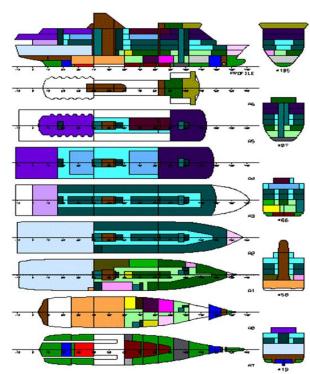


MEC-E1004 Principles of Naval Architecture

Lecture 6 – General Arrangement


Learning points !

- After the lecture, you will be able to
 - List and explain the main design criteria for a ship's General Arrangement (GA)
 - Create & draft a GA for your project ship

Assignment 6 – General Arrangement

- Define an initial general arrangement for you ship. Consider the following :
 - Various types of capacity/space/area requirements concerning for instance
 - ✓ Public spaces, accommodation, technical spaces (e.g. machinery)
 - $\checkmark\,$ Cargo capacity, tanks
 - Functional requirements concerning for instance
 - $\checkmark~$ Safety and Environmental performance
 - ✓ People and cargo flows/handling (logistics).
 - ✓ Cargo handling (e.g. deck cranes), auxiliary (e.g. fuel, waste treatment, air conditioning), and safety (e.g. evacuation) systems
 - Rules and regulations (e.g. fire zones, watertight compartments)

GA – Objectives and criteria

- The GA defines a ship's spaces and layout
- General objectives / criteria
 - To efficiently meet the ship's mission and functional requirements (e.g. efficient internal connections)
 - Structural continuity and a clean layout
 - $\checkmark\,$ For structural strength
 - $\checkmark\,$ To minimize vibration and noise
 - ✓ For a cost-efficient manufacturing process (e.g. to facilitate the use of prefabricated modules trend)
 - Safety requirements (SOLAS)
 - ✓ Fire protection, flooding mitigation, evacuation, intact/damage stability, seakeeping
 - Aesthetics
 - $\checkmark\,$ Especially important for passenger ships

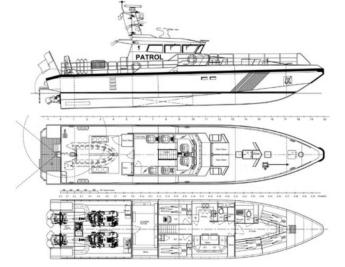
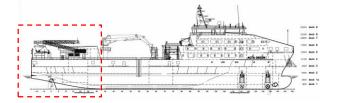


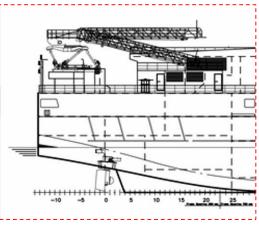
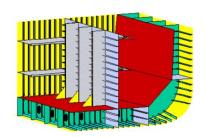
Image credit Docksta Varvet

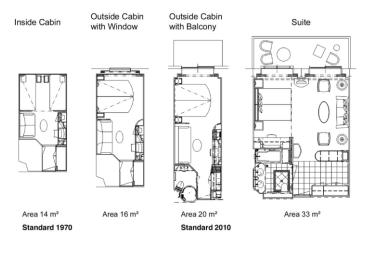

General arrangement

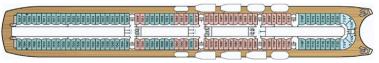
Question: What is the starting point for the determination of a ship's GA, i.e., what input do you need to get started?

