The calculations led to the quantifi cation of 
residual tensile stresses induced during the penetration 
process and enabled the authors to  determine the expected 
size of the residual impressions. Hence, Follansbee et al. 
[86] were able to evaluate the Brinell hardness of stain-
less steel by using the FEM method and verify their results 
using experimental data. They also provided a theoretical 
confi rmation of Tabor’s relationship [eqn (1.2)] for work-
hardened materials.

Thorough theoretical studies of Brinell hardness were 
undertaken by Hill, Storåkers, and coworkers [6, 87], who 
derived general expressions for the infl uence of the tip 
shape on the load and surface deformation by solving a 
class of boundary value problems in elasticity. The authors 
applied the new FEM procedure to the deformation theory 
of plasticity. Their numerical simulations were performed 
for the elasto-plastic homogenous halfspace with all-around 
isotropy, while indented to a fi xed depth by a smooth rigid 
ball [6, 7, 88]. The solid was deformed according to the 
power-law hardening rigid-plastic model. The proposed 
analysis dealt with small-strain linear kinematics of friction-
less indentation process.
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Hill et al. [6] report nonproportionality of strain evolu-
tion in the vicinity of a contact boundary. They deter-
mined the distribution of contact pressure, the profi le of 
the deformed surface, and the contours of representative 
strain, which allowed them to verify the commonly accepted 
Tabor’s relationship [eqn (1.2)]. Further, Storåkers and 
Larsson [7] analyzed the  indentation into materials with 
time-dependent properties reproduced by power-law creep 
[4, 5, 89]. This led to the derivation of a universal relation-
ship for hardness at creep,  applicable for Boussinesq and 
Brinell indentation, which reads:
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where a is the contact radius under the ball indenter of diam-
eter D, t denotes the time, and rc and n are the  material 
parameters defi ned by the stress–strain (r2�) creep law 
given by Norton [90]:
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The fi ndings of Storåkers, Hill, and Larsson [6, 87] accord 
with Tabor’s experimental results obtained for the Brinell 

hardness test [4, 5], and it was realized that the Tabor formula 
has complement at creep [eqn (2.27) and Ref. [7]]. Further, 
Biwa and Storåkers [88] accomplished explicit solutions for 
plastic solids with hardening, that is, for those that asymp-
totically approach a fully plastic state during the penetration 
process. Their analysis deals with power-law hardening of 
materials that obey the Levy–Mises fl ow rule.

The specially designed fi nite element procedure employed 
mixed, nine-node quadrilateral elements, and purpose-
built meshes (refer to the examples shown in Fig. 12) 
which provided 24,000 degrees of freedom. The studies 
of the indentation in the low-strain hardening materials 
performed by Storåkers, Hill, Larsson, and coworkers [6, 7, 
87, 88] suggest that the bulk of deformation occurs in mate-
rial located very close to the indenter tip. This prompted 
the authors to use smaller size mesh during subsequent 
stages of the sim ulation.

For the sake of completeness of this review, the early 
research that employed classic slip line fi eld theory to the 
analysis of surface deformation of plastic–elastic  materials 
should be mentioned at this stage, although such an 
approach is no longer in use. The numerical simulation of 
spherical indentation provided by Shaw and DeSalvo [91], 
who studied the plastic fl ow beneath a blunt axisymmetric 
indenter, serves as an example of these kinds of works.
Finite Element Simulation of a Sharp Indentation: An 
Axisymmetric Approach. Since the commercially avail-
able nanoindentation depth-sensing instruments are normally 
equipped with a sharp penetrator of a Berkovich or Vickers type, 

Figure 12. The examples of different FEM meshes for elasto-plastic indentation (a, b) and their details (c, d) in the contact region. The displayed 
combination comes from Brinell indentation by Hill et al. [6] (a, c), and indentation of creeping solids by Storåkers and Larsson [7] (b, d). The similar 
confi guration was employed by Biwa and Storåkers [88] to analyze the perfectly plastic spherical contact.
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14 Nanoindentation Examination of Crystalline Solid Surfaces

the modeling of pointed indentation into solids under ultralow 
loads has drawn much attention. Consequently, fi nite element 
analysis of submicrometer sharp indentation was proposed in 
1988 by Bhattacharya and Nix [39], and subsequently by Lursen 
and Simo [40] in 1992. The former used incremental elasto-
plasticity in their computer-simulation studies of the frictionless 
penetration process of perfectly rigid indenter, as well as com-
pletely adhesive indentation contact. In order to maintain the 
computer time within reasonable limits, Bhattacharya and Nix 
[39] restricted their calculations to an axisymmetric cone with 
volume equal to a pyramid-shape indenter, arguing that such 
an approximation does not undermine the applicability of the 
obtained results. Indeed, the proposed simplifi cation may be ac-
ceptable from the point of view of continuum plasticity, which 
was used throughout, despite its neglect of the elastic singulari-
ties that appear near the edges of a pyramidal indenter.

Three different materials: silicon, polycrystalline 
aluminum, and nickel, were used in the calculations of 
Bhattacharya and Nix [39], followed by an experimental 
verifi cation of the simulated results. The applied consti-
tutive equations were of an elastic–plastic von Mises type 
with lack of strain hardening (the elastic/fully plastic case), 
or alternatively, with linear, isotropic strain hardening. 
Since the simulation targeted ultralow load indentations, 
the authors constructed extrafi ne FEM mesh (Fig. 13). The 
grids were quite tiny near the indenter, which enabled the 
authors to estimate accurately the deformation and stress 
gradients, but became progressively coarser further from 
the contact area (refer to Fig. 1). The pint-sized mesh was 
applied directly below the contact (four node elements, 
0.02 lm thick), which made it possible to estimate accu-
rately the radius of the contact area.

An important advantage of the study by Bhattacharya 
and Nix [39] was the comparison of the values of hard-
ness and elastic modulus estimated according to the 

three methods: the punch approximation of Loubet et al. 
[57, 75], the extrapolated depth model of Doerner and 
Nix [33], and their own FEM results. The authors found 
that their fi ndings support the concept of the extrapolated 
depth [33] as the most reliable measure of plastic indenta-
tion depth.

Signifi cantly, Bhattacharya and Nix demonstrated that 
the P2h curves obtained by means of ultralow load inden-
tation experiments could be effectively simulated, using 
the FEM with simple constitutive data. They clarify how 
the relevant mechanical parameters such as hardness and 
elastic modulus might be extracted from the numerical 
results and how the hardness of solids varies with the depth 
of penetration. Further, they obtained a satisfactory agree-
ment between the calculated and the measured data [39], 
which prompted further development of FEM analysis of 
nanoindentation experiments. It is worth noting that the 
same authors extend their considerations to the indenta-
tion of various combinations of hard–soft thin fi lms and 
substrates [92], and provide the evaluation of fi lm hardness 
based on a concept of collective deformation of thin fi lm–
substrate composite.

Following the research of Bhattacharya and Nix [39, 92], 
Lursen and Simo [40] present a detailed numerical simu-
lation of surface deformation of elastic–power-law plastic 
materials. They address axisymmetric cone  indentation 
into bulk aluminum and silicon, as well as thin fi lms of 
various degrees of thickness, namely, aluminum on a 
silicon substrate and silicon on an aluminum substrate. The 
emphasis is on the numerical evaluation of the contact area 
and the surface profi le near an indentation im pression.

Despite the numerous simplifi cations used by Lursen and 
Simo [40], their studies are fi rmly based on solid mechanics, 
and they point toward the necessity of simultaneous consid-
eration of the inelastic and elastic behavior of the indented 

Figure 13. The schematic of the FEM mesh near the axisymmetric conical indenter used in [39].
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solid. Consequently, the indented material was modeled 
in their study, using the constitutive theory of large elasto-
plastic deformation that was earlier developed by one of 
these authors [93]. The solution to the boundary value 
problem is applied to traction, displacement conditions, 
and unilateral constraint. The indented solids were ideal-
ized using J2 fl ow theory (J2, second invariant of the stress 
deviator) with linearly isotropic hardening.

In spite of several coinciding assumptions, the  arrangement 
of the FEM computation process by Lursen and Simo [40] 
differed from the one proposed earlier by Bhattacharya and 
Nix [39]. Indeed, a rigid conical indenter with an apical angle 
of 136° was used in both the works, while the FEM mesh 
designed by Lursen and Simo (refer to Fig. 14) contrasts with 
the meshes in Bhattacharya and Nix (Fig. 13). The new mesh 
(Fig. 14) contained 2419 nodes and 2285 elements with a very 
fi ne structure near the indenter (similarly to Bhattacharya 
and Nix [39, 92]), while it possessed very fi ne zones at the 
material surface directly below the indenter and in the case 
of the layered structure – at the fi lm–substrate interface (this 
contrasts Refs. [39, 92]). Furthermore, the indentations were 
assumed to reach the penetration depth of 1 lm, while roller 
boundary conditions were applied to the outer and bottom 
surfaces of the mesh, and far-fi eld boundary conditions were 
satisfi ed by the use of a coarse mesh (see Fig. 14).

The resolution achieved using their method enabled 
Lursen and Simo [40] to evaluate the contact area during 
the penetration process, and, thus determine the  hardness 
depth profi le for the investigated solids. The authors 
 additionally took into account the pileup and sinking-in 
effect (The pile-up effect and its infl uence on hardness 
measurements have been thoroughly studied by Gerberich 

[68] (see Fig. 8 and Sections 2.1.4.4 and 2.2.2). However, 
it is worth noting that a consideration of the pileup–
sinking-in by Lursen and Simo appeared as early as 1992.), 
while evaluating the hardness of the bulk and the thin fi lm 
materials. They found that the inaccurate determination 
of the contact area from plastic depth (see, e.g. [33, 39]) 
is owing to the neglect of the pile-up phenomenon [40]. 
Hence, Lursen and Simo [40] emphasize that the computer-
simulation experiments made it possible to estimate the 
parameters that cannot be obtained experimentally, such 
as the contact area, yield zone, or the distribution of stress 
under the tip.

More recently, Nowak et al. [94] applied the FEM 
 simulation of the penetration by an axisymmetric indenter 
into a HF–soft substrate system to clarify the surprising 
difference in  hardness of virgin and ion-bombarded HfN 
thin fi lms deposited on silicon wafer. Their fi nite element 
calculations led to the  identifi cation of an amorphous silicon 
interlayer that was formed directly beneath the upper HfN 
fi lm because of the bombardment of the material with 
highly energetic ions.
Three-Dimensional Finite Element Simulation of a 
Sharp Indentation. Axisymmetric approximation of 
the pyramidal shape of the Vickers- or Berkovich-type in-
denter undertaken by numerous scholars [39, 40, 92, 94] is 
scarcely acceptable in the case of an anisotropic material. 
Such a simplifi cation affects the precision of the predic-
tion provided by a numerical simulation, although it con-
siderably improves the speed of the calculations. Hence, an 
a ccurate and three- dimensional (3D) fi nite element analysis 
of a sharp  indentation has  become  required from the prac-
tical standpoint. Moreover, the 3D  approach offers better 

Figure 14. The schematic view of the FEM mesh (a) and fi ne meshing near the conical indenter (b) used in [40].
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 understanding of the mechanics involved in nanoindentation 
 experiments.

The fi rst attempt to perform a 3D fi nite element simu-
lation of indentation by Wang and Bangert [95] was soon 
followed by a complete analysis of the Vickers indentation 
carried out by Giannakopoulos et al. [96], who attempt to 
solve the problem of penetration of a rigid indenter into 
homogenous, rate-independent, and semi-infi nite body – a 
frictionless, quasi-static, and isothermal process.

The calculations performed according to both the small 
and the large-strain formulations were accomplished for a 
solid with incrementally elasto-plastic and rate-independent 
constitutive behavior with isotropic hardening. Hooke’s law 
and the Prandl–Reuss equations governed the elastic and 
elasto-plastic deformation of the material, respectively. The 
required accuracy and effi ciency (reasonable computer time 
of numerical calculations) was achieved through appro-
priate meshing applied by Giannakopoulos et al. [96], who 
took advantage of the eightfold symmetry of the problem 
and limited the considerations to one-eighth of the mate-
rial volume (Fig. 15). The authors tested extensively various 
kinds of meshes to engulf the existing analytical solutions 
to the elastic contract problem proposed by Boussinesq 
[52] and Sneddon [54], whose fi nal mesh was composed of 
8524 eight-nodded isoparametric elements and 9914 nodes. 
Giannakopoulos et al. [96] point toward the importance of 
the mesh details, arguing that the differences between the 
numerical results obtained by Lursen and Simo [40] and 
Bhattacharya and Nix [39, 92] were caused by the noncoin-
cident meshing used in these reports.

The small-strain formulation and elastic analysis of 
Giannakopoulos et al. [96] allowed them to draw conclu-
sions about the parabolic relationship between the indenta-
tion load P and depth h at the loading cycle:

P
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which holds equally well when a large-strain hypoelastic 
analysis is performed. The numerically determined average 
contact pressure pav is independent of load and depth, since 
the contact area scales with h2:
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while the deformation was found to be directly related to the 
indentation depth. Furthermore, the logarithmic nature of 
the stress singularity at the edge of the Vickers pyramid was 
clarifi ed, and the deformation pattern close to the indented 
area was resolved [96].

The simulation of elasto-plastic penetration allowed the 
authors to estimate the infl uence of pile-up and yield stress 
levels on the Vickers hardness HV, considered in terms of 
average contact pressure (pav 5 HV), and resulted in the 
universal formula for the Vickers hardness:
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where C is a constant, u2max defi nes the maximum positive 
surface displacement caused by material pileup, while ru and 
rY represent the ultimate stress and yield stress, respectively. 
They were also able to assess the P2h relationship for elasto-
plastic deformation [96]:
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which appeared to be of a parabolic type, similar to 
the result obtained from purely elastic considerations 
[see eqn (2.29)].

Further, the calculations of steady-state hydrostatic 
stress and von Mises effective stress profi les performed by 
Giannakopoulos et al. [96] for materials with and without 
strain hardening suggest that strain hardening tends to 
suppress pileup at the contact boundary. The maximum 
tensile principal stress at loading, predicted in the vicinity 
of indenter tip, helped the authors to locate the region 
in which the fracture is likely to be initiated. The results 
by Giannakopoulos et al. [96], which relate to the surface 
deformation and generation of the indentation cracks, were 
restricted mainly to metals, and were compared with the 
experimental data obtained by Pharr and Cook [97] for the 
Vickers depth-sensing indentation in aluminum as well as 
by Zielinski et al. [98] for Fe–3 wt.% Si crystals. However, 
the application of the continuum theory of deformation to 
highly anisotropic single crystals has severe limitations and 
appears to be successful in exceptional cases (see the intro-
ductory part of Ref. [99]).

The results of Giannakopoulos et al. [96] inspired 
Zeng and Rowcliffe [100], who propose a new method 
of measuring residual stress induced near the surface by 
indentation. Hence, the theoretically predicted distribution 
of von Mises and hydrostatic stress induced in soda-lime 
glass, and induced by Vickers indentation, was experimen-
tally verifi ed [100]. This agreement appears a remarkable 
achievement and points toward advantages of nanoindenta-
tion, since glass belongs to brittle solids with mechanical 
characteristics that cannot be obtained from tensile test 
(a problem that falls beyond the objective of the proposed 
analysis).

Figure 15. The schematic view of the FEM mesh used by Giannakopou-
los et al. [96] (a) and its details at the contact area (b).
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It should be noted that Zeng et al. [100] modifi ed the original 
FEM model of Giannakopoulos et al. [96], using “true contact 
area function” which allowed them to simulate the P2h data for 
glass. Consequently, the authors were able to estimate the level 
of yield stress, strain hardening, and elastic modulus of soda-
lime glass from the numerical analysis of experimental inden-
tation data. Further, the determined stress and displacement 
fi elds enabled them to predict directions of crack propagation 
[100], which were confi rmed by the observations of indentation 
fracture in glass by Zeng et al. [101] and the thorough study 
of Salomonson et al. [102], who concentrate on the decay of 
residual stress during slow crack growth in soda-lime glass.

Pursuing their FEM studies of Vickers indentation 
[96, 100], both the teams (Zeng et al. and Giannakopoulos 
et al.) provide common analysis of the deformation induced 
around a triangular indenter [71]. The approach was similar 
to that proposed for Vickers hardness [96, 100], with corre-
sponding assumptions and equivalent constitutive modeling 
of the deformed material. The generalized Hooke’s law that 
governed elastic response of a deformed solid, considered 
according to small-strain formulation:
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was replaced by Larsson et al. [71] with Prandtl–Reuss 
equations for the elasto-plastic behavior:
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where � stands for uniaxial nominal stress, �p denotes the engi-

neering nominal strain � �p E
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ij are the deviatoric and the effective Mises 

stress, respectively.
The difference between the analyses of Vickers [96] and 

Berkovich [71] indentations stems from geometry. Sixfold 
symmetry allowed Larsson et al. [71] to restrict modeling for 
Berkovich tip to one sixth of the volume of the solid, while 
the applied FEM mesh contained considerably more elements 
(10,850 isoparametric block elements and 12,400 nodes) than 
that used for a Vickers penetration (compare Figs. 15 and 16). 
Larsson et al. [71] performed simulations of indentation into 
the materials modeled previously by Giannakopoulos et al. 
[96], namely, two types of aluminum with different kinds of 
hardening, the samples which were subsequently used to verify 
experimentally the calculated results. The authors found that 
the P–h relationship for a triangular tip is parabolic when the 
indentation is simulated using either the elastic [eqn (2.35)] or 
elasto-plastic [eqn (2.36)] approach:
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similarly to the results obtained by Giannakopoulos et al. 
[94] for the Vickers indenter [compare eqns (2.35) and 
(2.36) with eqns (2.29) and (2.32)]. As one might readily 
expect, the resemblance occurs as well for equations 
denoting the average contact pressure under the Berkovich 
indenter, derived for elastic [eqn (2.37)] and elasto-plastic 
[eqn (2.38)] solutions [71]:
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which correspond to eqns (2.37) and (2.38) of universal 
formulation concerning Vickers hardness [96]. Eqns (2.37) 
and (2.38) account for the pile-up effect and constitute the 
universal notation for Berkovich hardness. Interestingly, 
Larsson et al. [71] concluded that in the case of Berkovich 
indentation, pile-up and sinking-in effects counteract each 
other, and found that the plastic zone below the triangular 
indenter appears to be of spherical shape.

In summary, the results obtained by Giannakopoulos 
et al. [96] and Larsson et al. [71] established foundations for 
the FEM simulation of deformation and fracture induced by 
sharp indenters, and contributed signifi cantly to our under-
standing of the mechanics of the penetration process. The 
approach remains legitimate for materials with pressure-
independent properties, which means that it has limited 
validity for ceramics, as previously discussed – the problem 
addressed in detail by Söderlund and Rowcliffe [70].

Zeng et al. [72] introduce the general method of 
analyzing the experimental P2h indentation data obtained 
by means of pointed indenters, based on the FEM proce-
dures [71, 96] reviewed in the precedent paragraph. They 

Figure 16. The schematic view of the FEM mesh by Larsson et al. [71] 
(a) and its details near the contact area (b).
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suggest separate inspection of the loading and unloading 
indentation cycles, and emphasize that during penetration 
the surface displacement occurs both inside and outside 
the contact boundary. According to Zeng et al. [72], the 
sinking-in observed during loading takes place outside the 
contact boundary, while the unloading is associated with 
curving observed inside the contact boundary. To apply the 
formalism of Giannakopoulos et al. [96] and Larsson et al. 
[71] to hard and brittle materials such as ceramics, which 
cannot be regarded as “Mises  materials,” Zeng et al. [72] 
introduced a surface-displacement factor f:

 � �
Aideal

Atrue

, (2.39)

where Aideal and Atrue represent the ideal (calculated) and 
true (real size, not available for measurement) projected 
contact area, respectively. The positive or negative values 
of the � factor indicate that sinking-in (� . 1) or pileup 
(� , 1) has occurred. Using the � factor, Zeng et al. [72] 
rescale the Mises elasto-plastic solution to make it appli-
cable to ceramic materials and verify their approach for 11 
different kinds of glass and ceramics. Furthermore, Zeng 
and Rowcliffe [103] demonstrate that their analysis applies 
to nanoindentation in glass, alumina, B4C, TiB2, WC–Co, 
SiC, ZrO2, and Si3N4. Unfortunately, the method required 
several oversimplifi ed assumptions to be used for ceramics.

