

MEC-E1004 Principles of Naval Architecture

Lecture 1 – The design context

Learning points !

After the lecture, you will be able to:

- List factors that need to be considered when defining the design context for a ship design project
- Define the design context of your project ship

Concept Design Preliminary Design Contract Design

	_	-
	_	-

Assignment 1 - Design team & context

- Define a professional profile for each group member. Identify each members' professional strengths/skills according to study path, and describe how those will be utilized in the development of your ship project (max ¹/₂ page / person)
- Determine a schedule for your project work. Consider assignment descriptions and deadlines.
- Define the design context
 - Design mission and objectives
 - Design mission (or goal) is the overall aim of the design process
 - Design objectives = lower level measureable steps towards the goal
 - Design variables, innovations, and boundaries
 - Determine the key design characteristics/features that you aim to define, i.e. the expected outcome of your design task
 - Describe your design innovations and how these help you to reach your objectives
 - By defining your design variables you also set the boundaries of your design task. Briefly discuss the reasoning behind your design boundaries
 - Design parameters
 - Identify and describe factors affecting the performance of your design that you need to consider but that are beyond your control (e.g. fuel price, material costs, environmental conditions)
 - Design constraints
 - Identify and specify factors limiting your feasible design space (e.g. draft limitations, regulations)

Design phase

Task / design stage	Products	Objectives	Main	
Preliminary design	Hull structure, GA, Performance data, Lines drawing, Cost estimate	Good quality/price-ratio, Win the contract	dimensions and power Hull form	
Basic design	Preliminary layout of the systems Contracts of materials & equipment	Ship performance Planning the ship production	Hydrostatics	and intact tability
Detail design	Production & manufacturing drawings Material allocations	To describe all parts, details and manufacturing in the ship	length General arrangement Concept Design Preliminary Design Contract Design	

Design context – what does it involve ?

Set design goal/objectives and functional requirements to meet those

- Design variables
 - All characteristic determined by the designer
- Design parameters (not controlled by designer)
 - Environmental, economic, and operational factors affecting the performance of a design
- Design constraints
 - Regulatory, technical, physical,...
- Design boundaries
 - System level, ship level

Design goals and objectives

Defined in different ways for different types of ships

- Cargo ships, supply ships, etc.
 - Design objectives expressed in technical terms
 - Transport capacity / Payload
 - Ability to operate in the intended operating area
 - Loading/unloading time
 - ...
- Cruise ships / cruise ferries
 - A multitude of design objectives, some of which are difficult to express in pure technical terms
 - Passenger capacity, space per passenger, crew size,...
 - Aesthetics (→ compromises between form and function), passenger experience, wow factors,...
 - Cruise ship concepts are generally developed in close cooperation with the ship owner/ cruise line
 - Most cruise ships are unique
 - Even sister ships are often far from identical
- General
 - Speed
 - Fuel consumption/emissions per performed ton*NM (or e.g. TEU*NM)
 - Energy Efficiency Design Index (EEDI)
 - o Attained EEDI should be below required value, which depends on ship type and size

Design goals and objectives

Shipowner vs. shipyard perspective

- Shipowner perspective
 - What kind of ship (deadweight, speed, etc.) will provide the best economic performance (revenues vs. capital and operating costs)
 - Consideration of brand image
 - E.g. with regards to environmental friendliness
 - Alternatives to newbuilding: second hand, conversion
- Shipyard perspective
 - What kind of ship (type, size, speed, main dimensions, hull shape, propulsion system) meets the customer's economic and technical requirements as well as all relevant rules and requirements?
 - Is our offer competitive with offers from competing shipyards?
 - Will we make enough profit for our owners?

Image credit Stena Line

Image credit Meyer Werft

Design variables and boundaries

Design variable = any characteristic of a design that is determined by the designer

• Determined by the designer \rightarrow exact known value

How to limit the design task?

- What are our design variables?
 - What is included in the design task, what is not?
- Do we consider just a ship, or a wider maritime system
 - For instance: a ship can be a part of a wider transport system / supply chain (from factory to customer)
 - Port design variables
 - o Cargo storage, loading, unloading
 - Fleet design variables
 - Number of ships, ship speed, ship size
 - External resources
 - o E.g. icebreakers

Image credit Rolls-Royce

13.9.2020 8

Design parameters

- Environmental
 - Wind, waves, temperature, sea ice,...
- Economic
 - Building/material/component costs, maintenance costs, fuel price, port costs, manning costs, icebreaker costs, emission tariffs, ...
- Operational
 - Loading/unloading times (using port-based cargo handling resources), waiting time for ships to berth, waiting time for icebreaker assistance,...

Image credit NOAA

Image credit joc.com

Design uncertainty

- External uncertainty
 - Uncertainty in design parameters
 - Market fluctuations require fast adjustment
 - Knowledge and understanding of markets important
 - Global trends and challenges might impact on market demand
 - New/future technology
 - $\circ~$ Autonomous solutions, machine learning,...
 - New energy solutions (e.g. batteries, fuel cells)
 - o New materials
 - o ...
- Internal uncertainty
 - Uncertainty in applied design models, assumptions

Image credit DNVGL

Design constraints

Question: Can you mention any design constraints?

Design constraints

Regulatory constraints

- International Regulations
- Classification Society Rules
- National / Flag state requirements
- Local speed limits to limit swell, or to reduce the risk of collisions

Physical constraints

• Ship size and draft limits set by the route/ports, shipyard facilities, etc.

Technical constraints

- Technical limits of building material
- Limits of batteries
- Etc.

Design constraints

...perceived constraints must not prevent you from thinking outside the box

Image credit ABB

Image credit STX Europe / Meyer Werft

Image credit Wärtsilä

Summary

Ship Design is a complex task including the identification and determination of

- Design objectives/requirements
 - Different types of design objectives/requirements for different types of ships
 - Determination of boundaries for the design task
- Design variables
- Design parameters (economic, environmental)
 - Often subject to uncertainty
 - Markets, environmental operating conditions,...
- Design constraints (legal, physical, technical)