GA – Key items for consideration

- Ship main dimensions, hull shape, frame spacing
 - These define the available space, strength, stability etc.
- Capacity requirements concerning
 - Cargo type and amount
 - Cargo handling capability requirements
 - Passenger capacity (no. of passengers, standard of cabins and other areas in [m2/person])
 - Crew capacity (no. of crew and their comfort standard [m2/person, regulated], windows required for crew cabins)
 - Machinery (type, size, no. of engines, type of power transmission)
 - Tanks (other than cargo) for fuel, system liquids, ballast water,...
- Rules and regulations
 - Criteria regarding watertight compartment and fire zones (e.g. number and location of watertight bulkheads and fire bulkheads on upper decks)
- Dimensions of cabin and other prefabricated modules
- Frame and web-frame spacing

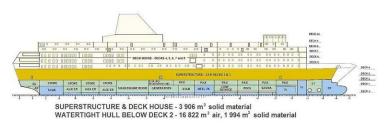



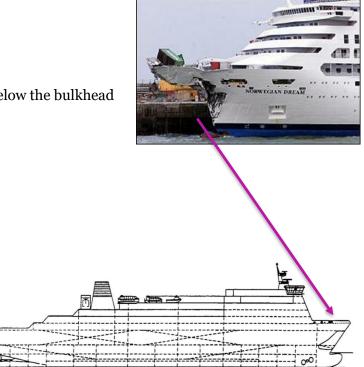

Image credit poland@sea



GA – Frame Spacing

- Frame spacing (s) varies between 500 900 mm as a function of ship length L
- Web frame spacing S = n * s; n = 3,4
- Frame spacing is the basic module length
- Frame location defined by frame number

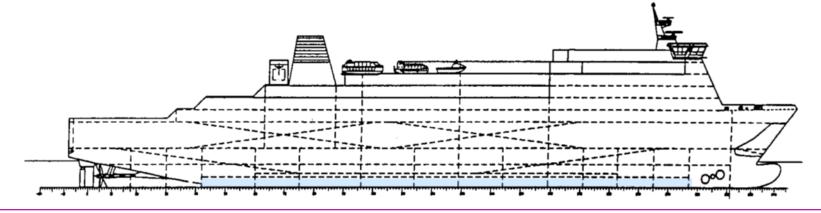

7th deck of Crystal Symphony (cruise ship)



GA – Bulkhead location

- Different types of bulkheads
 - Fire bullheads
 - Concern primarily the layout of the accommodation decks
 - Watertight bulkheads
 - Affects the lower / bulkhead decks \rightarrow Large spaces not possible below the bulkhead deck
 - Collision bulkheads
 - No spaces for humans in front of the collision bulkhead
- Regulated by SOLAS

m/v ESTONIA GENERAL ARRANGEMENT – OVERVIEW WT-INTEGRITY



GA – Double bottom hull

- Double bottom (or equivalent) compulsory on passenger ships
- Double hull (or equivalent) compulsory on tankers

GA - Determination

- Module sizes (e.g. TEU containers, cabins)
- Space/volume requirement
 - Stowage factors [m3/ton] indicates how many cubic meters of space one metric tonne of a particular type of cargo occupies in a cargo hold
 - For certain type of cargo, some reserve capacity might be allowed for or judged necessary
- Stability requirements
 - Might require the division of a cargo hold into separate sections / tanks
- Requirements for efficient loading/unloading

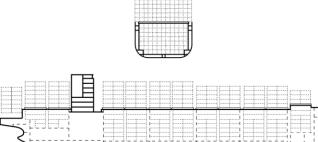
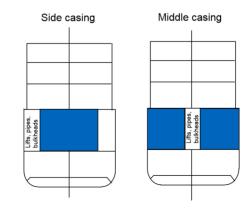
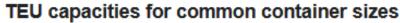



Image credit IACS



Different layouts of a RoPax ship's cargo hold

GA - Determination

Length Width Height Internal Volume TE		
ternal Volume	TEU	
2 cu ft (33.2 m ³)	1 ^[6]	
9 cu ft (67.6 m ³)	2 ^[6]	
4 cu ft (92.4 m ³)	2.4	
4 cu ft (102.1 m ³)	2.65	
48 ft (14.6 m) 8 ft (2.44 m) 8 ft 6 in (2.59 m) 3,264 cu ft (92.4 m ³) 2.4 53 ft (16.2 m) 8 ft (2.44 m) 8 ft 6 in (2.59 m) 3,604 cu ft (102.1 m ³) 2.4 High cube 0 0 0 0 0 0		
) cu ft (43 m ³)	1[2]	
Half height		
cu ft (19.3 m ³)	1[2]	
	4 cu ft (102.1 m ³)) cu ft (43 m ³)	