A complete and 3D fi nite element simulation of sharp 
indentation in pressure-sensitive materials is offered by 
Giannakopoulos and Larsson [104], in 1997. The method 
follows the earlier procedures by the same authors [71, 96], 
while pressure sensitivity (a property of hard metals and 
ceramics) was introduced according to the classic model 
of pressure-sensitive fl ow proposed by Drucker and Prager 
[105]. The authors used an incremental elasto-plastic law, 
and obtained a solution for complete load–unload cycle, 
determined the contact area, average contact pressure, and 
estimated local mechanical fi elds (Misses effective stress) 
with their singularities near the edges of the indenter. They 
employed the large plastic and small elastic strain approach, 
as well as high and low linearly isotropic strain hardening to 
model the material behavior. The results of their simulation 
were verifi ed for hard metals, glasses, and ceramics [104].

Giannakopoulos and Larsson [104] found that the inden-
tation depth recovery does not result necessarily from elastic 
rebound, and a similar effect might be caused by phase trans-
formation. Further, they confi rmed that the initial slope of 
the P2h indentation curve is related to the elastic proper-
ties (E, v) of the material, which are infl uenced by pressure 
sensitivity, while unaffected by strain hardening. The authors 
discovered that the projected true contact area at loading 
depends more on strain hardening than on pressure sensi-
tivity, while the sinking-in effect increases with strain hard-
ening and decreases with pressure sensitivity. They also 
proved that the P2h relationship is parabolic [eqn (2.40)] for 
pressure-sensitive materials, similarly to earlier fi ndings for 
metals by Giannakopoulos and Larsson [71, 96]:

 P dA Chj j c�� ��2
2∫ N , (2.40)

where Ac denotes the actual contact area, Nj stands for an 
inward vector normal to the surface within the contact area, 
and C is a constant. The authors conclude that the total 
energy Ur expended for indentation depends on the maximum 

indentation load Pmax
3 2� :

 U Pdh
P

C
r

h

� �
�

�

0

3 2

1 23

max

max∫ , (2.41)

while the general formula for the average contact pres-
sure pav (equivalent to the Meyer’s hardness) for pressure-
 sensitive materials reads:
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where a0 is the material constant that represents pressure 
sensitivity (q
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), and po is a far-fi eld hydrostatic 
compression.

Furthermore, Giannakopoulos and Larsson [104] indi-
cate that the so-called “inverse problem” for ceramics 
indentation (determination of the material properties 
based on indentation data and FEM simulation) entails 
serious diffi culties because of the combination of strain 
hardening and pressure-sensitivity effects, in contrast to 
the less-complicated case of metal indentation. An inter-
esting example of the solution to the indentation inverse 
problem was presented by Nowak et al. [94] who performed 
a fi nite element simulation of  indentation in ultrahard HfN 
thin fi lms deposited on a silicon substrate, and were able to 
determine mechanical characteristics of the top fi lm (HfN), 
substrate (silicon wafer), as well as the amorphous silicon 
interlayer formed after bombardment of the HfN–silicon 
system with energetic Au ions.

Furthermore, their FEM analysis of indentation into 
specifi c crystallographic planes of resulted in solution of the 
long-standing dilemma concerning mechanism of surface 
deformation of the Al2O3 crystal and oxide ceramics [95]. 
The latter work [95] dealt with full 3D FEM modeling of 
the anisotropic spherical elastic contact.
Recent Applications of the FEM Procedure to the 
 Hardness Test. There has been a recent increase in the 
number of studies that apply FEM simulation to indenta-
tion problems (refer to the reviews of bibliography by Mack-
erle [106–108]). Such approaches contribute signifi cantly to 
the clarifi cation of the effect of tip roundness or truncation 
on  nanoindentation data [35, 109, 110]. They also make it 
 possible to  determine the initial yield pressure, surface dis-
placements outside the indentations, the indentation stress–
strain relationship, as well as to identify the shear component 
of the stress fi eld as the driving force for the deformation 
of ceramics [111]. Furthermore, the FEM procedure ena-
bles the resolution of the indentation depth at which plastic 
deformation starts [112]. It provides the correction that suc-
cessfully annihilates the overestimation of hardness and the 

CH-192.indd   18CH-192.indd   18 11/24/2009   1:31:17 AM11/24/2009   1:31:17 AM



Nanoindentation Examination of Crystalline Solid Surfaces 19

elastic modulus when pile-up effect appears to be an impor-
tant factor [71, 113].

A new insight into the process of the plastic zone forma-
tion in FCC crystals during surface deformation was achieved 
using a simulation of hardness experiments combined with 
TEM observations [114, 115]. Tadmor et al. [116] provide 
an impressive study of large-scale atomic resolution calcu-
lations concerning indentation. On the basis of the FEM 
calculations, they were able to estimate the Peierls stress 
and the density of mobile dislocations within the crystal.

Finally, the FEM simulation by Suresh, Giannako-
poulos, and coworkers [117–119] resulted in a general 
theory of indentation of piezoelectric solids and clarifi ed 
the  evolution of the surface residual stress and deformation 
fi eld in  compositionally graded materials. Based on these 
studies, Nakamura et al. [120] proposed a new measure-
ment procedure using inverse analysis of nanoindentation 
in nonlinear functionally graded or layered materials. All 
this indicates that nowadays the fi nite element calculations 
prove quite useful in the analysis of nanoindentation data, 
both from the scientifi c and practical point of view, with a 
recent development of nanoindentation procedure.

2.2.4.  Additional Recommended Methods of 
Hardness Evaluation

Swain and coworkers [48, 59–66] argue that the measure-
ment of hardness with small radius R spherical indenters 
is the most convenient and effective method. The authors 
emphasize the simplicity of estimating the mean pres-
sure pav under the spherical indenter, using the distance of 
elastic approach � [eqn (2.11)] and its relationship to the 
contact area [eqn (2.12)]. Thus, according to Swain et al. 
[59, 60], hardness H, which equals mean contact pressure 
(pav), might be readily assessed:

 H p
P

a

P
a� � �m

p pdR2 , (2.43)

while the contact radius a, in the case of elastic–plastic 
deformation under a spherical indenter, reads [48]:

 a Rh hp p5 22 2
 (2.44)

where hp stands for plastic penetration depth.
Swain et al. [60] attempt to estimate the pile-up effect 

and propose a procedure for correcting hardness data. In 
cases when pile-up aftermath is negligible, substitution of 
the value of a from eqn (2.44) into eqn (2.43) provides an 
adequate estimation of the contact pressure.

An alternative method of hardness evaluation was 
proposed by Page and associates [73, 121, 122], who explore 
the P2S2 and P2h2 relationships that hold for the measured 
load P, depth h, and contact stiffness S. Taking advantage of 
eqn (2.2), the authors determined the P/S2 ratio, and subse-
quently, the hardness value H [121]:

 P

S E

P
A E

H
eff eff

2 2 24 4
5 5

� � . (2.45)

Alternatively, hardness can be evaluated from eqns (2.16) and 
(2.17) when the effective Young’s modulus of the examined 
material is known [70]. Page et al. [122, 123] claim that the 
combined analysis of the P2h, P2S2, and P2h2 data appears 
very effi cient for bulk materials and hard coatings. This prompts 
the authors to suggest that their approach might be considered 
an alternative to the FEM simulation–based methods.

The original approach to nanohardness measurements was 
provided by Gerberich et al. [68] (refer to Section 2.1.4.4), who 
base in large part on their own experience of the deformation 
of metallic crystals under milinewton contacts [98, 124–126], 
examination of thin fi lms by wedge indentation [127], and 
dislocation mechanisms involved in nanoindentation process 
[128, 129]. The elastic–plastic formulation used by the authors 
enabled them to determine contact displacements and radius 
of the zone [eqn (2.22)], and thereby to estimate nanohard-
ness. The proposed algorithm applicable to very shallow sharp 
indentations was treated in terms of a spherical contact owing 
to the signifi cant rounding of any sharp tip.

Gerberich et al. [68, 128–131] demonstrate the way in 
which their model clarifi es nonlinear deformation mecha-
nisms associated with sudden depth excursions observed 
during nanoindentation of metals, or an effect of surface 
roughness on ultrashallow indentation measurements 
[68]. Furthermore, the latter model by Gerberich et al. 
[128–130], based on the activation of dislocation multiplica-
tion sources, enabled them to explain the dilemma in mate-
rials science: the yield initiation during indentation process. 
Despite its universality claimed by Bahr and Gerberich 
[130, 131], the latter model is not suitable when twinning or 
phase transformation occurs in early stages of deformation, 
an issue pointed out by Nowak et al. [132] already in 1999 
and accepted recently as a major shift in the approach to 
incipient plasticity [22, 23, 38].

Moreover, Tymiak et al. [133] provide theoretical consid-
erations followed by measurements of plastic strain and 
strain gradients for shallow indentations and discuss inden-
tation size effect in metallic crystals in terms of gradient 
plasticity, the research that is an extension of the approach 
by Gerberich et al. [128–131].

3.  ATOMISTIC SIMULATION OF THE 
 NANOINDENTATION PROCESS

The recent development in nanoindentation technique targets 
the continuous decrease in indentation depths and diminishing 
contact area, and consequently, this method became an exclu-
sive tool to examine the mechanical properties of materials in 
nanolevel [134]. Since none of the experimental techniques 
is universal, they usually require verifi cation by supplemen-
tary approaches. In the case of nanoindentation experiments, 
the combination with transition electron microscopy [135] or 
simultaneous measurements of the contact resistance [23, 
136] proved to be successful and resulted in deeper under-
standing of the phenomena which occur under the acting tip. 
Very tiny contacts realized by extremely sharp indenters – such 
as cube-corner tip frequently used for nanostructures – preclude 
the possibility of the nanoindentation modeling by means of 
an FEM procedure (refer to Sections 2.1.4.4, and 2.2.3.4 in 
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this review). The proper approach to this kind of problems 
stems from the atomistic considerations: either quantum 
(ab initio) or classical MD calculations. Indeed, the simu-
lations that employ molecular dynamics (MD) proved to 
be effi cient in these cases and provide a new insight into a 
variety of physical phenomena including incipient plasticity 
or indentation-induced phase transformations. Interestingly, 
MD calculations gained recently common recognition in 
materials science, which inevitably tends toward nanotech-
nology and nanostructured materials. The recent research 
concerning adhesion and fracture of gold monocrystal [137] 
or generation of initial defects and pile-up formation during 
indentation of fcc-silver and bcc-iron crystals [138] serves as 
the perfect example of the recent trend.

3.1.  MD Simulation of Nanoindentation-
Induced Phenomena

In the atomistic simulations the physical properties of the 
system – understood as a consistent cluster of atoms – appear 
naturally as a consequence of interatomic interactions, modeled 
in such a way that they mimic reality. Newton’s equations of 
motion for multiparticle system [139] form a common back-
ground of the so-called “classical MD”. However, this proce-
dure requires the particular numerical algorithm (a simplectic 
integrator) that makes it possible to determine, stepwise, the 
atomic positions until the entire cluster is settled on.

Several integration methods nowadays are in use, see, for 
example, leap-frog routine in a Verlet scheme [140] and its modi-
fi cations. In order to keep our cluster within precisely defi ned 
conditions, the thermodynamic ensemble should be applied, for 
example – the isothermal-isobaric ensemble with simultaneous 
scaling of atom’s velocities and coordinates [141, 142].

The physical properties of the simulated system are 
modeled using the forces (F) acting between the atoms, and 
derived from the potential energy function V according to a 
well-known procedure:

 ( )52=VF� r� . (3.1)

In classical type simulations, atoms are treated as point-like 
centers that interact through many-body potential. Generally, the 
pairwise potentials do not work well for solid state. The Lenard-
Jones potential, for example, imposes Cauchy relationship 
between the elastic constants (C1 2 5 C44), which is not correct for 
most of the metals and semiconductors. The distinct direction-
ality of covalent bonding in semiconducting crystals can be well 
reproduced using three-body Stilinger–Weber [143] or bond-
order potentials introduced by Tersoff [144] and Brenner [145]. 
Moreover, the variety of many-body potentials including the one 
by Finnis–Sinclare [146] as well as this based on embedded atom 
method (EAM) [147] is nowadays in use for metals.

The recent development of indentation technique toward 
very low loads and the penetration depth forced researchers 
to apply MD calculations to analyze, clarify, and predict the 
surface nanoscale deformation. However, the usage of the 
MD method for simulations of nanoindentation has serious 
limitations associated with the required extensive computer 
calculation time. The running time in the simulated system 

does not usually exceed a few picoseconds [148], and conse-
quently, the speed of the modeled penetration process is 
very high, for example, in the case of silicon nitride surface 
deformation, the simulated tip velocity was of 100 m s–1 in 
contrast to the rate of 25 lm s–1 used in the experiments 
[149]. Despite the obvious discrepancy, the MD simulations 
provide reasonable results, since the simulated indentation 
speed is still lower than the sound velocity, which ensures 
that the system can dissipate refl ected acoustic waves that 
accompany indenter motion (the sound velocity in Si3N4 
,7000 ms–1 [149]).

The other limitation of simulations is associated with the 
cluster size that can be considered during the MD calculations. 
One has to impose the artifi cial boundary conditions in the 
case of small clusters, something what may result in confusing 
data that would lead to errorneous claims concerning physical 
phenomena that occur in the stressed zone [150].

3.2. Incipient Plasticity of Crystals

MD simulation of nanoindentation in crystal structure 
recently became frequently explored to study the onset of 
irreversible deformation that terminates elastic behavior 
called the “incipient plasticity”[151]. The origin of such a 
phenomenon is vigorously investigated [151–160] owing to 
its interesting nature that constitutes one of the principal 
problems in  Materials Science. Furthermore, the above-
mentioned issue has bearings on technological aspects 
related to the quality of the contemporary electronic and 
optoelectronic heterostructures.

As early as in 1997, it has already been recognized that 
the P2h curves registered during initial stages of nanoinden-
tation in metals display the singularity – the pop-in event, 
which refl ects sudden depth excursion of the loaded tip into 
the investigated crystal surface (refer to Fig. 17). This effect 
was explained so far in terms of the dislocation nucleation and 
their subsequent movement in the crystal volume affected by 
the indenter [129, 134].

The continuum theory of elasticity predicts that a maximum-
resolved shear stress – the empirical criterion for dislocation 
nucleation in the perfect crystalline volume – should appear right 
under the tip on the indenter axis as well on specifi c slip planes 
inclined 45°. In contrast to this scenario, the MD simulations of 
the nanoindentation of the Au(1 1 1) by rigid-sphere indenter 
challenge prediction of the elastic theory by demonstrating that 
two partial dislocation loops with mirror symmetry beneath the 
surface located on the {1 1 1} planes are homogenously gener-
ated during the initial part of the nanoindentation [161].

The stress threshold necessary to start the plastic deforma-
tion is affected (decreased) by the presence of the existence 
of surface imperfections, namely, surface steps [162]. This 
phenomenon has successfully been modeled by Zimmerman 
et al. [163] using the MD approach (refer to Fig. 18).

It is worth noting that Burgers vector of dislocations was 
determined in the way proposed in Zimmerman’s slip-vector 
method [163]. Indeed, the introduced new parameter “the 
slip vector” is calculated for every atom within the consid-
ered cluster and it generally possesses a large magnitude 
for any inhomogenous deformation. The slip-vector anal-
ysis appears to be quite universal and consistent compared 
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to the other known procedures of dislocation detection in 
a deformed atomistic structure, for example, the centro-
symmetry parameter method [161] restricted merely to the 
crystals with the center of symmetry. The search for the 
structure defects can also be accomplished by employing a 

shortest-path ring statistics as demonstrated by Szlufarska 
et al. for ceramic crystal of SiC [164].

The illustration of the variation of atomistic structure at 
the early stages of irreversible deformation was provided 
by van Vliet et al. [165] whose nanoscale experiments 
agreed qualitatively with the output of the MD simula-
tions. The authors concentrated on indentation in various 
fcc metals with initially low-defect density and concluded 
that the stress level prior to the fi rst discontinuity on the 
P-h curve is suffi cient to induce homogenous nucleation 
of dislocations. This was supported by MD simulations 
performed for Cu and Al. In contrast to these early works 
[150, 152, 154, 161, 165], Schuh et al. [155] presented more 
recently the statistical approach to the nanoindentation 
experiments, which advocates the freshly revised scenario, 
namely, the onset of metal plasticity owing to heteroge-
neous defect nucleation.

Hence, it becomes increasingly clear that the indenta-
tion experiments and their results depend on the dimen-
sions of the studied materials. This was demonstrated for 
thin fi lm and patterned lines of aluminum deposited on 
silicon substrates [166]. Both the experimental results and 
the output of the MD simulations proved that the elastic 
response of materials is usually size independent, which 
contrasts with the plastic behavior. The plastic deforma-
tion is associated with the size effect that depends on the 
geometrical constrains, for example, thin fi lms are usually 
harder than the patterned lines [166]. This phenomenon is 
governed by the subtle interaction between the stress fi eld 
imposed by the indenter and the stress fi eld caused by the 
presence of dislocations.

In sum, one can conclude that at the present stage of the 
development of the fi eld of nanoindentation, MD results 
point toward homogenous nucleation of dislocations to be 
responsible for the pop-in effect, while the experiments 
indicate the heterogeneous one.

Figure 17. Typical load–displacement curves for Au single crystals  (1 1 1), 
(1 0 0), and (1 1 0). The inset of Au(1 0 0) is a load–displacement curve 
for Au(1 0 0) showing elastic loading and unloading just prior to the fi rst 
displacement excursion. The inset of Au(1 1 0) is a load–displacement curve 
for Au(1 1 0) showing elastic loading and unloading just prior to the next dis-
placement excursion. Reprinted with permission from [151], S. G. Corcoran 
et al., Phys. Rev. B 55, R16057 (1997). © 1997, American Physical Society.

Figure 18. Dislocation loops nucleated during MD-simulated nanoin-
dentation-induced surface deformation of Au(1 1 1) crystal in the region 
located far from the existing surface steps. The color of the atoms is 
defi ned by the magnitude of the slip vector. Reprinted with permission 
from [163], J. A. Zimmerman et al., Phys. Rev. Lett. 87, 165507 (2001). 
© 2001, American Physical Society.
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3.3.  Pressure-Induced Phase Transformation 
in Nanoscale Deformation Experiments

Despite the dislocation–nucleation scenario becoming already 
widely accepted clarifi cation of the pop-in event origin both for 
the metals [151–155] as well as for ceramic [156, 164] and semi-
conducting [167–170] crystals, the fresh results of the atomistic 
simulation of the processes that occur in very high pressure 
induced by an indenter as well as recent high-precision experi-
ments lead us to a conclusion that it must not always be true. 
In other words – there is certainly a large group of materials 
for which the incipient plasticity (understood as the termina-
tion of elastic behavior) is not associated with the disloca-
tions at all. The confusion started with the MD simulation of 
surface deformation of the (1 0 0)GaAs crystal by Chrobak, 
Nordlund, and Nowak [22, 171] who claim that in this partic-
ular crystal the incipient plasticity refl ects nondislocation 
process, namely, the indentation-induced phase transforma-
tion from zinc blende to rocksalt GaAs structure (Fig. 19). 
The above-described state of affairs has been recently verifi ed 
experimentally by in situ electrical measurements that provide 
the indirect proof of the discovered phase transition [23], while 
nondislocation incipient plasticity was also noticed in silicon 
nanoparticles by Valentini et al. [172].

