

MEC-E1004 Principles of Naval Architecture

Lecture 2 – Reference ship/data

What will you learn ?

- After the lecture, you will be able to
 - List and explain the different principles of categorizing a ship
 - Categorize the ship you design in your group project
 - Explain the use of reference data
 - Apply the above to identify a suitable reference ship for your group project

Assignment 2 – Reference ship/data

- Define and discuss your ship's category/type
- Collect and analyze technical information on your ship type
 - General characteristics, requirements, challenges
 - Discuss 2 technical/scientific articles on related topics
- Present a reference ship (or ships) and related data (e.g. main dimensions, machinery, cargo/passenger capacity)

Terminology – many definitions

Vessel

• A water-born vehicle that has its own or external power production and steering

Ship

- A large water-born vehicle that has its own power production and steering
 - A ship is an vessel, but a vessel is not necessary a ship

Yacht

- A medium-size water-born vehicle used for leisure
 - Larger than a boat, smaller than a ship

Boat

• A small water-born vehicle propelled by oars, paddle, sails, or motor for travelling, transport, leisure

What is a Reference Ship ?

A ship that is similar to the ship designed

2009

- When designing a ship, reference ships are commonly used as starting point
- Reduces the level of uncertainty Important !! as a ship generally is associated with significant technical and economic risks

Image credit STX Europe / Meyer Werft

Design space coordinates

- Position coordinates are given in degrees and minutes
 - One degree = 60min
- Longitudes and latitudes are equal, but one should notice that in reality longitudes get shorter towards the poles
- 1 Nautical mile = 1 852 m
- Background
 - Circumference of earth around equator ~40000 km
 - 1 Nautical mile = one minute (1/60) of one degree of latitude (1/360)

$$\frac{40000 \text{km}}{360.60} = 1.852 \times 10^3 \text{ m}$$

Harmaja lighthouse coordinates: 60° 06' N (North), 24° 58' E (East)

Ship Speed - Definition

A ship's speed is measured in knots

- 1 knot = 1 nautical mile / per hour
- 1 nautical mile = 1 852 m
- 1 knot =1,852 km/hr \approx 0.514 m/s
- Hydrodynamic speed
 - Froude Number (dimensionless)

$$F_N = \frac{v}{\sqrt{gL}}$$

Tonnage

- Gross tonnage (GT)
 - The volume of a ship's closed spaces
- Net tonnage
 - The volume of a ship's usable spaces
- Tonnage information is public
 - No-physical measures
 - Many types of costs/tariffs (e.g. port costs, channel tariffs) are determined per GT

Weights

Lightship weight (\approx a ships own weight)

- The weight of a ship in metric tons without cargo, fuel, lubricating oil, ballast water, fresh water and feed water in tanks, consumable stores, passengers and crew and their belongings
 - Includes standard outfitting, inventory according to the List of Inventory, spare parts according to the Class Society requirements and with liquids in engine room systems

Deadweight (\approx the weight of what a ship is carrying)

- Defined as the difference between an actual displacement and the lightship weight
 - SOLAS: "Deadweight is the difference in tones between the displacement of a ship in water of a specific gravity of 1.025 at the load waterline corresponding to the assigned summer freeboard and the lightweight of the ship"
 - Expressed in either long tons or metric tons
- It is a measure of ship's ability to carry various items: cargo, stores, ballast water, provisions and crew, etc.

Displacement (= Lightship weight + Deadweight = Total ship weight)

- The weight of water displaced by this vessel at any waterline
 - The product of the volume of its underwater portion and the density of the water in which it floats
- Expressed in long/imperial tons (1 long ton \approx 1.01605 metric tons)

Flags of Convinience

- A flag of a country (flag state) under which a ship is registered in order to avoid financial charges, or restrictive regulations in the owner's country
 - Flag state allows foreign owners and maintenance of its fleet
 - Registering is quick and easy
 - Taxation is non-existing
 - Control may be inadequate

Top 11 FOCs As Percentage of World Fleet in DWT

Ship categories

Question: Can you mention any ship category/type? For what design purpose(s) is it useful to divide ship into categories?