GA – Cargo hold design

- Different types of cargo requires different types of cargo holds and cargo handling systems
 - Break bulk
 - Cargo without standards (mainly in developing countries)
 - Unitized cargo
 - Standardized cargo units (e.g. TEU containers)
 - Heavy units
 - Massive pieces and equipment (e.g. industrial equipment, offshore structures)
 - Dry bulk cargo (irtolasti)
 - Homogeneous unpacked dry bulk cargo (e.g. minerals, coal, corn)
 - Liquid bulk cargo
 - Homogenized liquid cargo (e.g. crude oil, oil products, chemicals, LPG, LNG)
 - Rolling (or wheeled) cargo
 - Cargo on wheels (e.g. trucks, trailers)

Different types of cargo units

- Pallet
- Container
- Roll trailer
- Full or semi trailer
- Train carriage/wagon
- Barge

GA – How can we move cargo ?

- Vertical (lift on lift off, LOLO)
 - Varying loading speed
 - For break bulk 20-60 ton/hr, for containers 300-800 ton/hr, for bulk 1,000-5,000 ton/hr)
- Horizontal (roll on roll-off, RORO): cargo is transported horizontally on wheels
 - Requires ramps, lifts
 - Cargo can also be floated to/from ship
 - Cargo securing (fastening) important for safety
- Pumping: transfer of liquid cargo to and from tanks by pumping
 - The pumping capacity is often measured so that the pumping time is 24 hr
- The speed and cost of cargo handling are very important
 - Cargo handling equipment onboard or ashore ?

Image credit Liebherr

Image credit pacificmarine.net

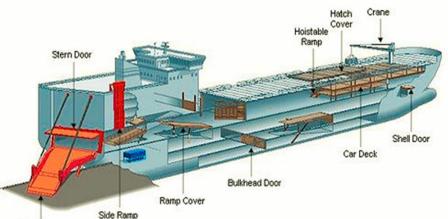
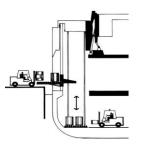
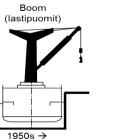


Image credit portinfo.co.uk

GA – Cargo handling equipment

- Cargo gear /Cranes
- Hatch cover
 - Different types: pontoon, rolling cover, folding cover, roll stowing conver,...
- Doors
 - Bow, side, stern doors
- Lifts and ramps
 - Stewing (turning) ramp, hoistable ramp,...
- Mooring equipment

Stern Ramp

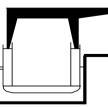
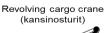


Image credit autoshippers.co.uk


Different types of cargo gears

Gantry crane (pukkinosturi)

1960s →

GA – Bow doors

- The MS Estonia accident
 - <u>https://safety4sea.com/cm-ms-estonia-sinking-one-</u> <u>of-the-deadliest-accidents-in-european-waters</u>
 - <u>https://www.youtube.com/watch?v=nJ8TASazLcA</u>
- Different types of bow doors
 - Bow visor
 - The bow visor of MS Estonia was "opened" by wave induced water pressure pushing it upwards
 - Clam-type door
 - Considered safer than a bow visor
- The outer bow door is typically not watertight
 - Behind the outer door is typically a watertight door that is often also used as ramp for cargo loading/ unloading