In the case of GaAs semiconductor compound, the stress 
required for dislocation nucleation tR equals 6 GPa [167], which 
yields mean hydrostatic pressure under tip pm (pm 5 tR/0.465 5 
12.9 GPa) that is suffi cient to start transformation in GaAs zinc-
blende structure. Indeed, it is well known from earlier anvil-cell 

experiments [173] that zinc-blende phase transforms into ortho-
rhombic rocksalt under the hydrostatic pressure of ,13 GPa.

The reversible character of the discovered phase transfor-
mation explains why this phenomenon was never reported 
concerning nanoindentation in GaAs so far. However, one 
should notice that the results of indentation tests reported 
by Li et al. [174] revealed the traces of amorphous GaAs left 
after unloading indentation cycle. These amorphous remains 
seem to be closely linked to the transition we discuss here. 
According to the earlier anvil-cell experiments – during high-
speed decompression the orthorhombic rocksalt-like GaAs 
becomes amorphous [173], which resembles the situation during 
nanoindentation unloading cycle. Hence, one may consider the 
detected amorphization as an indirect proof of the nanoinden-
tation-induced phase  transformation from GaAs zinc blend to 
rocksalt-like structure, which coincides with our recent in situ 
resistivity measurements in nanoindented GaAs [23].

Our MD-based considerations demonstrate the indicated 
transformation (GaAs zinc blende → GaAs rocksalt-like 
structure) results in a singularity in the load–depth P2h curve 
commonly defi ned as initial pop-in [171], which calls for the 
revision of the widely exercised so far dislocation–nucleation 
concept of incipient plasticity of crystalline solids.

The phase transformations during nanoindentation were 
observed in many occasions for crystalline silicon, although in that 
case the loading part of P2h curve does not exhibit pop-in events. 
For instance, the ex situ TEM (transition electron microscopy) 
examinations of residual impression show the existence of the 
metallic beta-Sn (Si-II) phase of silicon [19, 175]. More recently 

Figure 19. Direct visualization of the atomic positions determined for a nanoindented GaAs crystal viewed along the [1 1 1] direction (a), the orienta-
tion of the GaAs rocksalt unit cell with respect to the zinc-blende lattice (b), and the GaAs rocksalt-like structure generated under the acting indenter 
(c). IM defi nes an intermediate region with a mixed arrangement of Ga (magenta) and As (yellow) atoms [22]. Reprinted with permission from [22], 
D. Chrobak et al., Phys. Rev. Lett. 98, 045502 (2007). © 2007, American Physical Society.
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the metalization of nanoindented silicon was observed by in situ 
electrical measurements [176]. In contrast to metals, the silicon 
exhibits during nanoindentation the singularity (“pop out”) in 
the unloading cycle of the P2h curve associated with a sudden 
volume increase related – according to Domnich et al. [177] – to 
the formation of metastable Si-XII and Si-III silicon phases.

It is worth emphasizing that the indentation-induced phase 
transformations in silicon are well documented [176–178] and 
intensely studied with the aid of MD [178]. The transition 
from diamond structure (Si-I) to body-centered tetragonal 
form (Si-II) that occurs during loading cycle was simulated by 
Cheong et al. [178], who attributed this event to the fl attening 
of the tetrahedron structure in diamond-cubic silicon. Further, 
it was found that the high-pressure phase of silicon becomes 
 amorphous during unloading [178], while the interesting 
combination of MD and FEM methods provided completely 
new insight into the effect of the indenter shape on the silicon-
mechanical response [179]. The latter supports the experi-
mentally derived conclusion concerning the marked stress 
dependence of the microstructure of silicon crystal [180].

Besides the discussed crystalline-to-crystalline phase 
 transformation, the amorphous silicon appears sometimes 
during loading cycle. Kim et al. [181] investigated the effect 
of crystal orientation on the microscopic aspects of the phase 
transformation in silicon, while the instability of the amor-
phous Si was studied by Izumi et al. [182], and both the teams 
concluded with Si amorphization. They estimated critical 
nucleus shape as nearly spherical and size to about 30-50 atoms, 
which is in agreement with the experimental data [183].

In contrast to the above-referred studies, Szlufarska 
et al. [164] proposed the original atomistic mechanisms 
responsible for nanoindentation-induced amorphization in 
silicon carbide. They, however, did not concentrate on the 
phase transition as a reason of incipient plasticity, similarly 
to Chrobak, Nordlund, and Nowak [22, 171]. Instead, their 
plastic deformation of the SiC ceramic crystal was under-
stood as a combination of two processes, namely, the nucle-
ation of dislocations loops and the transition from crystalline 
to amorphous phase attributed to the coalescence of earlier 
generated linear defects (dislocation loops) [164].

In conclusion, it is worthy to emphasize that the problem 
of incipient plasticity and, especially, phase transforma-
tion–induced onset of irreversible deformation is very fresh 
and awaits fi nal experimental verifi cation. The latter is not 
an easy task, since the volume of the material transformed 
under tip is so small that it precludes any diffraction investi-
gations. The examination such as in situ electrical measure-
ments [23] or fresh nanoRaman experiments [28] rise hope 
that this problem would also be solved in the near future.

4.  NANOINDENTATION OF  CERAMICS, 
SEMICONDUCTORS, AND 
 SUPERCONDUCTORS

4.1.  Controversial Issues Concerning 
 Nanoindentation

The controversial issues in nanoindentation concern 
both Young’s modulus and hardness determination. The 

 measurements of the former parameter are compromised by the 
structural changes induced under the acting tip, which virtually 
make impossible to derive elastic characteristics from unloading 
cycle as proposed in commonly accepted methods of Oliver 
and Pharr [36] or Field and Swain [60, 61]. Our recent fi nding 
[38] that nanoindentation is regarded as nondestructive testing 
method, while it is not so, represents a critical step in reconciling 
the dominant experimental, analytical, and FEM-based analysis 
methods with the results of optimized experiments in which 
both a deformable indenter and pop-in events are present.

Although hardness was found related to the fl ow stress 
rY of the investigated material [see eqns (1.2), (2.31), 
(2.38), and (2.42)], which is commonly used in engineering, 
the defi nition of hardness lacks physical bases. A critical 
review of Meyer’s hardness as a measure of plasticity was 
offered by Sakai [116], who discovered that hardness value 
is affected by both plastic and elastic properties of the 
indented material. This new conclusion was supported by 
the results of the numerical simulations [eqns (2.31), (2.38), 
and (2.42)], which indicated that the average contact pres-
sure (pav 5 H) depends on the plastic and elastic character-
istics of the tested solid.

Despite the drawbacks related to the defi nition of hard-
ness, researchers have attempted to formulate an accurate 
evaluation of the hardness value from the measured P2h 
data (see Section 2), rather than searching for a new pertinent 
parameter that may in truth represent the indentation resis-
tance of the tested solid. An exception is the study by Sakai 
and Nowak [44, 46] and the considerations by Rother and 
coworkers [185–191]. In spite of different philosophies and 
methodologies proposed by these two research teams, both 
approaches take account of indentation energy consumed by 
the deformed solid surface, which contrasts with the analyses 
of indentation data by other authors (see Section 2).

Sakai and Nowak proposed a new concept of hardness, 
based on the amount of the energy irreversibly consumed to 
create a unit volume of indentation impression in a perfectly 
plastic material, in 1992 [44], while its complete version was 
published by Sakai in 1993 [45]. As emphasized by Söderlund 
and Rowcliffe [70], the energy-based approach (energy prin-
ciple of indentation, EPI), where both loading and unloading 
indentation cycles are analyzed, is a promising way of evalu-
ating nanoindentation data.

Thus, the present chapter is devoted to the EPI method 
[44–46], followed by the examples of indentation deforma-
tion of a variety of solids including highly anisotropic crys-
tals, nanocrystalline thin fi lms, and solid surfaces modifi ed 
by energetic ion bombardment. It begins, however, with a 
short review of the alternative indentation energy approach 
proposed by Rother and Dietrich [185], which targets the 
indentation deformation of fi lm–substrate systems. These 
considerations were independent of EPI, since the authors 
were not aware of the earlier studies by Sakai and Nowak 
[44–46] when they prepared their manuscript.

4.2.  The Energy-Related Differential Load Feed 
Analysis of Hardness Measurements

Rother and Dietrich [185] analyzed the total deformation 
energy consumed for formation and propagation of the 
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deformation zone created in a solid directly under an acting 
rigid indenter. Hence, they assumed that the total deforma-
tion energy UT is expended for densifi cation of the indented 
material (U1), shear displacements within the boundary of 
the deformation zone (U2), and interface formation caused 
by grain boundary cracking (U3):
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where ki (i = 1, 2, 3) are shape factors characteristic of a 
 particular indenter geometry, uI denotes mean energy densi-
ties in the deformation zone, while EI defi nes specifi c ener-
gies and N stands for the number of cracked grain boundaries. 
Based on an assumption that increase of N appears to be 
proportional to the relative stress in the indented material, the 
authors derived the fi nal formula for UT [185]:

 
U E h E h E h

E h

T h h h h= + + 

                    +

� � �

�

�D �1 �21
3

2
2

2
2

3
2 1

3
+ � ln

h
ho

h h�

�D

�D1 1
, (4.2)

and consequently:

 

d U

dh
E h E E

E3
h
h

T
h h h h

o
h

2

2 1 2 26 2

2 1

1 2
� � �

�

→ →

→
⎛

⎝
⎜

⎞

⎠
⎟

Δ Δ

Δ

2

a ln h E
3

3 3� a�

, (4.3)

where ho defi nes the initial penetration depth, $ is a constant, 
while h1, h2, and h3 are the components of the indentation 
depth associated with densifi cation, shear displacement, 
and boundary cracking, respectively.

Furthermore, Rother and Dietrich [185] considered the 
total energy U provided by the penetrating indenter to be 
expended for deformation (UT) and friction energy UF that 
appears to be proportional to the indenter shift h, friction 
coeffi cient , and normal force Fn:

 U Pdh U U U F hT F T n5 5 1 5 1∫ �  (4.4)

They found that the second derivative of UT could be 
readily determined from indentation P–h data according to 
the simple relationship:
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which in turn makes it possible to explore the linear ranges 

of the dependences 
d U
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2 2 ln  in eqn (4.3). 

Such an analysis of dP
dh

h2  plots allows one to calculate the 

specifi c energies Ei (i = 1, 2, 3) of the different deforma-
tion processes and direct correlation to conventional hard-
ness data. The “load feed analysis method” by Rother and 
Dietrich was scrutinized for depth-sensing Vickers inden-
tation of silicon, glass, glazed Al2O3, hardened high-speed 
steel [185], TiN [186], acryl glass, color paint, India rubber 
[187], as well as polypropylene coatings [188].

Furthermore, Rother et al. [186, 188–191] claimed that 
their approach allows one to quantify the adhesion of a 
coating and permits the separation of coating from substrate 
properties. Consequently, their analysis of the fi rst deriva-
tive of the experimentally recorded indentation load, dP/dh, 
proved successful in clarifying the indentation process in 
complicated structures.

4.3. The EPI: A New Concept of Hardness

Starting with the idea of hardness being a measure of mate-
rial’s resistance against plastic deformation induced by a 
rigid indenter, the EPI approach is based on the assump-
tion that hardness should be directly related to the energy 
Ur expended for irreversible deformation of the tested 
solid [44, 45]. Since the energy Ur is represented by the 
area bounded by the loading and unloading curves, it can 
be readily determined from the P–h indentation data (see 
Fig. 20). For a perfectly elastic contact, the energy Ur 
equals zero (see Fig. 20(a)), while it attains a maximum for 
an indentation in perfectly plastic material (Fig. 20(b)). The 
latter P–h curve is typical for most metals for which elastic 
recovery is negligible:

 h hr p< , and h he r,,  (he ≈ 0 ), (4.6)

while Figures 20(a) and 20(c) are illustrative of ceramics 
that exhibit appreciable elastic recovery of the indent (he). 
Usually, one deals with a combined elasto-plastic response 
(Fig. 20(c)) , while perfectly elastic behavior (Fig. 20(a)) is 
observed for hard surfaces, particularly if spherical indenters 
are used (see, e.g. Ref. [27]).

To calculate the energy Ur expended for the irrevers-
ible surface deformation, one should determine the shape 
of the P–h curve for both the loading and the unloading 
cycle. The simple geometrical considerations presented by 
Sakai and Nowak [44] for a cone tip with the semiapex 
angle � yield the current indentation depth h and the mean 
contact pressure p at the contact area with the radius of a 
(see Fig. 21):

 h a�c cotw , (4.7)

 p
P

ao

5
a 2 , (4.8)

where the geometrical factors � and �0 account for surface 
defl ection and shape of the indenter, respectively. The 
combination of eqns (4.7) and (4.8) yields the parabolic 
P2h relationship in the case of a perfectly plastic contact:

CH-192.indd   24CH-192.indd   24 11/24/2009   1:31:33 AM11/24/2009   1:31:33 AM



Nanoindentation Examination of Crystalline Solid Surfaces 25

 P A hp p5
2

, where A Hp
o

p

5
�

�
y2

2tan , (4.9)

as well as for perfectly elastic indentation, while the Sneddon’s 
solution [54] used to the elastic contact problem yields:

 P A he e5
2 , where . A

E
e

o

e

5
22 1 2 2

2

m( )
�

�
ytan  (4.10)

The simple constitutive equation for the elastic–plastic 
surface deformation [44]:

 h h he p5 1 , (4.11)

combined with eqns (4.9) and (4.10) yields again the P–h2 
relationship in the case of elastic–plastic contact:
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The P–h dependence for the unloading cycle has para-
bolic form, as shown by Sakai and Nowak [44], who explored 
the compatibility of two half cycles, that is, the loading and 
unloading penetration depth attains the same value at the 
maximum load (see Fig. 20(c)):

 A h A h h P A h hH e p e r
2 2 2

5 2 5 2( ) ⇒ ( ) . (4.13)

Despite the P2h2 formula being frequently criticized [192], 
Sakai and Nowak [44] found the parabolic P2h relationship 
[refer to eqns (4.9), (4.10), (4.12), and (4.13)] to hold for 
numerous materials [45, 46]. The authors [44, 45] calculated 
energy Ur expended for irreversible deformation of the ideally 
plastic material (see Fig. 20(b)), by integrating eqn (4.9). Conse-
quently, “true hardness” HT was defi ned as the energy required 
to produce the impression with a unit volume:

 U A h dh H Vr p

h h

T

r

5 5

5

2

0

max

∫ , (4.14)
Figure 21. The schematic of the axisymmetric, sharp, and elasto-plastic 
indentation contact used in the EPI theory [44–46].

Figure 20. Typical P–h indentation curves for the perfectly elastic (a), fully plastic (b), and elasto-plastic material with appreciable elastic recovery (c).
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where V 5 (1/3)�0a
3cot� denotes the volume of indenter 

tip under the contact perimeter. A similar procedure for 
elastic–plastic indentation (see Fig. 20(c)) provided the Ur 
energy:

 U A h dh A h h dh Vr H

h

e r

h

h

I

r

5 2 2 5
2

0

2
max max

∫ ∫ ( ) Γ , (4.15)

where
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, (4.16)

represents the work of indentation equal to the irreversible 
energy necessary to create a unit volume of indentation at the 
maximum load Pmax.

In spite of its simplicity, it is difficult to evaluate the 
hardness HT from eqns (4.15), (4.16), or (4.12). In partic-
ular, it is hard to determine the surface deflection char-
acterized by the geometrical factor c in eqns (4.7), (4.9), 
(4.10), (4.12), and (4.16). Therefore, Sakai and Nowak 
[44] combined eqns (4.7), (4.12), and (4.15) to determine 
the relationship between Ur and the applied maximum 
load Pmax:

 U H P CPr T� �
� �

3 0
1

1
2

3
2

3
2tan w max max( ) , (4.17)

and calculate hardness HT from the plots Ur–Pmax
3/2. Conse-

quently, HT appears as a load-independent parameter, in 
contrast to the conventionally measured hardness H (refer 
to the footnote in the page 18).

Hence, EPI provides the physically based defi nition of 
hardness HT, which is a measure of plastic deformation 
in the elastic–plastic indentation process, and represents 
a convenient method for its evaluation. The relationships 
derived in 1992 within EPI coincide with the results of 
FEM simulation of the elasto-plastic indentation process 
obtained in 1996 by Giannakopoulos and Larsson [96], 
who confi rmed the Ur–Pmax

3/2 relationship [refer to eqn 
(2.41)].

Furthermore, the EPI theory was scrutinized by Sakai 
[45] for a number of polycrystalline materials including 
pure metals, namely, aluminum and copper as well as brittle 
ceramics: MgO, SiC, Si3N4, and glassy carbon. The experi-
ments by Sakai cover the maximum load range from 4.9 to 
98.1 N (4.9 N # Pmax # 9.81 N), where the data match the 
predicted P–h2 relationship [eqns (4.9), (4.10), and (4.12)].

The reported agreement between the experimental 
indentation data and the EPI predictions prompted the 
present author and coworkers to apply the theory to 
sapphire [46, 193], superconducting YBa2Cu3O7–d crys-
tals of small (approximately 500 lm) size [194], as well 
as the semiconducting InGaN and GaN crystals essen-
tial for optoelectronics [195–197]. Despite complicated 
anisotropic structures (hexagonal–rhombohedral) and 
complexity of the deformation phenomena in these mate-
rials, the EPI analysis appeared to represent a useful step 
toward clarifying their mechanical behavior.

4.4.  Application of the EPI Theory to the 
Deformation of Crystals

4.4.1.  Sharp Indentation of Single Crystals: 
Experimental Procedure

It has been known for a century that the hardness of crystal 
surfaces denoted by different crystallographic indices varies 
considerably [198]. Moreover, one might record hardness 
anisotropy on a single crystallographic plane by means of a 
variously oriented nonaxisymmetric indenter [199]. Hence, the 
nanoindentation experiments with the Berkovich tip (typical for 
commercially available nanoindentation depth-sensing testers) 
on crystal surfaces depend on the orientation of the threefold 
symmetry pyramid on a selected  crystallographic plane. This 
drawback turns to an advantage, however, if the anisotropy of 
mechanical properties is of interest. In such a case, a precise 
determination of the mutual orientation of the crystal surface 
and the indenter is indispensable.

An example of a procedure for indentation experiments 
that are appropriate for single crystalline samples was 
described in [46, 193]. The authors mounted their sapphire 
crystal on a fi xture that permitted rotation about the vertical 
axis to any desired position. Three different low-index crys-
tallographic planes: M 5(1010), A 5 (1210) , and C 5 (0001) 
were indented in such a way that one of the sides of trian-
gular impression was parallel to the 1210  or (1010) direc-
tion in the reverse (R) and normal (N) position, as shown 
in Figure 22. The indentation measurements by Nowak and 
Sakai [46, 193] were carried out on a depth-sensing tester, 
the Shimadzu DUH-200, with continuous monitoring of 
the load P and the depth h during the penetration process. 
The electromagnetic loading ranged from approximately 10 
to 2000 mN, while the depth-measuring unit with an effec-
tive range of 0210 lm and precision exceeding 0.1 lm used 
a differential transformer positioned near the indenter. 

Figure 22. Orientation of the indentations in the crystallographic planes 
of sapphire crystal [46]. Reprinted with permission from [46], R. Nowak 
et al., J. Mater. Res. 8, 1068 (1993). © 1993, Materials Research Society.
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The temperature and humidity inside the indenter wind 
brake were maintained rigorously constant.

In addition to the depth measurement, Nowak and Sakai [46] 
determined the size of the residual impression using an optical 
unit attached to the Shimadzu tester. Additional observations 
of the indents were performed by means of a microscope with 
Nomarski phase contrast while using special illumination of 
the crystal (the optical system designed to make visible the 
details of subsurface features) [193].

