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Preliminaries



Contents
1. Simulating standard probability distributions.
2. Methods of simulating 'non-standard' 
distributions. Logarithmic binning.
3. Markov processes and stochastic models.
4. Monte Carlo (MC) method and Metropolis sampling.
5. Markov Chain Monte Carlo (MCMC) method; Gibbs and 
Metropolis-Hastings sampling.
6. Hamiltonian/Hybrid Monte Carlo (HMC) method.

The course is completed by doing programming assignments -
and taking the exam. We’ll see about the exam this year…



Motivation
The purpose of this course is to familiarise you with the 
fundamental (mathematical) principles and notation of 
stochastic processes and methods used to simulate them.

The goal is for you to be able to read the literature ‘fluently’, 
which means that you have sufficiently good command of the 
notation and basic principles.

Theory

Practise

After this course you should be able to implement central 
stochastic simulation methods, use them, and also derive 
variations of them. 



Exercises
The course is completed by doing the programming exercises 
(and possibly taking the exam). Grading is 0 - 5.
The grade was determined by the exercises (appr. 70 %) and the 
exam (appr. 30 %). In this Covid situation, should we just settle 
with the assignments? One assignment typically involves 
implementing an algorithm and using it to produce the 
requested results.
The programming language is  Python. This is the trending 
language in data science and machine learning. If you haven’t 
used it, this is a good place to learn it.
When you are asked to implement fundamental methods, you  
are not allowed to just use high-level library functions to do 
the job. That way you wouldn’t learn too much…



Exercises
Since the purpose is for you to learn and understand (and 
possibly even enjoy yourselves), you can openly collaborate 
doing the exercises. Still, each of you is expected to hand in 
his/her own individual ‘report’. 

A report consists of the algorithm with sufficient comments, 
so that it can be checked and results, which typically include 
some computed values and graphs. Answers to the questions 
should be argued for – with equations if needed.

There are weekly deadlines for returning the reports.



Lectures

We can go through the material in a way that makes sense. 
“Traditional” lectures are fine by me. Alternatively, everyone 
might have a look at the material and assignments first and 
we could discuss tough parts. Or a combination of these 
two… Let’s see what works best.



Literature
The course is based mainly on three books:
1. Mark A. Pinsky, Samuel Karlin: An Introduction to Stochastic 

Modeling (2011 Elsevier). (The older version, which is available in 
the library will do just as well. Curiously, one of the original authors 
was removed from the new print. The older print is: Howard M. 
Taylor, Samuel Karlin, An Introduction to Stochastic Modeling (1998 
Academic Press).)

2. Darren J. Wilkinson: Stochastic Modelling for Systems Biology, 2012 
CRC Press. (We will not cover any systems biology stuff, but merely 
use this excellent book to learn stochastic methods. The book is 
available in the CS library.)

3. Hossein Pishro-Nik: Probability, Statistics, and Random Processes. 
This book is available online along with some lecture slides and 
videos. It is by far pedagogically the best of these three books and 
references to the relevant parts in the book will be made in the lecture 
slides. Under the current lock-down circumstances it is my sincere 
hope that it will also make my lectures somewhat redundant.

https://www.probabilitycourse.com/


Literature
In addition parts of the review on MCMC methods by Radford 
M. Neal will be used.

You may manage ok just by studying the lecture notes, but 
reading the relevant parts in the books and the review is 
highly recommended.



Programming
The assignments are to be programmed in python using 
Jupyter Notebooks. Return the Notebooks in which you made 
the assignments in MyCourses. Write enough comments (text 
cells) so as to keep the assistants workload reasonable. All the 
documentation for python that you can possibly need in this 
course can be found in Jupyter Notebook’s help. Very relevant 
stuff can also be found in the following book:
Wes McKinney: Python for Data Analysis (2018 O’Reilly).
Electronic version of this book can be read in the Aalto library 
learning platform: 
https://aalto.finna.fi/Record/alli.861295
The news and instructions can be found in:
https://www.aalto.fi/en/news/safari-tech-books-online-is-
now-oreilly-safari-learning-platform

https://aalto.finna.fi/Record/alli.861295
https://www.aalto.fi/en/news/safari-tech-books-online-is-now-oreilly-safari-learning-platform


Installation of Python 
Interpreter

The free Anaconda distribution:

Windows:

Download the Anaconda installer
(https://www.anaconda.com/download/#macos) and follow the
instructions on this download page. you can start the interpreter by typing
python and exit by typing Ctrl-Z.