Image credit SVT

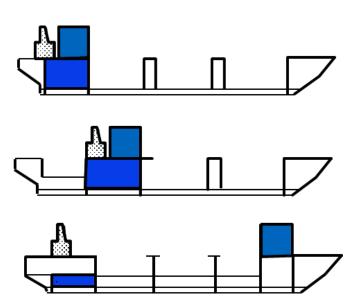
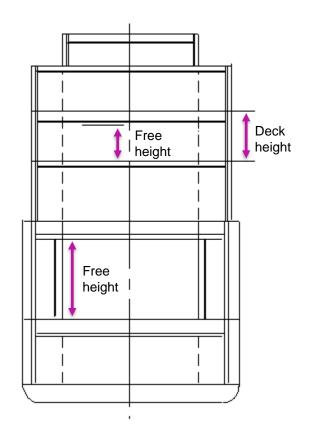
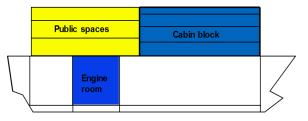


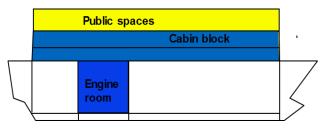
Image credit Wärtsilä


GA – Deckhouse location

- A high and narrow deckhouse is typically efficient with regards to the use of space
- Various possibilities:
 - bow, 1/2L, 3/4L, aftship
- Things to consider
 - Comfort (ship movement, noise and vibrations)
 - Visibility from the wheelhouse
 - Connection to the engine room
 - Weight distribution (trim)
 - Construction costs
 - Continuity of the steel structures
 - Use of space
- Engine casing can be located outside the deck house

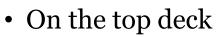
GA – Height requirements


- Free height vs. deck height
 - Deck height include structures and pipes
- RORO decks
 - The required free height is 4.3 m for lorries and 4.6 6 m for roll trailers
- Accommodation (cabin) areas
 - In cabin areas the minimum free height is 2.1 m
 - Requires approx. 2.6 m deck height
 - In public spaces deck height is typically 2,8m 3,2 m, depending on the width of the space
 - Spaces going through many decks also possible
- Deck curvature has to be considered



GA – Cabin Location (passenger ships)

- Concentration of cabins to a specific block/area
 - Easy to meet noise and vibration criteria (+)
 - The cabin area might feel claustrophobic (-)
 - Longitudinal deck height variations → structural strength challenges (-)
- Homogenous decks, distributed cabins
 - Avoidance of claustrophobic cabin areas (+)
 - Continuous decks \rightarrow High structural strength (+)
 - Can be challenging with regards to noise and vibration (-)


GA – Lifeboat location criteria (passenger ships)

- On the main deck
 - Modern standard
 - Short distance to the water (+)
 - Occupy valuable onboard space (-)

Image credit RCCL

 \bigcirc

- Not disturbed the functionality of the ship (+)
- Long distance to water (-)

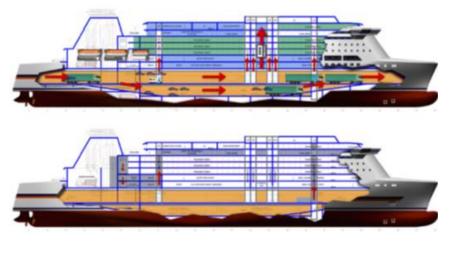
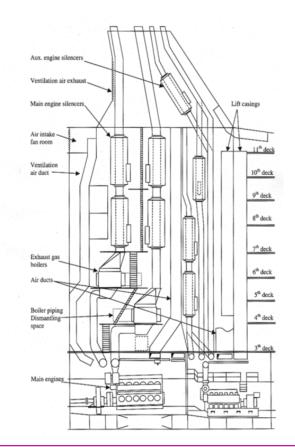