4.4.2.  Hardness of Variously Oriented 
Sapphire Surfaces

Nowak and Sakai [46, 193] registered the P–h curves for the 
studied A, C, and M surfaces of sapphire crystal. Typical results 
obtained for the prismatic M = 1010  plane are shown by the 

way of example in Figure 23. The test revealed that, in spite of the 
apparent twofold symmetry of the (1010) plane of sapphire, the 
“N”- and “R”-oriented indentations are not equivalent (compare 
Figs. 23(c) and 23(d)) since the characteristic discontinuities in 
the loading cycle of the P2h data are visible only for particu-
larly oriented (R) indenter (see Fig. 23(d) ). Such an effect was 
observed in the case of the studied C and M orientations [193].

Furthermore, the variations of hardness Hd determined 
from the maximum indentation depth hmax (Fig. 24(a)) differed 
signifi cantly from the changes in conventional hardness HB 
based on the projected area of the microscopically observed 
impression mark (Fig. 24(b)). The confusing comparison 
between the Hd and HB values (refer to Fig. 24) led the authors 
to believe that hardness determined in a conventional manner 
should not be considered a pertinent parameter for describing 

Figure 23. Typical P–h curves for the (1010) plane of sapphire, obtained under the low (a), medium (b), and high (c, d) indentation loads. The 
indenter orientation (N, R) is marked at each fi gure. Reprinted with permission from [46], R. Nowak et al., J. Mater. Res. 8, 1068 (1993). © 1993, 
Materials Research Society.

Figure 24. Conventional hardness under load Hd (a) and Berkovich hardness HB (b) determined for various orientations of the indenter (N, R) and 
 sapphire surface (A, C, and M). Reprinted with permission from [46], R. Nowak et al., J. Mater. Res. 8, 1068 (1993). © 1993, Materials Research Society.
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the elastic–plastic behavior of a sapphire surface. Indeed, the 
order of Hd values from the softest to hardest found by Nowak 
and Sakai [46] is in the sequence of (0 0 0 1)N,(1010) R,(1010) 
N, (1210) N, and (1210) R, while the HB values – Berkovich 
hardness based on dimension of the residual impressions – 
follow a different string: (0001)N, (1010) N, (1210) R, (1210) 
N, and (1010) R. This ambiguous situation prompted the 
authors to perform an independent analysis of the indentation 
results by using the EPI approach.

The P2h data registered for sapphire crystal (Fig. 23) 
show negligible deviation from the linear P2h2 relation-
ship for low loads (details in [46]). This proves that within 
the used load interval, sapphire behaves as assumed in the 
energy principle of indentation [see eqns (4.12) and (4.13)]. 
In order to estimate the true hardness HT of alumina crystal, 
Nowak and Sakai [46] plotted the relationship between the 
indentation energy Ur and the maximum indentation load 
Pmax

3/2 for each combination of the orientations of the plane 
and indenter (refer to high- and low-load plots in Fig. 25). 
The values of HT were calculated from the inverse slope of 
the linear dependence in Figure 25 and are listed in Table 2.

The signifi cant differences between the indentation 
behavior for different crystal planes and the position of the 
Berkovich indenter are among the most important results 
obtained from the EPI. Surprisingly, the HT hardness 

measured on the  plane of sapphire (see Fig. 22) is identical 
for both N and R orientations, while it differs signifi cantly 
for N and R positions of the Berkovich tip, when probed 
on the plane (see Table 2 and Fig. 25). The basal plane of 
Al2O3 crystal was found softer than the surfaces with other 
crystallographic orientations. Finally, the applied analysis 
left the authors with the conclusion that the deviation from 
the Ur–Pmax

3/2 linearity observed for high-indentation loads 
(see Fig. 25) is associated with the change of the micro-
mechanism responsible for the indentation deformation of 
the crystal when higher-indentation loads are applied.

These results prompted Nowak and Sakai [46] to investi-
gate the micromechanisms of surface deformation in order to 
clarify the observed anomalies. Inspection of the impressions 
on the  plane revealed surface features around the “R indent” 
that were markedly different from those observed for the “N 
orientation” (compare Figs. 26(a) nd (b) ). The deformation 
in the vicinity of the N impression seems to be largely elastic 
(Fig. 26(a)), in contrast to the R indent, which is accompa-
nied by a complicated defect pattern which contains a large 
lateral crack extended near the particular facet (LR – the 
lower facet of the R orientation, see Fig. 22(b)).

Table 2. The true hardness HT of various sapphire surfaces  (Reprinted 
with permission from [46], R. Nowak et al., J. Mater. Res. 8, 1068 (1993). 
© 1993, Materials Research Society).

Indented surface
Indenter 
 orientation

Correlation 
factor(lJ N

–3/2
)

True hardness  
HT(GPa)

(1 2 10) N 0.9991 146
(1 2 10) R 0.9986 147
(10 1 0) N 0.9984 143
(10 1 0) R 0.9976 126
(0001) N 0.9960 99

Figure 25. The Ur–Pmax
3/2 relationship for the M 5 (1010)�

, 
A 5 (1210)�

, and C 5 (0 0 0 1) planes of sapphire deformed with various-
ly oriented (N, R) Berkovich tip. Reprinted with permission from [46], 
R. Nowak et al., J. Mater. Res. 8, 1068 (1993). © 1993, Materials 
 Research Society.

Figure 26. The surface features in the vicinity of the indentation impres-
sion with N (a) and R (b) orientations, observed on the (1010)�

 plane of 
sapphire. Reprinted with permission from [46], R. Nowak et al., J. Mater. 
Res. 8, 1068 (1993). © 1993, Materials Research Society.
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Nowak and Sakai [46] explained the anisotropy on the  plane 
in terms of dislocation activity, that is, considering slip and twin-
ning systems that may contribute to the deformation. According 
to Daniels and Dunn [199], the ease of slip system activation 
under the indenter can be estimated through the calculation 
of the effective resolved shear stress (ERSS) values. This kind 
of approach to hardness anisotropy was further developed by 
Brookes et al. [200], Pospiech and Gryziecki [201], Armstrong 
and Raghuram [202], as well as by the present author [203, 
204]. The calculations by Nowak and Sakai [46] indicated the 
maximum shear stress attained near the LR facet of indenter 
(Fig. 26(b)), that is, in the region where a large lateral crack is 
detected, implying a lower HT for the R orientation (Table 2). 
This correct prediction triggered further studies of crystal defor-
mation under Berkovich [193] and spherical [99, 132, 205–207] 
indenters, which are reviewed in the following sections.

4.4.3.  Deformation of Superconducting 
YBa2Cu3O7– � Crystals

The mechanical properties of high-temperature superconduc-
tors are essential for their potential applications. The exami-
nation of these materials is a diffi cult task, since the crystals of 
YBa2Cu3O7– � are frequently available as thin fi lms or tiny crys-
tals. In such a case, the indentation technique appears to be the 
only method that allows us to examine the mechanical behavior 
of the material. The fracture toughness of the YBa2Cu3Ox 
crystal was studied by Cook et al. [208], who used the conven-
tional Vickers indentation. Raynes et al. [209] reported on frac-
ture toughness and twinning of YBa2Cu3O6–� crystal, while the 
fi rst depth-sensing experiments with YBa2Cu3O7–� crystals were 
performed by the present author and coworkers [194]. Nowak, 
Sakamoto, and Maruno [194] grew the crystals from the fl ux 

of mixed powders of the Y2O3, BaCO3, and CuO. To perform 
the indentation examination, 500 lm crystals were mounted on 
thermoplastic wax on the surface of a silicon wafer, at an arbi-
trary position, that is, the angle between the diagonal of Vickers 
impression and the [1 0 0] direction was always of 458.

The deformation of the YBa2Cu3O7– �crystal exhibited an 
unexpected anomaly – for maximum indentation loads not 
exceeding 118 mN, the conventional hardness-load dependence 
appears quite typical (see Fig. 24(a) for sapphire), while it decays 
suddenly to low Hd values for higher (Pmax $ 196 mN) indenta-
tion loads (Fig. 27). This observation suggests a change of defor-
mation mechanism in the crystal at higher-indentation loads.

The infl uence of the indentation load on the deformation 
process of the (0 0 1) plane of the YBa2Cu3O7–�

 crystal was 
confi rmed by an analysis of the P2h curves and the indentation 
depth time h2t relationship (Fig. 28), based on the EPI theory. 
It was found that the loading path for Pmax $ 196 mN differs 
signifi cantly from the curves obtained with loads not exceeding 
118 mN (compare Figs. 28(a)–28(c) and 28(d)). The observed 
inconsistency is additionally illustrated in detail in the accompa-
nying h–t plots. The plateau which occurred for the indentation 
load of approximately 140 mN (Fig. 28(d)) indicates a sudden 
increase in irreversible deformation (Fig. 29), which makes it 
impossible to determine the true hardness HT within the whole 
load interval.

According to EPI analysis, the YBa2Cu3O7–� crystal exhibits 
regular indentation behavior within the low-load regime, 
following perfectly the predicted linear relationship (Fig. 29). 
For the particular load of 196 mN, the scatter in Ur energy is 
much larger than for measurements under the other loads. This 
suggests that the detected anomalous behavior is caused by the 
fracture process, since the singularities associated with the pres-
sure-induced phase transformation are usually precisely located 
in the P–h curves [63]. A microscopic inspection of the residual 
impressions by Nowak et al. [194] revealed marked differences 
between the surface features formed under the higher (Pmax $ 
196 mN) and lower (Pmax # 118 mN) indentation loads (Fig. 30). 
The central cracks around the low-load impression (Fig. 30(a)) 
appeared to be well  developed. However, they did not resemble 
the pattern reported by Cook et al. [208] for the same kind of 
material, since the central–radial cracks did not originate along 
the indenter edges. It should be emphasized that it is the only 
case in the experience of the present author in which the radial 
cracks did not originate in the area where the signifi cant concen-
tration of stress occurred.

While the plastic zone around the indents was clearly 
visible (Fig. 30(a)), and the crack traces followed the [1 0 0] 
and [0 1 0] directions, the observed patterns were repeat-
edly irregular, making it impossible to estimate the fracture 
toughness of YBa2Cu3O7–�. This differs from the conclusions 
of Cook et al. [208] and Raynes et al. [209], who claimed to 
measure the toughness of superconducting crystal using the 
indentation method. Furthermore, the impressions obtained 
under higher load (Figs. 30(b) and 30(c) ) prove that the frac-
ture that occurred during penetration is relatively anomalous. 
The widespread crushing of the (0 0 1) surface of YBa2Cu3O7–� 
is responsible for the irregularity in the P–h path (Fig. 28(d)), 
the decrease in hardness (Fig. 27), and the enhanced expense 
of indentation energy during high-load tests (Fig. 29).

Figure 27. Conventional hardness of the (0 0 1) plane of the YBa2Cu3O7-d
 

crystal. Reprinted with permission from [194], R. Nowak et al., in “Third 
Euro-Ceramics” (F. Duran and J. F. Fernandez, Eds.), Vol. 2, p. 571, 1993.
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Hence, the example of indentation examination of 
YBa2Cu3O7–� clearly shows that the EPI analysis is useful 
for testing small crystals that exhibit anomalous mechanical 
behavior. It should be stated that the very fresh indentation 
examination of the superconductors target nowadays hard-
ness measurement at cryogenic temperatures [210, 211].

4.4.4.  Nanoindentation Examination 
of Semiconducting InGaN and GaN 
Crystals 

High-Accuracy, Low-Load Indentation Experiments.  
Ultramicroindentation devices that allow us to use loads as low 
as fractions of milinewtons have recently been developed in re-
sponse to an increasing demand for the mechanical testing of 
thin fi lms designed for electronics. Commercially available ex-
amples of such equipment include the nanoindentation systems 
NANOINDENTER and HYSITRON TRIBOSCOPE (Nano 
Instruments Inc., Knoxville, TN, USA) and the ultramicro in-
dentation system UMIS-2000 (CSIRO, Lindfi eld, A ustralia) 

(Fig. 31). The latter equipment was used by Nowak et al. 
[195, 196] to evaluate the mechanical properties of InGaN, 
while the recent high-accuracy research on GaN was accom-
plished by Fujikane et al. [197] with Hysitron TriboIndenter.

The successful determination of the mechanical character-
istics of new semiconductors, reported in the present section, 
is partly owing to the application of the UMIS and Hysitron 
TriboIndenter testers. Indeed, the precision of measurements 
is of primary importance when one deals with advanced mate-
rials that have not yet been characterized. A considerable 
scattering of the experimental data may lead to erroneous 
conclusions and confusing claims that a novel effect has been 
discovered. Such unfortunate incidents occasionally occur 
in the case of materials with unrecognized properties, when 
tested with nonstandardized methods.

The mechanical characteristics of GaN and InGaN are 
nowadays in great demand, since their evaluation is essential 
for further theoretical and experimental study that should 
pave the way to solving the problem of large-defect density 
in heteroepitaxial nitride layers [212]. Suffi ce it to say that 
the diffi culties with the production and maintenance of 

Figure 28. Typical P–h curves for the (0 0 1) plane of the YBa2Cu3O72d
 crystal deformed under lower (a–c) and higher (d) maximum indentation loads. 

The h–t plots illustrate variations of indentation depth vs. time for each case.
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crack-free nitride layers were critical for Nakamura’s 
construction of his fi rst “blue-laser” diode [213]. It was 
accomplished by introducing into a sandwich-like device 
a soft buffer layer of InGaN designed to act as a cushion, 
relaxing the stresses that appear at the interface of the fi lms, 
and which in turn leads inevitably to fracture in GaN.

The knowledge of mechanical parameters is similarly essential 
for studying residual stresses that arise owing to the di fference in 

lattice parameters and coeffi cients of thermal expansion of the 
fi lm and the substrate [214]. The mismatch stress is a dilemma 
for GaN optoelectronic devices since the residual strain affects 
the threshold power density in stimulated emission [215]. It is 
becoming increasingly evident that successful applications of 
new semiconductors will depend not only on their optoelec-
tronic characteristics, but also on their mechanical properties.
The EPI Analysis of InGaN Epitaxial Layers. The 
studies of GaN-based materials concentrated chiefl y on the 
methods and conditions for developing higher-quality semi-
conductors, doping the crystals, and electrical and optical 
properties of the fi lms while disregarding their mechanical 
properties. Considerable effort has been made to evaluate 
elastic properties of GaN and InGaN by means of fi rst-prin-
ciple calculations [216]. Since the theoretically obtained 
 values of Young’s modulus were not verifi ed experimentally, 
Nowak et al. [195, 196] attempted to evaluate the mechanical 
characteristics of these optoelectronic materials using inden-
tation experiments (the resent revision in Ref. [197]).

In order to evaluate the hardness of InGaN, Nowak et al. 
[195] investigated the 1000 nm thin InGaN fi lms MOCVD 
grown on the (0 0 0 1) plane of sapphire. The (0 0 0 1) 
surfaces of the undoped layers and those doped with Mg 
were tested using the UMIS system equipped with a trian-
gular diamond indenter oriented in such a way as to form 
an angle of 0° or 90° between the side of the impression 
and the [1 2 10] direction. The  combination of relatively low 
indentation loads (Pmax 5 22500 mN) and high thickness of 
InGaN fi lms allowed the authors to disregard the problem 
of the substrate effect [195].

The registered P–h curves were smooth and regular 
(examples shown in Fig. 32(a)), and the data obtained for the 
Mg-doped fi lms revealed no infl uence of the dopant on the 
deformation of InGaN (Fig. 32(b)). The differences observed 

Figure 29. The Ur–Pmax
3/2

 relationship determined for the superconducting 
YBa2Cu3O72d

 crystal.

Figure 30. The indentation impressions on the (0 0 1) plane of YBa2Cu3O72d
 crystal, obtained under Pmax 5 49 mN (a) and Pmax 5 196 mN (b, c).
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for various orientations of the Berkovich tip (Fig. 32(b)) were 
small, since the (0 0 0 1) plane of wurtzite structure is quasi-
isotropic owing to its sixfold symmetry.

The Ur–Pmax relationships recorded for In GaN as well 
as for the (10 1 0) plane of sapphire are depicted in the same 
fi gure (Fig. 33), which makes it possible to visualize the signifi -
cant differences in indentation response of these two crystals. 
They refl ect the anisotropic indentation behavior of InGaN, 
which becomes marked for the higher-indentation loads, since 
the effect of the low symmetry of the penetrator is obviously 
stronger for deeper penetration. In contrast to InGaN, sapphire 
crystal appeared to be less deformable, that is, harder (Fig. 33). 
The true hardness HT of InGaN and sapphire (see Table 3)  
showed that sapphire appears to be considerably harder than 
the InGaN [195]. The hardness value recorded in ultralow load 
experiments is higher than that obtained for moderate loads, 
which holds for InGaN following a common rule.

The anisotropy of surface deformation of the InGaN crystal 
registered with a triangular indenter resembled, to certain 
extent, the nanoindentation behavior of sapphire (theoreti-
cally predicted and measured by Nowak and Sakai [46, 193]). 
In contrast to the (0 0 0 1) plane of sapphire, the observed 
anisotropic effects were less expressed in the case of the 
basal plane of InGaN, which involves important and practical 

 consequences – considerable mismatch between the depos-
ited fi lm (InGaN) and a substrate (Al2O3). In view of the 
above, the discovery by Nakamura et al. [213], who observed 
improvement in the quality of InGaN when grown on the GaN 
substrate rather than on sapphire, is readily understood.

The AFM observations of the indentation impressions in 
InGaN revealed that they possess the well-defi ned shape with 
no traces of radial cracks (Fig. 34(a)) while their depth profi le 
(Fig. 34(b)) confi rmed plastic behavior of InGaN (note pileup 
near the facet of the indenter) in contrast to the brittle response 

Figure 31. The essential features of the ultramicroindentation system. Reprinted with permission from [59], T. J. Bell et al., Metrologia 28, 463 (1992). 
© 1992, Institute of Physics.

Table 3. True hardness HT of InGaN and sapphire measured using 
microindentation experiments (Reprinted with permission from [195], 
R. Nowak et al., Thin Solid Films 295, 193 (1997). © 1997, Elsevier).

 Material HT (GPa) (20 mN # 
Pmax # 500 mN)

HT (GPa) (2 mN # 
Pmax # 10 mN)

Undoped crystal 52.0 –
Crystal doped with 

Mg orientation 0°
49.9 –

InGaN doped with 
Mg orientation 90°

43.5 45.6

The (10 1 0 ) plane of sap-
phire

81.6 83.6
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observed for ceramic materials, such as sapphire (Fig. 26) ). Lack 
of radial cracks is an indication of considerable fracture tough-
ness of InGaN. Nowak et al. [195] argued that this is precisely 
what makes it diffi cult to cleave InGaN, a problem of particular 
importance in the  production of cavity mirrors for LD structure. 
Their view contradicts Tanaka et al. [217], who attributed the 
above problem to the exceptional hardness of InGaN.

In sum, nanoindentation experiments [195] have revealed 
that, contrary to common opinion, InGaN is more deformable 
than sapphire, while the lack of indentation-induced cracks, 
detected by AFM technique, indicated that InGaN cannot be 
considered a brittle material. The excellent result concerning 
GaN-related research that includes nanoindentation experi-
mentation was recently offered by Kucheyev et al. [218].
Nanoindentation of GaN Bulk Crystals. GaN is pro-
duced in the form of a thin fi lm deposited heteroepitaxially 

onto Al2O3 or SiC wafers [219] or quasi-homoepitaxially 
onto GaN templates [220]. Therefore, even the nanoinden-
tation examination of its mechanical properties faces prob-
lems common among HFs – the substrate effect. To avoid 
this drawback, and to obtain reliable measurement of GaN 
mechanical characteristics, Nowak et al. [196] conducted na-
noindentation studies of bulk GaN. Their approach contrasts 
with the earlier research by Drory et al. [221], who aimed 
to evaluate the Vickers hardness and toughness of the same 
bulk GaN by means of a conventional hardness test. It ad-
ditionally differs from the nanoindentation experiments on 
the GaN epilayers deposited onto sapphire conducted by 
Yu et al. [222] in that their results might be affected by the 
 substrate.