Mac:
Download the OS X Anaconda installer (the same place as above), which
should be named something like Anaconda3-4.1.0-MacOSX-x86_64.pkg. 
Double-click the .pkg file to run the installer. When the installer runs, it 
automatically appends the Anaconda executable path to 
your .bash_profile file. This is located at /Users/$USER/.bash_profile. To verify
everything is working, try launching IPython in the system shell (open the
Terminal application to get a command prompt): $ ipython To exit the shell, 
press Ctrl-D or type exit() and press Enter.

http://anaconda.com/downloads
https://www.anaconda.com/download/


Installation of Python 
Interpreter

The free Anaconda distribution:

GNU/Linux

Python interpreter is installed in the university computers. If 
you have  a Linux laptop, then see the detailed description in 
McKinney: Python for Data Analysis: 1.4. Installation and 
Setup.

Installing or updating Python packages can in Apple be done via 
terminals in a Linux way (commands like conda install and 
conda update). Instructions for this in all operating systems can 
be found on the Anaconda page. 



About Python
Python is an interpreted language - as opposed to languages 
where all are commands/statements are compiled and then the 
whole algorithm is executed. The interpreter runs a program 
one statement at a time. For learning and trying out things an 
interpreted language is excellent. However, one pays for this 
convenience in longer execution times.

If you want to go through some basics of python and the 
interpreter, see e.g. McKinney’s book, Chapter 2. 

In, for example, C loops run fast (small overhead). In Python 
the overhead of loops is big. Consequently, for efficiency 
everything should be vectorised (computed in matrix form) 
in Python. In this course we are interested in principle and 
don’t care about efficiency, so writing loops instead of 
matrices is fine.



Jupyter Notebook
Jupyter notebook is an easy way of running Python, make notes 
and comments etc. 

It can be started by running the comman jupyter in a terminal.

On many platforms Jupyter will open up in your default 
browser.

A good option is to launch Anaconda-Navigator and start 
Jupyter therein. Then you can easily change the  
environment you run your applications in, read the 
documentation or developer blog, etc.

Jupyter notebook files are an easy way to do and send reports 
of the assignments in this course.



Essential Python Libraries
NumPy: Numerical Python

To use:
import numpy as np

For example, NumPy operations perform complex computations on 
entire arrays without the need for Python for loops.

pandas: 

pandas provides high-level data structures and functions designed to 
make working with structured or tabular data fast, easy, and expressive.
pandas blends the high-performance, array-computing ideas of NumPy
with the flexible data manipulation capabilities of spreadsheets and 
relational databases (such as SQL).

To use:
import pandas as pd

(“as …” is optional: for example arrays would be  
numpy.array(…) or np.array(…))



Essential Python Libraries
matplotlib:

To use:
import matplotlib.pyplot as plt
Library for producing plots and other two-dimensional data visualizations.

SciPy
A collection of packages addressing a number of different standard problem
domains in scientific computing. For example, scipy.integrate, scipy.optimize.

Libraries that will be useful later, but not necessary in this 
course:

scikit-learn
A general-purpose machine learning toolkit for Python programmers.

statsmodels
A statistical analysis package.

(random:
module for random number generation)



Online Python Stuff

Tutorials, Python courses:
https://www.python-course.eu/index.php

Python for Science:
http://kestrel.nmt.edu/~raymond/software/python_notes/index.h
tml

Online Courses & Documentation 

matplotlib: https://matplotlib.org

Python Documentation:
https://docs.python.org/3.6/contents.html

IPython Documentation:
https://ipython.readthedocs.io/en/stable/



Online Python Stuff
SciPy Lecture Notes:
http://www.scipy-lectures.org/index.html

Python Data Science Handbook:
https://jakevdp.github.io/PythonDataScienceHandbook/

… and there’s a whole lot more to find by googling.