Image credit Viking Line

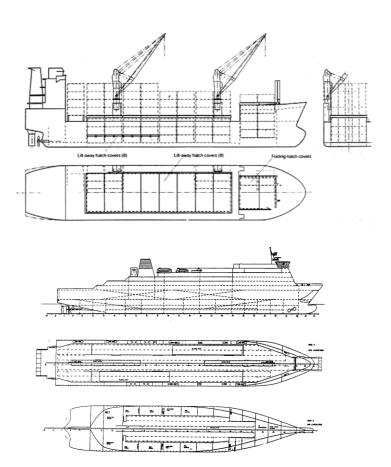
GA – Internal connections

- Examples of internal connections
 - Corridors, staircases, lift casings, evacuation routes, lounges
 - Consideration of fire and watertight doors
 - Connections for hotel services, food delivery, waste, etc.
 - Connections for energy distribution, air conditioning and piping
- Design criteria set by the ship's functional requirements
- Described by flow diagrams
- Design is based on system solutions
- All spaces on the ships have to reachable



GA – Engine room

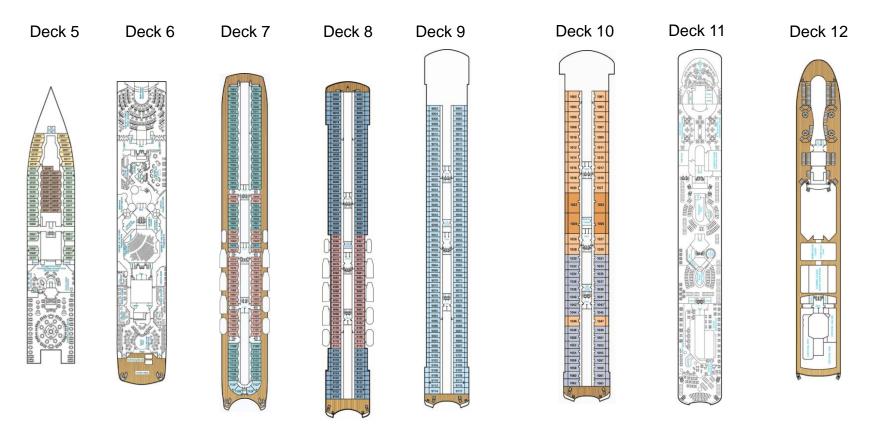
- The required amount of space depends on the main engine and propulsion system
- Factors to be considered:
 - Engine room size and location vs. payload spaces
 - Length of propeller axis should be as short as possible
 - Requirements for damage stability
 - Requirements for trim
 - Service requirements and connection to the accommodation area
- Location of the engine room
 - AMidships \rightarrow enough space for a large number of engines
 - $1/4 L \rightarrow good$ weight distribution
 - Aft end of ship \rightarrow efficient use of space
- Tanks: fuel, lubrication oil, fresh water, ballast water
 - Centralized location of fuel tanks reduces production costs (painting, outfitting), but the trim requirements have to be fulfilled
 - The thermal distortions have to be accounted for
 - Consideration of environmental protection requirements (e.g. MARPOL)



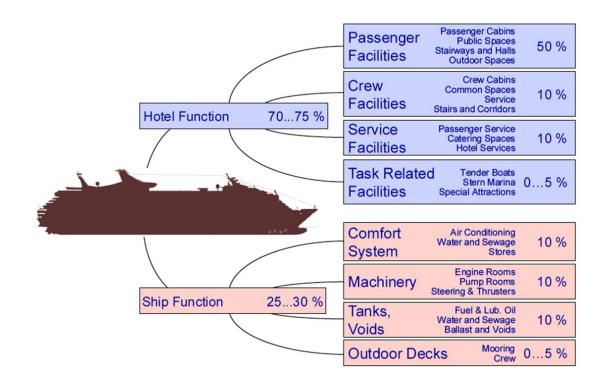
Summary

A well-designed GA is vital for a ship's functionality and safety

- Defined considering the ships functional requirements, (safety) regulations, and business model
 - In passenger ships, the GA strongly affects the passengers' onboard experience
- Structural continuity is necessary to limit stress concentrations



Bonus material



Example: GA of MS Crystal Symphony

Example: space distribution