The GaN crystals studied by Nowak et al. [196] 
were obtained using the self-seeding process, while the 

Figure 32. The P–h diagrams for undoped InGaN deposited by MOCVD on sapphire (a), and the indentation results obtained with a variously 
 oriented triangular indenter (08, 908) for the fi lm doped with Mg (b). Reprinted with permission from [195], R. Nowak et al., Thin Solid Films 295, 
193 (1997). © 1997, Elsevier.

Figure 33. The Ur–Pmax
3/2 diagrams for sapphire, and InGaN undoped and doped with Mg obtained under high (a) and low (b) indentation loads. 

Reprinted with permission from [195], R. Nowak et al., Thin Solid Films 295, 193 (1997). © 1997, Elsevier.
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 indentation experiments were performed on the (0 0 0 1) 
plane of the crystal using the UMIS-2000 system, equipped 
with a sharp triangular indenter loaded from 1 to 30 mN.

The P2h data obtained for various maximum loads Pmax 
(Fig. 35) enabled the authors to evaluate hardness H and Young’s 
modulus E of GaN, according to the procedure by Oliver and 
Pharr (see Sections 2.1.2 and 2.2.2). Taking advantage of the 
recommendation by Leszczynski [214], who suggested the value 
of v 5 0.25 as being proper for Poisson ratio of GaN, and using 
eqns (2.10) and (2.24), Nowak et al. [196] were able to resolve E 
and H, which match the values EGaN 5 295 6 3 GPa and HGaN 5 
18220 GPa for Pmax ranging from 2 to 30 mN.

The value of the modulus EGaN, determined by nanoindenta-
tion [196], exceeds 287 GPa – the level deduced from Brillouin 
scattering measurements [221], while it agreed by coinci-
dence with the result (E 5 290 GPa) obtained for GaN fi lms 
epitaxially grown on sapphire by Yu et al. [222], despite the 
latter using the diamond elastic constants and GaN Poisson’s 
ratio which contrast with the commonly accepted values. The 
magnitude of measured Young’s modulus was apparently in 
agreement with the results of fi rst-principle calculations [216]. 
Their reckoned HGaN value differed, however, signifi cantly 
from the Vickers hardness (8–14 GPa) claimed by Drory et 
al. [221], whose low level is owing to the use of conventional, 
high-load measurements of considerably lower accuracy than 
the nanoindentation experiments used in Ref. [196].

In order to verify the value of “true hardness” HT 
measured for GaN thin fi lms deposited on sapphire by 
Yu et al. [222], the P–h curves (Fig. 35) recorded for a 
bulk crystal were used. Nowak et al. [196] found HT GaN 
to be 30 GPa – markedly different from the 53.6 to 56.3 
GPa reported by Yu et al. for GaN epilayers, despite iden-
tical conditions in both the works. The authors believe 
that this difference is associated with an inconsistency 
in the mechanical response of bulk and thin fi lm mate-
rial. Contrary to these results (Fig. 35), Yu et al. [222] 
witnessed the sudden depth excursion during indentation 
in the 1.3–2.4 lm thick GaN layers (Pmax = 1.7 mN), which 
they attributed to the onset of the dislocation activity, 
following the concept articulated by Page et al. [24] and 
recently confi rmed by Fujikane et al. [197].

Interestingly, repeated efforts by Nowak et al. [196] to 
detect the discontinuities in P–h curves for bulk GaN were 
unsuccessful (Fig. 35) ; they suspected that the depth excur-
sions reported by Yu et al. [222] did not refl ect the inherent 
properties of GaN, in asmuchas the singularity appears at a 
very low load, it is unlikely that the event is owing to twinning 
[99, 132, 197, 205]. They also dismissed the possibility of the 
pressure-induced phase transformation [175, 223] since GaN 
transition from wurzite to rocksalt structure is expected at 
pressure as high as 52.2 GPa [152]. Thus, Nowak et al. argue 
that the reported discontinuity is associated with the emission 
of dislocations from the GaN–sapphire interface, given the 
dependence of critical load for the singularity and Young’s 
modulus on the layer thickness reported by Yu et al. [222].

Furthermore, Nowak et al. [196] confi rmed the results 
obtained by nanoindentation of sharp indenter using stepwise 
spherical indentation with partial unloading (see Section 2.1.3) 
(The general illustration – Fig. 5 – represents the data obtained 
by Nowak et al. [197] for GaN crystal during stepwise spherical 
indentation with partial unloading.) and determined the yield 
strength of GaN to equal rY =15 GPa. These measurements 
enabled them to accomplish a near-continuous assessment 
of the elastic modulus vs. depth, and to resolve relationship 
between the indentation contact pressure and strain, that is, 
indentation stress–strain curve for GaN (details in Ref. [196]).

This section, then, provides an example of the successful char-
acterization of a new material that is of central interest in the fi eld 
of electronics. The mechanical properties of GaN were accurately 
evaluated owing to the availability of unique bulk crystal and the 
application of the nanoindentation experiments. According to 
the results, GaN appears to be a material with unusual proper-
ties, one that combines high Young’s modulus and hardness with 
nonbrittle behavior, which was recently confi rmed by ultraaccu-
rate measurements by Fujikane et al. [197].

4.4.5.  Comments on the EPI Approach and 
Crystal Deformation

The energy principle approach to the depth-sensing indenta-
tion data (EPI) has proved to be successful in predicting new 
phenomena in deformed crystals and in analyzing “an omalous” 

Figure 34. Typical AFM micrograph of the indentation impressions (Pmax 5 150 mN) on the (0 0 0 1) plane of InGaN displaying no fracture traces (a) 
together with its depth-profi le (b). Reprinted with permission from [195], R. Nowak et al., Thin Solid Films 295, 193 (1997). © 1997, Elsevier.
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indentation data. This energy-based analysis is so accurate 
that it enabled users to resolve the indentation anisotropy 
of the (10 1 0) plane of sapphire for different orientations 
of a triangular indenter (Fig. 25), while conventional hard-
ness measurements (Fig. 24) provided somewhat confusing 
results. It allowed the authors to determine the hardness level 
of YBa2Cu3O7–�, GaN and InGaN crystals, despite the rather 
complex indentation behavior exhibited by these materials.

Both the depth-sensing indentation method and EPI theory 
are well suited to characterizing new materials. The low-load 
indentation experiments have revealed that, contrary to common 
opinion, InGaN is softer and more ductile than sapphire crystal 
(Fig. 33). Its hardness, estimated according to the EPI, is lower 
than that of sapphire, while its anisotropic surface deformation is 
less marked than that observed from indentations in Al2O3 crystals. 
The EPI method was also useful when evaluating the mechanical 
properties of the tiny and very brittle YBa2Cu3O7– �.crystals that 
exhibited a crushing-like behavior (Figs. 29 and 30 ). Finally, the 
mechanical properties of GaN crystals were accurately deter-
mined using the EPI analysis of nanoindentation data.

Despite the advantages, the EPI can explain neither the 
unusual fracture patterns which differ markedly for N and R 
orientations of the triangular indenter pressed onto the  (10 1 0) 
plane of sapphire (Fig. 26) nor the origin of the pop-ins observed 
in the loading cycle of P2h curves for particular tip orientations 
(see Fig. 23). Furthermore, the EPI theory fails to take account 
of the structure of the tested material and the shape of the used 
indenter tip (in fact, one refers here to the axisymmetric contact 
model). These drawbacks do not undermine, however, the validity 
of the concept of true hardness. The support of the EPI approach 
with crystallographic considerations (addressed in the following 
section) is an appropriate way to overcome the shortcomings of 
the analysis applied to crystalline materials (see, e.g. [197, 218].

4.5.  Surface Deformation of Sapphire: ERSS 
Considerations

The anisotropic indentation fracture and surprising singularities 
in a loading path of the P–h curve recorded during ind entation 

of sapphire (Figs. 23(d) and 26) prompted Nowak and Sakai 
[193] to search for a suitable model to predict the location and 
clarify the origin of characteristic surface features visible in 
the vicinity of impressions. Such a study is, to a certain extent, 
similar to the investigations of the Knoop hardness anisotropy 
of crystals, which have a long history. The employment of the 
depth-sensing indentation research allowed Nowak and Sakai 
[193] to provide a new insight into this well-established area of 
material science. Further explanation of the anomalous surface 
deformation of Al2O3 crystals was offered by Nowak, Sekino 
and Niihara [99, 132, 205] based on low-load indentation experi-
ments. However, the most advanced account of the indentation 
anisotropy was accomplished in the Nordic Hysitron Laboratory 
[206–207] and recently revised for nanoscale deformation [38].

4.5.1.  Early Approaches to the Knoop 
Hardness Anisotropy of Crystals

A report on slip lines around the indentation marks and the 
relationship between crystal orientation and its hardness 
appeared 90 years ago [198]. Moreover, in 1923, O’Neil studied 
the Brinell hardness for different crystallographic planes of 
aluminum crystals [224]. Since the publication of early results 
concerning the Knoop hardness of minerals by Winchell [225], 
and the paper on the anisotropy of Knoop hardness by Daniels 
and Dunn [199], the term “hardness anisotropy” has been used 
exclusively to defi ne the conventional indentation experiments 
conducted with a variously oriented Knoop pyramid (the low-
class symmetry indenter – refer to Table 1).

In addition, there appeared a considerable number of studies, 
both theoretical and experimental, which addressed hardness 
anisotropy of various crystals and the application of the hard-
ness anisotropy to identify crystal slip systems. However, the 
hardness anisotropy of crystals with hexagonal or rhombohe-
dral structure was never clarifi ed by the existing models. These 
diffi culties triggered investigations of indentation into sapphire 
by Nowak and Sakai [193]. Moreover, the recent applications of 
sapphire in electronics required detailed information on mate-
rial properties formerly considered as to be well understood, 
which nowadays received a new clarifi cation.

Among a large number of studies on the Knoop hardness 
anisotropy, the ideas of Daniels and Dunn [199] as well as 
of Brookes et al. [200] became widely accepted. Daniels and 
Dunn [199] estimated the probability of activation of the 
primary slip system during the Knoop hardness test of Fe–3 
wt.% Si single crystals. They assumed the direction of the 
force F exerted on the material unit volume of cross-sectional 
area A to be parallel to the indenter facet, and consequently 
derived a formula for the effective resolve shear stress �eff 
which acts in a primary slip system:

 eff A
�

F
cos cos cos( ) , (4.18)

where the product (cos � cos �) is the “Schmidt factor,” 
� defi nes the angle between F and the unit normal vector 
n of the primary slip plane, while � stands for the angle 
between the slip direction g and the vector F. Daniels and 
Dunn [199] modifi ed the “Schmidt formula” using the 
constraint factor cos �(� denotes the angle between F and 
the axis of slip system rotation) to improve the “tensile 

Figure 35. Load–displacement curves obtained for GaN crystal 
d eformed with a sharp indenter. Reprinted with permission from [196], 
R. Nowak et al., Appl. Phys. Lett. 75, 2070 (1999). © 1999, American 
Institute of Physics.
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strength approximation” they started with. Using eqn 
(4.18), they predicted the position of the Knoop indenter 
for which extreme values of �eff are attained. Their results 
accorded with the hardness anisotropy observed for cubic 
crystalline structure (silicon ferrite), having an exception 
in hexagonal zinc crystals [199].

In 1971 Brookes et al. [200] provided a modifi ed anal-
ysis of the indentation deformation of single crystals and 
proposed a new expression for �ef :

 � � �
�

eff A
5

1F
cos cos

cos sin( ) j

2
, (4.19)

where � defi nes the angle between the rotation axis of the 
selected slip system and its direction g.

The approach by Brookes et al. [200] received widespread 
recognition and for two decades it was in common use for Knoop 
hardness anisotropy of crystals (see an introduction in Ref. [193]) 
despite its failure in the case of alumina single crystal, as with 
the alternative version of ERSS model proposed by Armstrong 
and Raghuram [202]. Thorough criticism of the drawbacks of 
the considerations by Daniels and Dunn [199] and Brookes et al. 
[200] was articulated by Arnell [226], who emphasized that both 
theoretical approaches were unable to predict hardness anisot-
ropy for materials with hexagonal and rhombohedral structure.

An original view of hardness anisotropy was presented by 
Hirsch et al. [227] and Roberts et al. [228], which still followed 
the resolved shear stress concept introduced by Daniels and 
Dunn [199]. The authors applied Nadai’s [229] solution of 
an elastic contact between a rigid fl at punch and an isotropic 
solid to their Knoop indentation, which enabled them to esti-
mate stress components under the indenter [227]:

 �
�

� � � �xx
P

52 2 1 2
2

2 2 21 2 1 2( )⎡⎣ ⎤⎦sin sin

 
r zz

P
52 2 2 1

2
2 2 21 2 1 2�

� � � �( )⎡⎣ ⎤⎦sin sin

 �
�

� �xz
P

52 2
2

2 21 2cos cos⎡⎣ ⎤⎦   � � �yy xx zz5 1m ( )  (4.20)

where P and (�1, �2) stand for the punch load and the angular 
coordinates of a given location in the material, respectively.

The more realistic description of the stress under the indenter 
allowed the researchers to dismiss the constraint factor used in 
other models. However, the approach by Hirsch et al. [227] was 
not tested for hexagonal crystals. For completeness, we mention 
the model by Wonsiewicz et al. [230], based on Taylor’s analysis 
of crystal plasticity [231], while the approach by Pospiech and 
Gryziecki [201] is addressed in the following section.

4.5.2.  Surface Deformation of Sapphire 
Induced by the Triangular Indenter

A new resolve shear stress model that predicts the indentation 
deformation of sapphire, a crystal with a rhombohedral struc-
ture, was proposed in 1994 by Nowak and Sakai [193]. The 
approach was an extension of the previous studies by Nowak 
[203, 204] that concentrated on slip patterns around the Knoop 
impressions in zinc and sapphire crystals. The new model 

incorporated the original idea for Knoop hardness anisotropy 
developed by Daniels and Dunn [199], together with the modifi -
cations proposed by Pospiech and Gryziecki [201], Brookes et al. 
[200], and Sawyer et al. [232]. It introduced a new comprehen-
sive formula for the parameter Ti(�) to estimate the probability 
of activating the ith slip or twinning system under the facet of 
the sharp indenter, oriented to angle �:

 Ti
i

CRi
i

CRi
i� ~

�

� �
( )

/ max
Λ , (4.21)

where �i stands for shear stress in the ith plane, �i is a correc-
tion factor for particular indentation geometry, and �CRi 
defi nes critical shear stress for the ith slip system. The force 
under the tip is assumed to be perpendicular to the indenter 
facet, following Pospiech and Gryziecki [201], which yields:

 �i~ � �cos cos , (4.22)

where angles which makes the force vector F with the 
normal to the slip plane ni and slip direction gi are denoted 
by li and 
i, respectively (Fig. 36). The correction factor �i 
accommodates the effect of material moving toward the 
free surface and takes the form:

 Λ i ~ cos cosx 	 , (4.23)

where cos � was incorporated from Pospiech and Gryziecki 
[201], who found the minimum work required for moving 

Figure 36. The relationship between the geometry of the triangular 
i ndenter and the slip system potentially activated during the penetration 
process. Reprinted with permission from [193], R. Nowak and M. Sakai, 
Acta Metall. Mater. 42, 2879 (1994). © 1994, Elsevier.
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an elemental layer of the material toward the surface to be 
dependent on � – the angle between the intersection of the 
plane determined by the ni and gi with the indenter facet, 
and the vector –G, the projection of the pyramid axis onto 
the indenter facet (details in Fig. 36).

Nowak and Sakai [193] argue, however, that an additional 
criterion is necessary for selecting the slip system acting 
along the shortest path to the surface when the value of 
cos � reaches its maximum. Such a path could be realized 
when the slip direction gi is close to the vector –G parallel 
to the facet (Fig. 37), which prompted the authors to incor-
porate into eqn (4.21) an additional factor cos �(� is defi ned 
in Fig. 36 by vectors –G and gi). This condition was disre-
garded in the previous models.

In contrast to the unrealistic assumptions by Daniels and 
Dunn [199] and by Brookes et al. [200], who considered a 
single active slip, the Ti(�) values [eqn (4.21)] are calculated 
in [125] for all available slip and twinning systems. The 
relationship between the Ti value and the hardness ,

H �( )
, measured with variously oriented (�) triangular sharp 
indenter, reads [193]:

 
,
H T

i
i
j� ~ �( ) ( )⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

∑ max
21

, (4.24)

where j denotes the indenter facet for which the Ti value is 
apparently determined.

Nowak and Sakai [193] determined the Ti(�) parameter for 
azimuthal positions (0 # � # 2�) of the triangular indenter on 
the (0 0 0 1), (1010), and (1210) planes of sapphire [193], using 
the critical resolved shear stress values for slip and twinning in 
sapphire listed in Table 4  (see the results in Figs. 38(a)–38(c)). 
The additional calculations were made assuming a single sCRi 

value for various slip–twinning systems in the crystal (the results 
are given in Figs. 38(a1)–38(c1)). This approach enabled us to 
identify the deformation systems that are most prone to be acti-
vated while using the T–µ curves shown in Figure 38.

Since the orientation “N” of the triangular tip can be 
described in terms of three � values: 1808, 3008, and 608, 
while the “R” orientation defi ne 08, 1208, and 2408 (Fig. 22), 
the highest values of T parameter determine the systems 
activated in the vicinity of the particular impression. Hence, 
Figure 38(a) predicts rhombohedral or basal twinning for 
“R” orientation of the impression on the (1010) plane, and 
particularly intensive twinning is expected near the facet 
positioned along the [1210] direction (Fig. 38(a1)). Nowak 
and Sakai [193] expected the “R” impression to be associated 
with particularly large deformation near the indicated facet, 
which might cause lateral cracking during unloading. In the 
case of the “N” impression on the (1010) plane, the authors 

Table 4. Twinning and slip systems considered in the model calculations [84] (the indices are referred to the structural unit cell (c/a = 2.73)).

Symbol Twinning–slip system Description
Critical shear stress 
(GPa) Reference

1  72 1 1 08 (0001) 17 [235, 236, 240]

2 710 1 08 512106 Prismatic slip [237; J. Cadoz et al., Rev. Phys. Appl. 3, 473 (1977); 
J. Cadoz et al., Rev. Phys. Appl. 16, 135 (1981); 
J. Castaing et al., J. Am. Ceram. Soc. 64, 504 (1981);
D. Kotchick et al., J. Am. Ceram. Soc. 64, 429 (1980)]

3 
171 1008k1(0001) Basal twinning 0.148 [235, 238, 240]

4 
170 1118k1(0112) Rhombohedral twinning 0.111 [235, 238, O. Bhandari et al., Acta Metall. Mater. 21, 
1515 (1973); W. Scott et al., J. Am. Ceram. Soc. 66, 
27 (1983); 239, J. Chung et al., Proc. 6 Japan.–Korean 
Sem. Ceram., Osaka, 521 (1989)]

5 72 1 1 08 501126 Rhombohedral slip 3 [235, 240]

6 710 118 511016 

710 118 510126 

710 118 511236

Pyramidal slip 18 [235, 237, 240]

AQ4AQ4

Figure 37. The schematic that enables us to recognize the slip systems 
for which the models of Daniels and Dunn [199], Brookes et al. [200], 
and the one by Pospiech and Gryziecki [201] suggest the same value of 
the effective shear stress �eff.
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suggested that basal twinning and prismatic slip should domi-
nate the deformation near each facet (Fig. 38).

