Simpson's First Rule (application on areas)

- 1. Simpson's rule can be used to integrate the area under any curve; it can be used in waterplane area and cross-sectional area integration.
- 2. Make sure that the area has even number of divisions.
- 3. For obtaining the center of area, moments are calculated about whether the aft perpendicular or the amidships. When calculating moments about amidships, +ve and -ve signs should be considered for areas forward or abaft amidships.
- 4. Some assumptions must be made to calculate the new design data such as that CB and draught do not change.

½ ordinates	Simpson's multiplier	Product for area	Lever@ AP	Product for 1 st moment	Lever@ AP	Product for 2 nd moment
\mathcal{Y}_0	1	$1y_{0}$	0h	0	0h	0
\mathcal{Y}_1	4	$4y_1$	1h	y_1h	1h	y_1h^2
<i>Y</i> ₂	2	$2y_{2}$	2h	$2y_2h$	2h	$4y_2h^2$
<i>Y</i> ₃	4	4 <i>y</i> ₃	3h	$3y_3h$	3h	$9y_3h^2$
${\mathcal Y}_4$	2	$2y_{4}$	4h	$4y_4h$	4h	$16y_4h^2$
y_5	4	4 <i>y</i> ₅	5h	$5y_5h$	5h	$25y_5h^2$
<i>Y</i> ₆	1	$1y_{6}$	6 <i>h</i>	$6y_6h$	6 <i>h</i>	$36y_6h^2$
		\sum_{A}		$\sum MA \times h$		$\sum i \times h^2$

The area according to Simpson's rule is given by $A = \frac{h}{3} (\sum_{A})$,

and the first moment of area is $=\frac{h}{3}(\sum MA \times h) = \frac{h^2}{3}\sum MA$

Then the center of area is
$$=\frac{\frac{h^2}{3}\sum MA}{\frac{h}{3}\sum_A} = h\frac{\sum MA}{\sum_A}$$

The second moment of area about aft perpendicular $I_{AP} = \frac{h}{3}\sum i \times h^2 = \frac{h^3}{3}\sum i$

Finally, using parallel axis theorem, the second moment of area about the center of floatation is obtained as follows: $I_F = I_{AP} - Ax^2$

Where, x is the distance between the aft perpendicular and the center of floatation.

Example

A ship 180 m long has half-widths of waterplane of 1, 7.5, 12, 13.5, 14, 14, 14, 13.5, 12, 7 and 0 m respectively. Calculate: (a) Waterplane area (b) Waterplane area coefficient.

• Solution Procedure:

1. A simple way to calculate the waterplane area is to use the tabular format for integration:

½ ordinates	Simpson's multiplier	Product for area	
1	1	1	
7.5	4	30	
12	2	24	
13.5	4	54	
14	2	28	
14	4	56	
14	2	28	
14	4	56	
14	2	28	
13.5	4	54	
12	2	24	
7	4	28	
0	1	0	
		$\sum_{A} = 411$	

2. The longitudinal spacing $(h) = \frac{180}{10} = 18 m$.

3. The waterplane area
$$WPA = 2 \times \frac{1}{3} \times 18 \times 411 = 4932 \ m^2$$
.

4. Finally, the waterplane area coefficient $C_W = \frac{A_W}{L \times B} = \frac{4932}{180 \times 14 \times 2} = 0.978$

Simpson's First Rule (application on volumes)

Example

The immersed cross-sectional areas of a ship 120 m long, commencing from aft, are 2, 40, 79, 100, 103, 104, 104, 103, 97, 58, 0 m^2 . Calculate: (a) volume of displacement (b) LCB.

Solution procedure:

1. The same procedure is followed in volume calculations:

Frame	CSA	Simpson's multiplier	Product for area	Lever @Fr0	Moment of volume
0	2	1	2	0	0
1	40	4	160	1	160
2	79	2	158	2	316
3	100	4	400	3	1200
4	103	2	206	4	824
5	104	4	416	5	2080
6	104	2	208	6	1248
7	103	4	412	7	2884
8	97	2	194	8	1552
9	58	4	232	9	2088
10	0	1	0	10	0
			$\sum_{V} = 2388$		$\sum MA = 12352$

2. The volume of displacement = $\frac{h}{3} \times \sum_{V} = \frac{120}{10 \times 3} \times 2388 = 9553 m^3$

3. The longitudinal center of volume (LCB) =
$$h \times \frac{\Sigma MA}{\Sigma_V} = 12 \times \frac{12352}{2388} = 62.1 m$$