Ship type categories - general

- Ship mission
- Applied technologies
- Operational area
- Design limiting factors

• •

Image credit Lamb, T. Ship design and Construction, SNAME 2003

Ship type categories – cargo based

Ship type categories – mission based

- Commercial / merchant ships
 - ✓ Bulk carriers, tankers, cruise ships, feeders,...
 - \checkmark Industrial ships
- Non-commercial ships
 - Navy ships, research ships, coastguard ships,...
- Special-purpose / service ships
 - Icebreakers, multi-purpose icebreakers...
- Industrial ships
- Leisure ships/ yachts/ boats

Special-purpose / **Commercial ship types** service ships **Industrial ships** Non-commercial ship types

Ship type categories – tech based

- Type of lift (how the lift is achieved)
 - Hydrostatics, hydrodynamics, lift equipment (e.g. hydrocopter)
- Applied structures and materials
 - Welded steel, bolted steel, composites, light metal alloys, wood, concrete,...
- Type of cargo handing
 - On-board crane, ...
- Type of propulsion device
 - Single/twin screw (most common), water jet, sail/kite, air propeller,...
- Type of energy source
 - Diesel engine(s) (M/S , Motor Ship)
 - Steam turbine(s) (STS, Steam Turbine Ship)
 - Gas Turbine(s) (GTS, Gas Turbine Ship)

Image credit Yachting World / C. Launay

Image credit Wärtsilä

Ship type categories – operations based

- The operational area determines the assumed worse environmental conditions (e.g. wave height, ice conditions) and sets constraints in terms of ship draft and size...
- The design conditions are determined considering ship building costs (overly conservative vs. weak), flexibility with regards to ship usage, etc.
- Examples of operational-area based ship types
 - Ocean going vessels with unlimited range of operation conditions
 - Basis for design: Winter conditions in the North Atlantic (most severe environment)
 - Ships designed for specific areas (Baltic Sea, North Sea,...)
 - Ships designed for protected seaways (max. distance to shore)
 - Inland waterway vessels (rivers and lakes)
 - $\circ~$ Limited draught (channels) and maximum height (bridges)
 - o No large waves

S IN STORM COMPILATION -MONSTER WAVES

https://www.youtube.com/ watch?v=aBM7NgMhg90

Ship type categories – limiting factors based

- Weight limited ships
 - DW ~80 % of displacement
 - Heavy cargo carriers
- Space limited ships
 - DW ~20 % of displacement
 - Light cargo ships (e.g. cruise ships), RORO ships, ROPAX ships
- Size limited ships
 - Limited by main dimensions
 - Panamax, New Panamax, Aframax, Chinamax, Suezmax ,...

Image credit maritime-connector.com/

Ship type categories – cargo handling based

- Vertical lifting
 - Lift on-Lift off = Lo-Lo
- Horizontal transport
 - Roll on- Roll off = Ro-Ro
- Pumping

Image credit Viking Line

Image credit offshore-fleet.com

Image credit Turkey SeaNews

Ship type categories – hull no. based

- Mono/single hull
- Catamaran (two hulls)
- Trimaran (three hulls)

Image credit shuttleworthdesign.com

Ship type categories – market based

- Makes it possible to determine and analyze various category/segmentspecific
 - Technical solutions
 - KPIs (e.g. crew size/number of passengers, space/passenger)
 - Trends
- Example of cruise segments
 - First class (mass market lines)
 - Premium
 - Luxury
 - Niches & exploration...

Reference ships / data

Question: Can you mention any drawbacks of using reference data/ships?

Out-of-box" thinking still allowed

Source: https://www.ntd.tv/2017/03/07/strangeness-seas-worlds-weirdest-ships/

Summary

Ships can be divided into categories/types in various ways

- Ship mission
 - Commercial, non-commercial ships, special-purpose ships,...
- Applied technology
 - Type of lift / structural solution / cargo handling / propulsion / energy source /...
- Operational area
 - Ocean going vessels, inland waterway vessels,...
- Design limiting factors
 - Weight/ space / size limited ships
- Cargo handling system
- Number of hulls

A ship's main features are largely determined by its category / type

• Categorization is useful e.g. for the selection of reference ships