Their prediction was confi rmed by microscopic inspection 
of the indentation features on the (1010) plane of Al2O3 crystal 
(Fig. 39). Indeed, the deformation patterns around the “N” 
impression are less developed than for R orientation. Since 
the probability of activating slip and twinning is considerably 
lower for the N orientation (Fig. 38(a)), the stress induced by 
indentation relaxes through fracture. This explains the appear-
ance of radial cracks for “N” impression and their absence for 
R orientation (Fig. 39). Differences in mechanical response of 
the (1010) plane of sapphire indented with various tip orien-
tations (N, R) are refl ected in the shape of the P2h curves 
(compare Figs. 23(c) and 23(d)).

A similar discussion was offered for indentation of the 
(1 2 10) and (0 0 0 1) planes of sapphire [193]. The analysis 
of Figures 38(b) and 38(b1) allowed the authors to conclude 
that the predicted indentation deformation for the (1 2 10)N 
and (1 2 10)R impressions should be identical, which was 
confi rmed by the microscopic observations of the R and N 
crack–twin patterns resembling each other (Fig. 40) as well 
as similar P2h curves (Figs. 41(a) and 41(b)).

The most surprising results of both the indentation experi-
ments (Figs. 41(c) and 41(d)) and model predictions (Figs. 38(c) 
and 38(c1)) were realized by Nowak and Sakai [193] for the 
(0 0 0 1) plane. While the basal plane of rhombohedral crystal 
is believed to possess quasi-isotropic mechanical properties, the 
authors observed striking difference between the (0 0 0 1)N and 

Figure 38. T parameter calculated for the variously oriented (l angle) Berkovich indenter on the (10 1 0) plane (a-a1), the (1 2 10) plane (b-b1), and the 
(0 0 0 1) plane (c-c1 ) of sapphire. The τCRi values were taken from Table 4 (a–c) or assumed to be unit (a1, b1, and c1) (after Nowak and Sakai [125]). 
The numbers of the respective curves represent the slip–twinning systems given in Table 4. Reprinted with permission from [193], R. Nowak and 
M. Sakai, Acta Metall. Mater. 42, 2879 (1994). © 1994, Elsevier.
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(0 0 0 1)R indentations (Figs. 41(c), 41(d) and 42). Based on their 
theoretical prediction (Fig. 38(c)), and taking advantage of the 
studies by Kollenberg [233], Nowak and Sakai [193] concluded 
that large deformation, close to the (0 0 0 1)N impression, is 
related to the maximum probability of activating rhombohedral 
twinning, while the defect pattern near the (0 0 0 1)R indenta-
tion mark is associated with the minimum probability.

In summary, Nowak and Sakai [193] proved that their theo-
retical model allows the prediction of mechanisms responsible 
for the indentation deformation and cracking of sapphire. 
The prognosis concurred with the patterns of microscopic 
surface defects and the shape of the P–h curves. The presented 
approach is the only model to provide successful characteriza-
tion of the indentation anisotropy of crystals with hexagonal 
and rhombohedral structures provided so far. The important 
outcome of this study is the conclusion that twinning plays a 
dominant role in the indentation deformation of sapphire, 
which agrees with earlier fi ndings by Kollenberg [233] and very 
fresh TEM [25, 234] and Raman spectroscopy [28] fi ndings.

4.5.3.  Deformation of Sapphire under 
a Spherical Indenter

ERSS Model for Spherical Contact. In order to avoid 
the anisotropic effects caused by the particular orientation 

of a nonaxisymmetric indenter on a given crystallographic 
plane, Nowak, Sekino, and Niihara [99, 132, 205] performed 
nanoindentation into sapphire with a spherical tip. Use of 
an axisymmetric penetrator allowed the authors to observe 
 novel phenomena associated with deformation of Al2O3 
crystal, and consequently to verify earlier fi ndings by Page 
et al. [24], Kollenberg [233], Lagerlöf, Pirouz, Heuer and 
 coworkers [235–243], as well as Nowak and Sakai [46, 193].
The starting point for the study was the ERSS considerations 
by Nowak and Sakai [193] concerning deformation of sapphire 
under a sharp indenter (refer to the preceding section), since 
displacements in an anisotropic body under the point loading 
cannot be determined analytically [244], in a similar manner 
to the isotropic Hertz problem [245, 246]. Nowak et al. [99] 
found it unrealistic to approximate the stress under a ball 
indenter with a few force vectors as in the case of Knoop 
(four forces – Pospiech and Gryziecki [201]) or Berkovich 
(three vectors – Nowak and Sakai [193]) indenters, and in 
such a cases, the � angle that defi nes the orientation of the 
indenter on a plane (Fig. 36) is no longer useful.

The authors assumed the directions of the forces F to be 
perpendicular to every infi nitesimal grid (d�€d�) repre-
senting the area of common contact between the indenter 
and the crystal (Fig. 43). The position of the grid and hence 
that of the vectors F were denoted by the angular coordinates 

Figure 39. The deformation patterna near “N”- and “R”-oriented indentation impressions on the (10 1 0) plane of sapphire observed in refl ected and 
transmitted light. Reprinted with permission from [193], R. Nowak and M. Sakai, Acta Metall. Mater. 42, 2879 (1994).© 1994, Elsevier.
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(�,�) of their center points, where � is the angle between 
the plane of indenter symmetry containing vector F and the 
x-axis, while � is defi ned between the negative part of the 
z-axis and the vector F (Fig. 43). Approximating the spherical 
grid by means of a square on the tangent plane (correct on 
the assumption: d� 

�
 0 and d� 

�
 0), one comes to the contact 

problem of the fl at facet with the adjacent material. Thus, 
it was possible to estimate the probability of slip–twinning 
activation close to the grid (d� d�) based on the previously 
derived equations (eqns (4.21) and (4.23)). The difference 
between the formulae for a sharp and spherical tip lies in 
the defi nition of �i, �i, �i, and �i parameters, which are in 
the latter case functions of variables � and � coordinates of 
the center of a selected grid [Ti 5Ti(�, �)], which yields new 
form of eqn (4.24) for spherical contact [99]:
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where 0 # � # 2p and 0 # � # � for � angle corresponding 
to the maximum indentation depth h (Fig. 44).

The model by Nowak et al. [99] introduced explicitly 
indentation-load dependence into the formula for Ti(�, �), 
since the higher the mean pressure p under the indenter 
(p = P/pa2 ), the higher the value of force F, and conse-
quently, the higher shear stress in the ith slip system:

Figure 40. The “N”- and “R”-oriented indentation impressions on the (1 2 10) plane of sapphire observed in refl ected and transmitted light. Reprinted 
with permission from [193], R. Nowak and M. Sakai, Acta Metall. Mater. 42, 2879 (1994). © 1994, Elsevier.

Figure 41. Typical indentation curves obtained with the triangular in-
denter for the (1 2 10)N (a), (1 2 10)R (b), (0 0 0 1)N (c), and (0 0 0 1)R 
(d) orientations. Reprinted with permission from [193], R. Nowak and 
M. Sakai, Acta Metall. Mater. 42, 2879 (1994). © 1994, Elsevier.
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In order to determine the slip and twinning systems most 
prone to be activated during the indentation process, the 
authors [99] calculated the value of the Ti(�,€�,€p) param-
eter for � ranging from 0 to 2p when � varies between 0 and 
a The numerical results were obtained for varying � and � 
angular coordinates when the distribution of slip directions gi 
and slip planes ni (Table 4) corresponded to the geometry of 
indentation in the (0 0 0 1) and (10 1 0) planes of sapphire. The 
calculations were performed for all slip and twinning systems 
(Table 4). The variations of the Ti(�,€�,€p) parameter corre-
sponding to the high- and low-load indentations on the (10 1 0) 
and the (0 0 0 1) planes were plotted [99] vs. the � angle for 
constant � values (Figs. 45 and 46 ), enabling the authors to 
predict the deformation in different crystallographic direc-
tions around the ball indenter and to indicate the slip–twinning 
systems activated during the subsequent stages of penetration 
(refer to the right scale in Fig. 46 as well as to eqn (4.26)).

Nowak, Sekino, and Niihara [99] conclude that the results 
of calculations for the (10 1 0) plane of sapphire suggest that 
rhombohedral twinning 
1 

K0 1 11L K1 {01 1 2} and, secondly, 
basal twinning K1100L (0001) are the mechanisms which 
should be readily activated at the early stages of indentation 

(see Figs. 41(a) and 41(b)). They found the highest values of 
the T parameter for rhombohedral and basal twinning in the 
neighborhood of the orientation � 5 0° and that denoted by 
� 5 180° (Fig. 45(a)). The authors argue that the twinned 
zone would be extended along the [0 0 0 1] direction, while 
simultaneous activity of both the basal and the rhombohedral 
twinning should be expected close to the orientation � 5 0°.

Furthermore, Nowak et al. [99] conclude that, for higher 
loads, basal twinning becomes the preferred deforma-
tion mechanism close to the orientation � 5 0°, while the 
rhombohedral twinning should be activated close to the 
 orientations � 5 135° and � 5 225° (see Fig. 45(b)). The 
authors expected the activity of the prismatic K010L {1210} 
as well as the rhombohedral K21 10L {0112} slip systems close 
to specifi c orientations: � 5 90° and � 5 270°, where the 
T parameter for basal and rhombohedral twinning always 
reaches its minimum value (see Fig. 44(b)).

The microscopic inspection of the indentation impres-
sion produced by a spherical indenter on the (1010) plane 
of sapphire (Fig. 47) confi rmed the theoretical prediction. 
Indeed, for a high-indentation load, the twin lamellae 
appear close to � 5 0°, � 5 135°, and � 5 225° orientations 

Figure 42. The “N”- and “R” -oriented indentation impressions on the (0 0 0 1) plane of sapphire observed in refl ected and transmitted light. Please 
note that the magnifi cation used for the “N” micrographs is considerably lower than that for “R” indentations. Reprinted with permission from [193], 
R. Nowak and M. Sakai, Acta Metall. Mater. 42, 2879 (1994). © 1994, Elsevier.
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with a particularly intensive twinning in the area � 5 0° 
(Fig. 47(a)). The crystal volume close to directions � 5 90° 
and 270° was deformed elastically or by slip, and there was 
no trace of twins in these regions, as predicted by the model 
(compare Figs. 45 and 47 ).

Similar analysis [99] was successful in the case of the 
indentation of the (0 0 0 1) plane. The extreme values of 
the T parameter were achieved again for rhombohedral 
and basal twinning systems (Fig. 46). Although the shape 
of impressions on the (0 0 0 1) plane of sapphire exhibits 
irregularities, the predicted threefold symmetry can be 
deduced from the micrograph (compare Figs. 46 and 48(a)). 
When all the preferred slip–twinning systems – that is, those 
with the maximum value of T parameter in a given interval 
of the variable � – are activated, the deformation zone is 
expected to posses a sixfold symmetry (Fig. 46(b)), which 
was observed by the SEM technique (Fig. 48(b)). A devia-
tion from the ideal deformation pattern has occurred in the 
fractured areas.

These results [99] agree with the fi ndings by Farber et 
al. [241, 242], who studied in detail the dislocation struc-
ture generated by Vickers indentation in the basal plane of 
sapphire. Moreover, Farber et al. [242] claim that, for room 
temperature indentation, twinning and cracks are the prin-
cipal features in the sapphire plastic zone, as is confi rmed 
by the theoretical prediction and experimental observations 
presented by Nowak et al. [99].

The above considerations formed a basis of more exact 
modeling of stress field under the acting spherical tip 
using 3D FEM modeling of anisotropic solid with the 
point symmetry of sapphire (see Fig. 49). The obtained 
results [77, 206] correctly reflected and therefore clari-
fied (Fig. 50) the origin of the specific surface patterns 
(Figs. 47 and 48), which have been attributed to the 
combined response of basal and rhombohedral twinning 
proving the accurate prediction of previously applied 
ERSS models [99, 132, 205].
Sudden Depth Excursions during Nanoindentation in 
Sapphire. Using their ERSS model [99, 132, 205] and inde-
pendently FEM simulations [77, 206] for a spherical  contact 
(see the preceding section), Nowak et al. clarifi ed the origin 
of the surprising discontinuities which appear in the loading 
part of the P2h curves recorded for spherical indentation 
in the (101 0) and (0 0 0 1) planes of sapphire (see Figs. 50, 
51(b), 51(c), and 52). Similar sudden indentation depth ex-
cursions were earlier reported by O’Hern et al. [29], Nowak 
et al. [8], and Nowak and Sakai [46, 193] (Figs. 23(d) and 
41(c) ) for high-load indentation in the (0 0 0 1) plane of sap-
phire with Vickers, Knoop, and Berkovich tips, respectively. 
The singularities for spherical indentation (Figs. 51 and 52) 
occur at considerably higher-indentation loads [99, 132] than 
those reported by Page et al. [24], which led us to argue that, 
apart from the noted similarities, the high-load discontinui-
ties should be attributed neither to the initial generation of 
dislocations discussed in Page et al. [24] nor trivially e xplained 
as a sudden increase of crystal plasticity [29].

In the case of spherical indentation in the (101 0) and 
(0 0 0 1) planes of sapphire, pure elastic deformation domi-
nates the initial stages of penetration up to relatively high 
loads (Figs. 51(a) and 51(b) , and curve 1 in Fig. 52(a)). 

Figure 43. A geometric relationship between a spherical indenter and 
the ith slip system denoted by normal to the slip plane (ni) and slip direc-
tion (gi). F is the force perpendicular to the grid (d� € d�) and G deter-
mines the intersection between the plane of indenter symmetry and the 
tangent to a grid. Coordinates � and � denote the position of the grid.  
Reprinted with permission from [99], R. Nowak et al., Philos. Mag. A74, 
171 (1996). © 1996, Taylor & Francis.

Figure 44. The geometry of the elastic–plastic indentation contact of a 
spherical indenter of radius R loaded by the force P. The contact area 
is a function of its radius a, the angle �max, indentation depth h, and the 
total indentation depth hmax affected by a surface defl ection. Reprinted 
with permission from [99], R. Nowak et al., Philos. Mag. A74, 171 (1996). 
© 1996, Taylor & Francis.
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Frequently, an elastic deformation is suddenly interrupted by 
a plastic response, registered as a large pop-in in the loading 
cycle of the P2h relationship. This takes place at indentation 
load levels close to 200 mN for the (101 0) plane (Figs. 45(b) 
and (c)) and around 400 or 500 mN, when indenting the 
(0 0 0 1) plane (curve 2 in Figs. 52(a) and (b) ), independent 
of the accompanying fracture processes [99].

The characteristic loads for which the pop-in have been 
registered on the (101 0) plane scales with the distance of 
the twin lamellae from the center of the impression. Indeed, 
the closer the location of the large twin to the center of the 
impression, the lower the formation load of the popin (see 
Fig. 53) , which proves the relationship between the pop-ins 
and twinning.

Although the twin lamellae are not visible on the (0 0 0 1) 
crystal surface (Fig. 48), the large pop-in (Fig. 52) is caused 
again by twinning [99]. In exceptional cases, twinning may 
occur in the very small volume of material under the indenter 
at early stages of indentation and expand by tiny steps to the 
adjacent material. It is refl ected in a quasi-smooth shape 
of the selected P5h curves (curve 3 in Fig. 52(a)) and by 
the fact that both of the loading curves (curves 2 and 3 in 
Fig. 52(a)) reach an identical maximum point. The latter 
indicates that the same volume of sapphire has been trans-
formed into a twinned phase.

Finally, the authors [132] identifi ed the slope of the 
twin in order to provide an independent crystallographic 
analysis of the linear surface features appearing near the 

Figure 45. The prediction of the slip and twinning systems for the (101 0) plane of sapphire according to the model by Nowak et al. for Pmax 5 7 mN (a) 
and Pmax 5 500 mN (b). The numbers of the curves correspond to rhombohedral twinning (1), basal twinning (2), rhombohedral slip (3), basal slip (4), 
prismatic slip (5), and pyramidal slip (6). Reprinted with permission from [99], R. Nowak et al., Philos. Mag. A74, 171 (1996). © 1996, Taylor & Francis.

Figure 46. The prediction of the slip and twinning systems for the (0 0 0 1) plane of sapphire for Pmax 5 7 mN (a) and Pmax 5 500 mN (b). Reprinted 
with permission from [99], R. Nowak et al., Philos. Mag. A74, 171 (1996). © 1996, Taylor & Francis.
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indentation impressions on the (101 0) plane of sapphire 
(Fig 47). The study demonstrated that it is unlikely that 
the observed surface eruptions are caused by rhombohe-
dral twinning exclusively. Indeed, the surface features were 
formed owing to the co-operative action of rhombohedral 
and basal twinning since the value of the (101 0) surface 
tilt 239° (Fig. 54) can be achieved only by the co-operative 
action of two twinning systems.

The concept of co-operation of two twinning systems fi ts the 
prediction of the ERSS model and FEM calculations (see the 
precedent section), which indicate the high probability of acti-
vation of twinning as far as the indentation in the (101 0) plane 
is concerned. Interestingly, twinning has not been accounted 
for by other reports on “nonlinear deformation mechanisms 
during indentation” (see the review by Bahr et al. [112]), while 
it came recently into intense investigation [25, 28, 234].

4.5.4.  Concluding Remarks on the Indentation 
of Sapphire

The present review provides an example of the application of the 
theoretical analyses to the nanoindentation of sapphire. Despite 
the complicated structure of the Al2O3 crystal, which exhibits low 
R3C symmetry, and a number of available deformation systems 
which may eventually be activated during indentation, phenomena 
associated with its surface deformation induced either by sharp or 
spherical indenters were successfully clarifi ed [46, 77, 99, 132, 193, 
205, 206]. The deformation mechanisms, that is, slip and twinning 
systems responsible for indentation behavior of a-alumina crystal 
were precisely predicted by the ERSS model, and subsequently 
confi rmed by microscopic observations. The sequence of hard-
ness for various orientations of sapphire surface was clarifi ed in 
terms of “true hardness” introduced by the EPI method.

Figure 47. Micrographs of the surface features near the impressions 
on the (1010) plane of sapphire obtained under the maximum load 
Pmax 5 500 mN (a) and 200 mN (b). Reprinted with permission from [99], 
R. Nowak et al., Philos. Mag. A74, 171 (1996). © 1996, Taylor & Francis.

Figure 48. Micrograph of the spherical indentation impression on the 
(0 0 0 1) plane of sapphire obtained under the load of Pmax 5 500 mN (a). 
The details of the surface deformation are shown in the micrograph (b). 
Reprinted with permission from [99], R. Nowak et al., Philos. Mag. A74, 
171 (1996). © 1996, Taylor & Francis.
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In order to compare the results obtained from their ERSS 
simulation and the outcome of the EPI analysis, the true 
hardness values HT obtained for various orientations (N, R) 
of the triangular indenter on different crystallographic 
planes (Fig. 22) and the theoretical hardness H, calculated 
according to eqn (4.24) are illustrated in Figure 55. Respec-
tive hardness values were normalized with these for the 
(0 0 0 1)N basal orientation. The quantitative agreement 
between the true hardness HT and the hardness H, based on 
the predicted slip–twinning activity in deformed crystal was 
achieved. A discrepancy for the hardest (101 0) N orienta-
tion may have been caused by the  overestimation of the 
critical stress for twinning and by the indentation-induced 
cracks, which change the stress state under the tip.

The clarifi cation of the origin of the sudden depth excursion 
observed in the loading cycle of the registered P2h indentation 
curves, as well as explanation of the nature of the linear features 
in the vicinity of the residual indentation impressions made on the 
(101 0) plane, accounts for the success of the presented approach. 
The precise location of the surface features was predicted by the 
models pointing toward the twinning process as the most prob-
able source of the observed surface eruptions. Further identifi -
cation of the slopes of a twin region provided an independent 
crystallographic analysis of the linear features appearing near the 
indentation impressions on the (101 0) plane of sapphire, which 
proved that they were formed as a result of the co-operative 
action of basal and rhombohedral twinning. Thus, the contro-
versial issue [77, 99, 132, 193, 205, 206] of the origin of linear 
features around indentation impressions in sapphire was fi nally 
solved, while recent nanodeformation measurements served as 
negative verifi cation of Oliver–Pharr method (see Fig. 9).

4.6.  Indentation of Thin Films and 
Ion-Implanted Surfaces

4.6.1.  Indentation of HfN Films Sputter 
Deposited on Silicon Substrate

The nanoindentation technique is considered the most conve-
nient tool for studying mechanical properties of thin fi lms. 

Figure 49. FEM mesh constructed in order to model the contact 
b etween variously oriented, elastically anisotropic sapphire crystal and 
deformable, and spherical diamond tip. Reprinted with permission from 
[206], R. Nowak et al., JSME Int. J. A 46, 265–271 (2003). © 2003, The 
Japan Society of Mechanical Engineers.

Figure 50. The distribution of the shear stress (scale in GPa) for 
 rhombohedral twinning (a) and (b) and prismatic slip (c) and (d), near 
the spherical tip loaded onto the (1 0 1 -bar 0) plane of sapphire. The 
horizontal cross sections (a and c) are located 0.2 �m under the surface, 
while the vertical (b and d) illustrate the depth profi le of shear stress. 
The regions A1, B1, and C1 correspond to the different crystal areas 
 defi ned in [77, 206]. The analogous distribution of shear stress in twin-
ning systems for indentation in the (0 0 0 1) plane is presented in (e) and 
(f). Reprinted with permissions from [77], R. Nowak et al., Appl. Phys. 
Lett. 83, 5214 (2003). © 2003, American Institute of Physics.
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Moreover, the fi rst nanoindentation testers were designed 
to examine the coatings [13], and since its inception, the 
method has been used to examine both hard [247, 248] and 
soft [16, 124, 249] thin layers. Since it is particularly diffi cult 
to investigate the surface deformation of ultrahard thin fi lms, 
this review concentrates on the nanoindentation studies of 
sputter-deposited hard HfN layers.

HfN thin fi lms are inherently brittle in comparison with 
metallic layers, while their high activation energy against elec-
tromigration, coupled with excellent conductivity, has already 

attracted considerable attention. This material seems to be 
better suited for diffusion barriers in electronics than TiN, 
since there has been no report on the interfacial brittle layer 
being formed when depositing HfN, despite the observation of 
such an effect for Ti–N system [250]. Furthermore, HfN was 
found [251] to be an effective diffusion barrier between the 
silicon and aluminum, while Yamanaka et al. [252] discovered 
a new layer-structured superconductor based on HfN.

An interest in HfN fi lms emerged two decades ago, when 
their considerable hardness and excellent wear resistance 

Figure 51. The P2h curves for spherical indentation in the (10 1 0) plane of sapphire obtained under the load Pmax 5 100 mN (a), 200 mN (b), and 500 mN 
(c). Reprinted with permission from [99], R. Nowak et al., Philos. Mag. A74, 171 (1996). © 1996, Taylor & Francis.

Figure 52. The P2h curves for spherical indentation in the (0 0 0 1) plane of sapphire under the load Pmax 5 500 mN. The curves denoted by 1, 2, 
and 3 show perfectly elastic, elastic–plastic, and transition-type deformation, respectively (a). The combination of perfectly elastic and perfectly plastic 
responses exhibits hysteresis (b). Reprinted with permission from [99], R. Nowak et al., Philos. Mag. A74, 171 (1996). © 1996, Taylor & Francis.
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came to be widely recognized, and were immediately applied 
in the manufacture of cemented carbide cutting tools. Since 
HfN fi lms have additionally been found useful in the elec-
tronic industry, their physical properties have been studied 
in terms of deposition conditions and their particular struc-
ture. An example is the study of the structure as well as 
electrical and mechanical properties of HfN fi lms depos-
ited on silicon by a reactive r.f. sputtering method [253]. 
This information was obtained by means of the thin-fi lm 
X-ray diffraction method, Auger electron spectroscopy, 
and electron microscopy, while the nanoindentation results 
were analyzed using the EPI approach. The authors [253] 
 emphasized the correlation between the deposition condi-
tions of HfN fi lms and the resulting structure, which affects 
both their electrical (resistivity) and mechanical (mecha-
nism of deformation, residual stress) properties.

Interestingly, the hardness data reported for HfN fi lms 
by various authors appear inconsistent (see Table 5) despite 
the apparent similarity of investigated layers in terms of their 

Figure 53. Relationship between the pop-in force and the location of 
the fi rst twin lamellae produced under spherical indenter acting on the   
(10 1 0) plane. The distance d between the center of the indentation and 
the twin is defi ned in the inlet. Reprinted with permission from [99], 
R. Nowak et al., Philos. Mag. A74, 171 (1996). © 1996, Taylor & Francis.

Figure 54. The AFM cross section of the linear feature which appeared in the vicinity of the residual impression (Pmax 5 500 mN) on the (10 1 0) plane 
of sapphire crystal, highlighting the slope of the defected region with respect to the original surface orientation. Reprinted with permission from [132], 
R. Nowak et al., Acta Mater. 47, 4329 (1999). © 1999, Elsevier.
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composition and morphology. Therefore, Nowak et al. [254] 
used nanoindentation to examine the HfN layers sputter depos-
ited onto silicon and alumina substrates to discover a reason 
for the reported discrepancies. Indeed, the large disagreement 
in experimental results (Table 5) raises doubts as to whether 
the hardness test in its conventional form is applicable for HfN 
fi lms. Radical steps to improve the accuracy of the examina-
tion of HfN hardness have already been undertaken, either 
by measuring the size of residual indentation impressions by 
means of the SEM technique [2] or by placing the tester itself 
inside the column of the scanning electron microscope [256].

The major advantage of the nanoindentation claimed 
for thin fi lms is that it provides results not affected by the 
substrate properties. The assumption is that very shallow 
penetration of the indenter insures that deformation of the 
substrate will not occur. However, the observations of Hain-
sworth et al. [248] and of Shiwa et al. [65], which concerned 
HFs deposited on softer substrates (SSs), raised doubts as to 
the correctness of the above thesis, and prompted us [254] 
to perform independent research concerning HfN–silicon 
and HfN–alumina systems.

Examples of the P–h curves for 300 nm thin HfN fi lms 
deposited on silicon and alumina as well as for substrate 
materials themselves are depicted in Figure 56. The nanoin-
dentation experiments revealed signifi cant differences in the 
deformation of HfN fi lms deposited on different substrates 
(compare Figs. 56(a) and 56(c)). The HfN layers grown 
on silicon (Fig. 56(c)) were harder than those prepared 
on alumina (Fig. 56(a)), refl ecting their substrate material 
behavior (compare Figs. 56(d) and 56(b)). Furthermore, 
the characteristic pop-outs appearing during the unloading 
of silicon (Fig. 56(b)), which refl ect the pressure-induced 
phase transformation [49], have similarly been observed for 
HfN deposited on a silicon wafer (Fig. 56(c)).

Furthermore, the conventional hardness value calculated 
from the depth-sensing data [254] refl ected the relationship 
between the fi lm properties and its substrate (Fig. 57). The 
difference in hardness between each of the nitride fi lms 

Figure 55. The true hardness HT and the theoretical hardness  H
,

 calcu-
lated for various orientations of Berkovich indentations in sapphire. The 
values were normalized with those obtained for the (0001)N orientation. 
Reprinted with permission from [193], R. Nowak and M. Sakai, Acta 
Metall. Mater. 42, 2879 (1994). © 1994, Elsevier.

Table 5. Hardness of HfN fi lms reported in the literature.

Hardness Deposition process Substrate Indentation load Reference

KHN 1850-2420 kgf mm–2

(18.13–23.72 GPa)
Activated reactive evaporation Tantalum, stainless, 

high-speed steel
490 mN R. Nimmagada et al., Thin 

Solid Films 63, 327 (1979)

KHN 1650±100 kgf mm–2

(16.17±0.98 GPa)
rf sputtering Stainless steel 98 mN A. Grill et al., Thin Solid 

Films 108, 173 (1983)

HV 2570 kgf mm–2

(26.95 GPa)
High-rate reactive sputtering Glass, steel 9800 mN [250, 255, 256]

HV 2800-3500 kgf mm–2

(27.44–34.3 GPa)
Reactive magnetron sputtering Glass, steel 245 mN

HV 2800-6000 kgf mm–2

(27.44–58.8 GPa)
Reactive magnetron sputtering High-speed steel 10 mN, 19 mN 

1000 mN

Figure 56. P–h curves obtained for HfN on alumina substrate (a), alu-
mina substrate alone (b), HfN on silicon substrate (c), and silicon wafer 
(d). The indentation load Pmax applied to Berkovich indenter ranged be-
tween 2 and 50 mN. Reprinted with permission from [254], R. Nowak 
et al., J. Mater. Res. 12, 64 (1997). © 1997, Materials Research Society.
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and its substrate increases rapidly for descending inden-
tation loads. This enabled Nowak et al. [254] to qualify 
the increase in HfN hardness as one that is caused by 
the decreasing contribution of the substrate. The authors 
suspected, however, that what they were witnessing for low 
loads was merely a decrease in the substrate effect, and the 
absolute hardness value of HfN was largely undetermined. 
Their conclusion runs to counter the common belief that 
the ratio of indentation depth to fi lm thickness is lower than 
1:10, allowing one to disregard the substrate effect [257].

Furthermore, the linear relationship [eqn (4.12)] 
predicted by the EPI theory was consequently confi rmed by 
the data registered for the investigated materials (Fig. 58). 
The values of true hardness are listed in Table 6, while 
the results for sapphire are illustrated in Figure 58 for the 
purposes of comparison.

Surprisingly, the diagrams suggest that the HfN fi lm 
deposited on alumina is softer than the alumina substrate 
itself, while there is almost no difference in hardness 
between the nitride fi lm and its silicon substrate (Table 6). 
This effect was attributed to indentation cracking occur-
ring in the fi lm’s volume and along the fi lm–alumina inter-
face owing to the superposition of high internal stress and 
indentation stress fi eld [253, 254].

Hardness of the HfN fi lms obtained by ultrashallow 
indentation appeared to be higher (Fig. 58(b)) than esti-
mated for moderate loads (Fig. 58(a)) and exceeded the 
hardness value of the related substrate (Table 6). However, 
even in the range of minimal indentation depths, one may 
still fi nd evidence of the substrate effect on the HfN inden-
tation data. This is caused by the mechanism introduced by 

Figure 57. Conventional hardness of HfN thin fi lms deposited in alu-
mina and silicon wafer as well as their substrates, as a function of the 
indentation load Pmax. Reprinted with permission from [254], R. Nowak 
et al., J. Mater. Res. 12, 64 (1997). © 1997, Materials Research Society.

Figure 58. The Ur–Pmax
3/2 relationship for HfN fi lms deposited on silicon 

and alumina, their substrates, and bulk sapphire crystals registered for 
moderate (a) and low (b) indentation loads. Reprinted with permis-
sion from [254], R. Nowak et al., J. Mater. Res. 12, 64 (1997). © 1997, 
 Materials Research Society.

Shiwa et al. [65]. The latter observed that TiN layers fail to 
deform plastically under an indenter, and is instead pushed 
inside the soft silicon substrate. A similar phenomenon for 
carbon coatings on steel is discussed in [248].

The EPI theory allows us to determine the hardness 
sequence of the investigated materials and comment on 
the anomalies caused by the substrate effect. Since there 
is no physical basis for defi ning conventional hardness, the 
authors did not use the models separating the coating hard-
ness from that of the fi lm–substrate composite; these are 
obtainable from the literature (see, e.g. [257]).
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4.6.2.  Surface Deformation of Ion-Implanted 
Sapphire 

Reports on radiation effects in sapphire and polycrystalline 
alumina are legion, since aluminum oxide has been considered 
for a long time a candidate for the fi rst-wall insulator in fusion 
nuclear reactors. The early research with ion-bombarded 
alumina simulated in a controlled manner the conditions of 
radiation prevailing in a reactor core (see, e.g. [258]).

Following these early studies [259, 260] on the ion-
bombarded Al2O3 crystals (see Table 7), McHargue et al. 
[261, 262] and Naramoto et al. [263, 264] reported a consid-
erable increase in hardness and fracture toughness for 
sapphire implanted with Cr, Zr, or Ti ions. Furthermore, 
Farlow et al. [265, 266] investigated sapphire implanted 
with Fe, Mn, Ni, Ti, Cr, and Ge ions. They observed a 
considerable number of defects created in the modifi ed 
area, which recombined during the implantation process. 
Such a phenomenon led to formation of a less-defected, 
crystalline near-surface region in Al2O3 bombarded by Al, 
Ga, In, Mn, Fe, Ni, Cu, Zn, Mo, and W ions with various 
energies and fl uences (see Table 7). Farlow et al. found that 
the hardness variations correlate with the degree of lattice 
residual damage [265, 266]. Finally, a defi nitive study on 
the short-range order and changes of near-neighbor bond 
length in sapphire implanted with Fe ions was conducted 
by McHargue et al. [267, 268] using a number of techniques 
for surface characterization (Table 7).

Since in the ion beam–modifi ed materials the volume 
available for experiments is quite small, the indentation 
technique appeared naturally as a method for investigating 
the mechanical properties of such solids. Consequently, 
a number of works reported low-load Vickers or Knoop 
hardness as the essential parameter characterizing modi-
fi ed surfaces [12, 261–265, 267–275]. However, a conven-
tional hardness test is frequently inadequate for estimating 
the mechanical properties of the implanted region because 
of its limited accuracy. The results of the measurements 
are strongly affected by the presence of virgin material 
located directly beneath the ion-modifi ed surface zone (the 
substrate effect).

Ever since the availability of nanoindentation testers (see 
pioneering publications by Newey et al. [11] and Pethica et 
al. [12]), they have been applied to ion-implanted metals 
[276, 277], and the fi rst depth-sensing indentation in sapphire 
implanted with Cr ions was reported in 1991 by O’Hern 
et al. [29]. The latter registered the characteristic pop-in in 
the P–h curves for virgin sapphire indented with a load as 
low as 2 mN, the singularity undetected in the case of ion-
modifi ed crystal. The similar sudden depth excursions into 

AQ1AQ1

the (1010) plane when indented with Knoop indenter (see 
Section 4.5.3.2), which did not show up after bombardment 
with Au and Ni ions, were reported in 1992 [8]. Furthermore, 
Ensinger and Nowak [30–32] observed the depth excursions 
which appear at higher (2 mN) loads for the indented (1210) 
plane of sapphire and disappear after modifi cation of the 
surface with Ta+ ions (refer to Table 7).

Since nanoindentation experiments with spherical tips 
are able to quantify the localized stress–strain behavior 
[48], Nowak et al. [278] studied the deformation of ion 
beam–modifi ed sapphire induced by a spherical indenter. 
The indentation results supported by AFM observations 
revealed the difference in deformation of the (1010) 
plane of sapphire when modifi ed by bombardment with 
highly energetic Ni2+ and Au2+ ions (E = 3 MeV; a fl uence 
2 × 1016 cm–2). The peak range of implanted species esti-
mated by TRIM code calculations equalled 1140 and 680 
nm for nickel and gold, respectively.

The registered P–h curves indicate minor differences 
in maximum penetration depth measured for virgin and 
ion-modifi ed surfaces (Fig. 59(a)). They remain smooth, 
as in the case of those reported for the prismatic plane 
of sapphire (see Figs. 23(a)–23(c)). Closer inspection of 
the indentation data, however, revealed that the hard-
ness is greatest for the Ni-implanted and minimal for the 
Au-implanted sapphire (Fig. 59(b)), as in the earlier 
Vickers and Knoop hardness tests [8]. The P–h curves 
for spherical indentations exhibited elastic response of 
virgin crystal with a distinct pop-in event registered for 
higher loads which characterized the onset of nonlinear 
behavior (Fig. 60), as previously observed by Nowak et al. 
[97, 130, 205], who attribute this effect to the location of 
the twin lamellae and the stage of the indentation. For the 
implanted Al2O3, the elastic regime was far more limited 
(Fig. 60). The onset from elastic to plastic response of the 
modifi ed crystals using the load partial-unload tests was 
determined. This approach enabled the contact pressure 
and modulus to be determined before and after the pop-
in event. In the case of the implanted material, the onset 
of plastic deformation was identifi ed from the commence-
ment of the splitting of the “loading points” (Fig. 61) using 
the analysis developed by Field and Swain (see Section 
2.1.3).

The plots of contact pressure vs. depth for the virgin, 
gold, and nickel-implanted sapphire crystals (Fig. 62) show 
the contact pressure pre- and postpop-in event for the 
(1010) plane of virgin Al2O3. The nickel-modifi ed oxide 
shows a continuous rising contact pressure to a depth of 
~200 nm reaching maximum value and, thereafter slightly 
declining with further penetration (Fig. 56(a)), while the 

Table 6. Hardness HT calculated for HfN thin fi lms according to EPI theory [195].

Material
Hardness HT
(2 mN # Pmax # 50 mN Regression coeffi cient

Hardness HT 
(2 mN # Pmax # 6 mN Regression coeffi cient

HfN on silicon 26.3 1.000 38.1 0.994
HfN on alumina 13.9 1.000 19.5 0.987
Silicon 26.6 1.000 31.7 0.999
Alumina 15.3 1.000 15.7 0.997
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data for gold-implanted Al2O3 tended to reach the value of 
the substrate (Fig. 62(b)).

Nowak et al. [278] determined variations of elastic 
modulus with the depth of penetration into the virgin and 
ion-modifi ed sapphire (Fig. 63(a)), which show a constant 
value for the virgin material and a slightly lower value for 
the Ni, and signifi cantly lower values for Au-implanted 
crystals. The elastic modulus of alumina crystal implanted 

with Au2+ ions increased uniformly with depth of penetra-
tion, whereas for the material modifi ed with Ni2+ species, 
it exhibited a gradual increase toward the value character-
istic of bulk sapphire. The modulus of the virgin material 
displayed tiny change when a pop-in occurred (Fig. 63(b)).

The authors [272] derived additional information from 
the plots of mean contact stress vs. contact strain (Fig. 64). 
They found that the virgin material exhibits linear (elastic) 
behavior to pop-in as anticipated from the elastic relation-
ship between the mean contact pressure and the strain, 

Figure 59. Indentation results for the  plane of sapphire – virgin and modifi ed with energetic Ni2+ and Au2+ ions – deformed with Berkovich tip 
(a). The higher resolution of the data near the maximum load is shown in (b). Reprinted with permission from [278], R. Nowak et al., Mater. Sci. Eng. 
A253, 167 (1998). © 1998, Elsevier.

Figure 60. P–h curves of the  plane of sapphire – virgin and modifi ed, 
and modifi ed with energetic Ni2+ and Au2+ ions – deformed by a nomi-
nally 2 lm radius spherical-tipped indenter. Reprinted with permission 
from [278], R. Nowak et al., Mater. Sci. Eng. A253, 167 (1998). © 1998, 
Elsevier.

Figure 61. Load partial–unload force–displacement data obtained with 
the nominally 2 lm radius spherical-tipped indenter for unimplanted 
sapphire and modifi ed with energetic Ni2+ and Au2+ ions. Reprinted 
with permission from [278], R. Nowak et al., Mater. Sci. Eng. A253, 167 
(1998). © 1998, Elsevier.
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while the Ni-implanted material showed two distinct slopes 
prior to the onset of yielding; a complex response was regis-
tered for Al2O3 implanted with Au ions (Fig. 64).

In order to explain the observed infl uence of the ion 
bombardment on the indentation behavior of the ion-
treated sapphire, Nowak et al. calculated the values of 
displacement per atom (TRIM code) for their partic-
ular conditions. They were up to 31 and 120 dpa, with 
the maximum occurring at a depth of 460 nm for the 
Au and 1000 nm for the Ni, respectively. Hence, the 
authors conclude that sapphire modifi ed by the nickel 
was considerably within the crystal damage dose, while 

the implantation with gold approached the amor-
phization level. In the latter case, it was expected [278] 
that small gold particles might have formed because of the 
exceptionally low solubility of Au in sapphire. Moreover, 
they suspected that the excessive number of Frenkel pairs 
induced by bombardment with very massive Au ions would 
result in the formation of numerous dislocation loops and, 
in turn, that sapphire would exhibit plastic behavior. Ni 
implantation on the other hand, as is the case with most 
implanted species, may form vacancies and interstitials 
resulting in the development of compressive stresses within 
the implanted layer [278].

Figure 62. Plots of contact pressure vs. contact depth for the implanted and virgin sapphire with the nominally 2 lm radius spherical-tipped indenter; 
registered for maximum indentation load of 50 mN (a) and 100 mN (b). Reprinted with permission from [278], R. Nowak et al., Mater. Sci. Eng. A253, 
167 (1998). © 1998, Elsevier.

Figure 63. Effective elastic modulus [eqn (2.13)] vs. depth of penetration for the unimplanted and ion-modifi ed sapphire, registered for maximum 
indentation load of 50 mN (a) and 500 mN (b). Reprinted with permission from [278], R. Nowak et al., Mater. Sci. Eng. A253, 167 (1998). © 1998, 
Elsevier.
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The present section provides an example of an alterna-
tive to the EPI-method approach to the indentation data 
recorded for crystals. The studies reviewed suggest that 
experiments with spherical indenters are able to distinguish 
the infl uence of ion implantation resulting in mild and 
more severe damage of sapphire crystal lattice. The unim-
planted aluminum oxide was characterized by a sharp pop-
in of plastic deformation at contact stresses considerably in 
excess of the steady state hardness of the material, while the 
elastic modulus was slightly reduced for the alumina crystals 
bombarded with Ni2+ ions and initially signifi cantly changed 
for aluminum oxide modifi ed with Au2+ ions.

It would be diffi cult to draw similar conclusions using 
experimental techniques other than nanoindentation since 
the implanted species reside beneath the surface, forming 
a complex layered structure on the substrate. There is a 
relatively thin modifi ed layer of near-pristine material on 
the sapphire overlaying the lattice-damaged zone, which 
requires surface-probing investigations.

4.6.3.  Indentation of the Ion Beam–Modifi ed 
Thin Films

Nanoindentation is useful in quite a new and rapidly 
expanding area, – postdeposition ion-beam treatment of thin 
fi lms and multilayer structures – which offers unexpected 
opportunities for modifying the fi lm’s physical properties, 
hitherto controlled exclusively by deposition conditions 
[279]. Furthermore, nanoindentation of ion-modifi ed thin 
fi lms is currently considered an important tool for the char-
acterization of microelectromechanical systems (MEMSs) 
[280–282].

The modifi cation of thin fi lms by ion bombardment has 
concentrated mainly on improving the tribological proper-
ties [283], the determination of the damage within the colli-
sion cascade [284], the bombardment-induced grain growth 
[285], variations in fi lm composition [286], and the str ucture 

[287]. In contrast, Nowak et al. [288–292] performed the 
nanoindentation in HfN thin fi lms as complementary 
experiments to the complex program that aimed to resolve 
the problem of postdeposition relaxation of the ultra-
high internal stresses after ion treatment of these fi lms. 
This resulted in detection of the amorphous silicon inter-
layer formed by ion treatment beneath the examined fi lm. 
Furthermore, Perry et al. [293] and Manory et al. [294, 295] 
used nanoindentation to characterize the mechanical prop-
erties of the ion beam–modifi ed TiN coatings on steel.
Detection of an Amorphous Silicon Interlayer by 
Indentation [232, 236]. The HfN fi lms sputter depos-
ited on silicon were modifi ed by bombardment with Si+ 
ions [288, 292] in a beam perpendicular to the fi lm’s surface 
(Fig. 65). The conditions of the ion-beam treatment are given in 
Figure 65. Based on the numerically determined (TRIM 
code) peaks of the distribution profi le of Si+ ions in HfN, they 
were matched by the authors in such a way as to assure col-
lision between the incident ions and HfN everywhere in the 
volume of the 600, 300, and 200 nm thin fi lms (see Fig. 65).
The nanoindentation in virgin and ion-modifi ed HfN was 
performed [292] for thicker fi lms (600 nm) to minimize the 
substrate effect. Their P–h curves, registered for maximum 
load of 20 mN (Fig. 66(a)), indicate a considerable increase 
in the indentation depth and the energy expended for 
irreversible deformation (compare the area bounded by 
P–h graphs) for the modifi ed fi lms The singularity PT in 
Figure 66(a) caused by the stress-induced phase transfor-
mation in silicon substrate, which was recorded for virgin 
HfN, is not present for ion-bombarded layer.

Hence, the authors were aware that their results were 
still affected by the deformation of the silicon substrate, 
as in the case of the TiN–Si system studied by Shiwa 
et al. [65], and conclude that the lack of singularities for 

Figure 64. Plots of mean contact pressure (stress) vs. contact strain for 
the unimplanted and ion-modifi ed sapphire. Reprinted with permission 
from [278], R. Nowak et al., Mater. Sci. Eng. A253, 167 (1998). © 1998, 
Elsevier.

Figure 65. A schematic illustration of postdeposition ion beam modi
fi cation applied to HfN thin fi lms grown on silicon wafer by reactive sput-
tering method. The distribution profi le of the implanted species was de-
signed based on computer simulation. Reprinted with permission from 
[291], R. Nowak et al., J. Appl. Phys. 85, 841 (1999). © 1999, American 
Institute of Physics.
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deformed identically before and after ion treatment up to 
a maximum load of 2 mN [292].

The apparent anomaly was clarifi ed [292] by analysis 
of the nanoindentation data for thinner (200 nm) fi lms 
(Fig. 66(c)) exhibiting identical loading parts as long as 
the deformation of the substrate beneath the fi lm does not 
occur. When the indentation depth exceeds 45 nm, the ion-
modifi ed substrate plastic fl ow starts in, while untreated 
HfN–silicon system exhibits rigid behavior (Fig. 66(c)).

The coincidence in the hardness of virgin and modi-
fi ed nitrides, observed for low loads, was attributed [292] 
to the absence of the substrate effect and the fact that the 
ion bombardment affects merely the distribution of point 
defects in HfN, while the crystallographic and dislocation 
structures remained largely unchanged. The above conclu-
sion coincided with the authors’ TEM observations, which 
detected an amorphous layer formed directly below the 
HfN fi lm (see Fig. 67). The presented study proves that HfN 
was deformed mainly elastically, while plastic deformation 
occurred within the substrate (silicon). Consequently, the 
indenter penetrated deeper in the ion-modifi ed sample with 
a softer interlayer of amorphous silicon. Hence, the authors 
[292] demonstrated that the amorphous interlayer could be 
detected using nanoindentation; even when only the top 
fi lm is examined.
Identifi cation of an Amorphous Silicon Interlayer by 
FEM Analysis. The surface deformation of the virgin and 
Au-bombarded HfN–silicon systems (the conditions of ion 
treatment are given in Fig. 68) , similar to those described in 
the previous section, was investigated by computer simula-
tion of the nanoindentation process [94]. The starting point 
for the computer experiments were nanoindentation meas-
urements for HfN thin fi lms, which exhibited distinct differ-
ences between the untreated material and the ion-modifi ed 
system (Fig. 69(a)).

Figure 66. Typical P–h curves registered under the maximum indenta-
tion load of 20 mN (a) 10 mN (b), and 2 mN (c) for virgin and ion beam–
modifi ed HfN thin fi lms deposited on silicon wafer. The point PT (a) 
denotes pressure-induced phase transformation for silicon. Reprinted 
with permission from [291], R. Nowak et al., J. Appl. Phys. 85, 841 (1999). 
© 1999, American Institute of Physics.

ion-bombarded fi lms suggests that the crystalline struc-
ture of silicon has changed after the applied treatment 
(Fig. 66(a)). The substrate effect was less pronounced 
for lower maximum loads (see Fig. 60(b)) and the pecu-
liar result has been obtained by for HfN layers, which 

Figure 67. Cross section of the sputter-deposited HfN thin fi lm after 
bombardment with Si+ ions (E = 1.1 MeV). The insets show the elec-
tron diffraction patterns which confi rm the fi ne polycrystalline nature of 
nitride fi lm (a) and amorphous structure (Si-a) of the silicon interlayer 
(b) located between HfN and crystalline silicon wafer (Si-c). Reprinted 
with permission from [291], R. Nowak et al., J. Appl. Phys. 85, 841 (1999). 
©1999, American Institute of Physics.

CH-192.indd   54CH-192.indd   54 11/24/2009   1:33:37 AM11/24/2009   1:33:37 AM



Nanoindentation Examination of Crystalline Solid Surfaces 55

To clarify the unexpected softening observed for the 
HfN–Si system after the ion bombardment (refer to 
Fig. 69(b)), Nowak et al. [94] assumed that the indenta-
tion into hard and thin fi lms deposited on an SS (case of 
the HfN–silicon system) is affected by the elastic–plastic 
response of the substrate itself (bases given in [254, 290, 
292]). Although the structure of HfN top fi lm appears to 
be unaffected by ion treatment (see the precedent section), 
the bombarding species penetrated deep into the silicon 
substrate [290], and they altered the mechanical properties 
of the material directly below the nitride layer, which could 
cause an apparent softening of the fi lm–substrate system 
(Fig. 69(b)). The cause of the postbombardment decrease in 
hardness is diffi cult to be impossible to determine, however, 
without a theoretical model allowing quantitative estima-
tion of the substrate’s infl uence on the surface deformation 
of the fi lm.

Therefore, the authors [94] performed the numerical 
simulation of the indentation of a sharp indenter into the 
HF located on the SS with the interlayer (IS – the modifi ed 
substrate with different mechanical properties) using FEM 
simulation (see Fig. 70). It was assumed that the top layer 
(HF) deforms exclusively elastically, since ion-bombarded 
nitrides possess an original structure of stoichiometric HfN 
[289–290], while sputter-deposited HfN fi lms exhibit ultra-
high hardness and yield strength [250, 296]. The SS and IS 
regions exhibit elastic–perfectly plastic behavior with a yield 

Figure 68. A schematic illustration of modifi cation of HfN–Si system 
by bombardment with Au ions and the calculated (SASAMAL simula-
tion code) distribution profi les of the implanted species. Reprinted with 
permission from [94], R. Nowak et al., Nucl. Instrum. Met, Physics Res. 
B148, 110 (1999). © 1999, Elsevier.

Figure 69. P–h curves (loading cycle) registered under Pmax = 30 mN, for 
virgin and gold-modifi ed HfN fi lms on silicon (a) and conventional hard-
ness (b) of HfN–Si systems – virgin and modifi ed with Au ions (E = 1, 
2.5, and 5 MeV). Reprinted with permission from [94], R. Nowak et al., 
Nucl. Instrum. Met. Physics Res. B148, 110 (1999). © 1999, E lsevier.

condition governed by the von Mises criterion. Moreover, 
for a specifi c part of the SS region (where the hydrostatic 
stress component exceeds 11.5 GPa), the volumetric change 
associated with pressure-induced phase transformation of 
silicon crystal [63] was modeled. The authors carried out 
several trial simulations by altering the mechanical charac-
teristics of the IS interlayer, while the values of the param-
eters for the HF and SS areas were maintained constant. 
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The triangular indenter was modeled by a cone to reduce 
the computation time.

Nowak et al. [94] achieved an agreement between the 
simulated results (see Fig. 71) and their experimental data 
(see Fig. 69) for Young’s modulus and yield strength of IS 
layer equal 135 and 4.5 GPa, respectively. These values 
appeared to be accurate for amorphous silicon. A similar 
approach was explored by Myers et al. [280], who discussed 
the hardness changes for ion-implanted nickel in terms of 
FEM modeling.

The works of this kind are being nowadays in a canter 
of interest and address the structures with increasing 
complexity. The numerical investigation of indentation 
into highly inhomogenous powder compacts by Kumar et 
al. [297], who modeled densifi cation of the material as well 
as FEM analysis of spherical indentation in alumina-based 
trilayers composites accomplished by Ha et al. [298], serves 
as interesting examples of the actual trends. However, the 
recent nanodeformation experiments require basic mechan-
ical data that sometimes cannot be achieved by conven-
tional methods. The example is the determination of HfN, 
TiN, and ZrN elastic constants using ab initio calculations 
by Nagao et al. [299].

5. SUMMARIZING REMARKS
The present review started with a criticism of the defi nition 
of hardness and the introduction of the concept of depth-
sensing indentation experiments. Subsequently, it addressed 
the issue of the available theoretical approaches to nanoin-
dentation data, and how they allow one to de termine 
Young’s modulus and conventional hardness of tested 

Figure 70. Finite element mesh used to simulate indentation in HfN–Si 
system implanted with highly Au ions. The Berkovich tip was approxi-
mated by a cone indenter which allowed us to treat the problem in two 
dimensions. Reprinted with permission from [94], R. Nowak et al., Nucl. 
Instrum. Met. Physics Res. B148, 110 (1999). © 1999, Elsevier.

Figure 71. Simulation-predicted P–h curves (a) and hardness variation 
(b) calculated for the virgin and ion-modifi ed HfN–Si systems.  Reprinted 
with permission from [94], R. Nowak et al., Nucl. Instrum. Met. Physics 
Res. B148, 110 (1999). © 1999, Elsevier.

materials (Sections 2.1 and.2). Attention has been given 
to the experiments with both sharp and spherical tips, as 
well as to such phenomena as pileup and sinking-in, which 
remain dilemmas for indentation measurements. Further, 
the numerical simulation of the indentation process using 
the FEM method received appropriate consideration since 
they enable us to make conclusions about the shape and 
size of the contact area, the pertinent parameter that is not 
available for experiments.

Nanoindentation characterization of ceramic materials, 
including new semiconductors and superconductors, was 
reviewed in Section 3, based in a large part on research by 
the present author. The fi rst part of the chapter elaborates 
two essentially different approaches based on the analysis 
of the indentation energy consumed during the penetration 
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process, namely, by Rother et al. [185] and the EPI method 
[133]. The latter appears to be followed by a number of 
examples that point out the effectiveness of the theory for 
characterizing a range of new and advanced materials as 
well as multilayer structures.

Hence, this review presents an alternative to the more 
or less accepted routine procedures concerning nanoinden-
tation results. The only exemption was the nanoindenta-
tion of bulk GaN [196], which represents enough unique 
material itself to be treated by standard methods. In due 
course, the anisotropic surface deformation of crystals was 
elaborated with the emphasis on the new models for sharp 
and spherical contact [77, 99, 193, 205, 206], which helped 
in the explanation of the anomalies and novel phenomena 
observed during the nanoindentation of sapphire. These 
approaches are completed by the recent MD simulation 
[22, 171] and quantum considerations [299].

The closing section is devoted to the nanoindentation 
of ion beam–modified solids and thin films – the subject 
being nowadays of great importance for electronics, 
MEMS, nanostructures, and smart materials (see, e.g. 
[242]). In this case, the advantages of using the FEM 
simulation of surface deformation was demonstrated by 
the example in which the presence of the amorphous 
silicon interlayer was deduced from the indentation data, 
although the discussed region was beyond direct experi-
mental access. Moreover, the mechanical characteris-
tics of this part of material (interlayer) modified by ion 
bombardment were evaluated based on FEM calculations, 
which together with similar studies by Myers et al. [280], 
Kumar et al. [297], and Ha et al. [298], represent the most 
promising result.

This review has deliberately disregarded the analysis of 
the force–distance (P–h) curves obtained by means of an 
atomic force microscope, since Capella and Dieter [300] 
offered thorough review of this particular subject in 1999. 
It completes and frequently contrasts the other available 
summaries of nanoindentation research (e.g. [301, 302]) 
that routinely base on mechanical analysis, while our work 
emphasizes a combination of the approaches that stem 
from nanomechanics and solid-state physics (atomistic 
considerations).
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CONVENTIONS AND NOTATIONS
a   contact radius
ar   radius of the residual contact impression
A   projected contact area
Ac   actual contact area
Ap   projected area of the indentation mark
B, m   fi tting parameters in Oliver–Pharr analysis
d, d1   size of the residual impression
dc    distance of the contact cross section from the 

indenter tip
D   diameter of spherical indenter
E   Young’s modulus
E1   elastic modulus of the indented solid
E2   elastic modulus of the indenter
Eeff   effective elastic modulus

1 2 3, ,E E E� � �  specifi c energies for densifi cation, shear displace-
ment, and interface formation

F   force exerted on the material by indenter facet
g   slip direction
G    the vector which defi nes the projection of the 

indenter axis onto its facet
H0   initial indentation depth
h1   elastic displacement above the contact line
h2   elastic displacement below the contact line
hc   contact depth
hE    total elastic displacement under the spherical tip 

(hE
max = ht 2 hr)

he   elastically recovered indentation depth
hf    residual indentation depth after complete 

unloading
hp   plastic depth of indentation
hr   residual indentation depth
ht, hmax   maximum indentation depth (ht = hmax)

1 2 3, ,h h h� � �    the depth components associated with densifi ca-
tion, shear, and interface formation

H   conventional hardness
HT   true hardness
H
,
    hardness based on calculated probability of acti-

vation slip and twinning systems
H/E   hardness to Young’s modulus ratio
J2   second invariant of the stress deviator
ki   shape factors for particular indenter geometry
KIC   fracture toughness
n    work hardening exponent; Norton creep-law 

exponent
n   unit normal vector of the slip plane
N   number of cracked grain boundaries
Nj   inward vector, normal to the contact
po   far-fi eld hydrostatic compression
p = pan

   mean contact pressure
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P current indentation load
Pmax maximum indentation load
R radius of the spherical indenter
S stiffness S = dP/dh
Su unloading slope
Ti(�)  probability of activating ith slip–twinnig system for 

orientation �
u1, u2, u3  mean energy densities expended for densifi cation, 

shear, and interface formation
u2max maximum positive surface displacement
UF friction energy
Ur  energy expended for the irreversible surface defor-

mation
UT total deformation energy
U1,U2,U3  deformation energies expended for densifi cation, 

shear displacement, and interface formation
V  volume of indenter tip under the contact perimeter 

(V = (1/3).a0.a
3.cot �)

a° geometrical factor denoting shape of the indenter
a5�max  the angle between force F and axis of ball indenter 

for maximum loading 
�  indenter shape coeffi cient in Oliver–Pharr analysis
� geometrical factor denoting surface defl ection
�e  geometrical factor denoting surface defl ection for 

perfectly elastic contact
�o  geometrical factor denoting surface defl ection for 

perfectly plastic contact
�H  geometrical factor denoting surface defl ection for 

elasto-plastic contact
�I  work of indentation
�  depth of an elastic penetration of a spherical 

indenter
� the angle between the slip direction g and vector –G
�ij Kronecker tensor
�c stress-dependent creep rate
�kl strain tensor
�p engineering nominal strain �p 5 �kl2�/E
� surface displacement factor

,	  geometrical factor denoting shape of the indenter 

in Chandler–Page analysis
�  the angle between the slip direction g and the axis 

of rotation of slip system
�  the angle between force F and and the vecor n 

denoting slip plane 
�i  shear stress correction factor for particular surface 

orientation
� the angle between the slip direction g and force F
� orientation of the indenter
(�,€�)  angular coordinates of the grid on s spherical 

indenter
m1 Poisson’s ratio of the tested solid
m2 Poisson’s ratio of the indenter
�  the angle between force F and and the axis of rota-

tion of slip system
 friction coeffi cient
�ij stress tensor
�’ij deviatoric tensor �’ij�=�ij – �kk�ij/3
�e effective Mises stress �e = (3/2)�’ij�’ij
�u ultimate stress
�Y yield stress

�eff the effective resolved shear stress
�i shear stress in the ith slip system
�CRi critical shear stress in the ith slip system
� semiapex angle of cone indenter
�  the angle between the intersection of the (n, g) 

plane and the indenter facet, and the vector –G
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