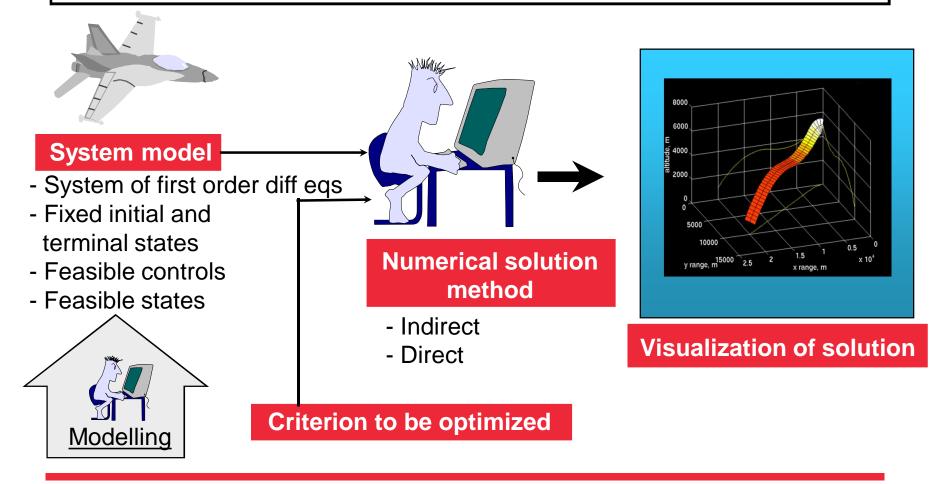
MS-E2133 Systems Analysis Laboratory II Assignment 1 Optimal flight with glider

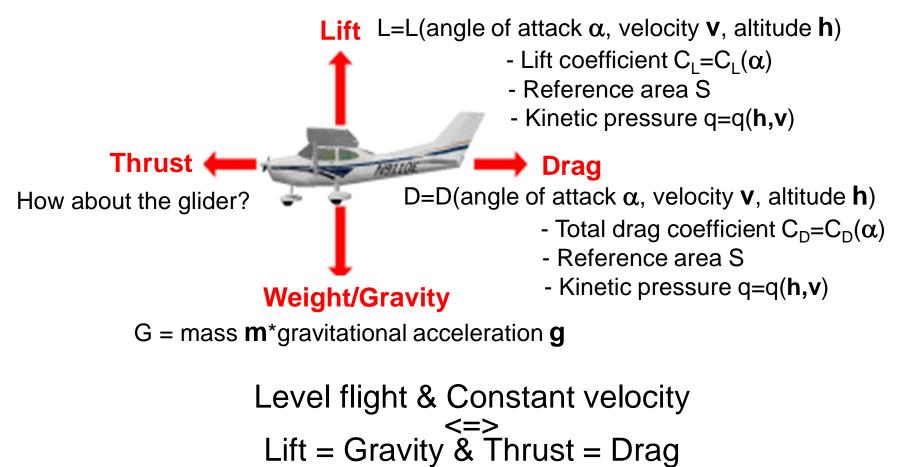
How to guide the glider in order to maximize the flight distance?

In the assignment...


- Model of the glider constructed
 - State space representation of a dynamic system state equations
- Flight of the glider simulated and optimized using the model
 - In windless condition
 - In thermal (upward airflow)
- We learn...
 - Grey box modelling
 - Formulation, analysis and numerical solution of dynamic optimization problems (optimal control problems)
 - Solution of nonlinear optimization problems using an existing optimization routine (MATLAB, Optimization Tool Box)

Dynamic optimization problem – solution process

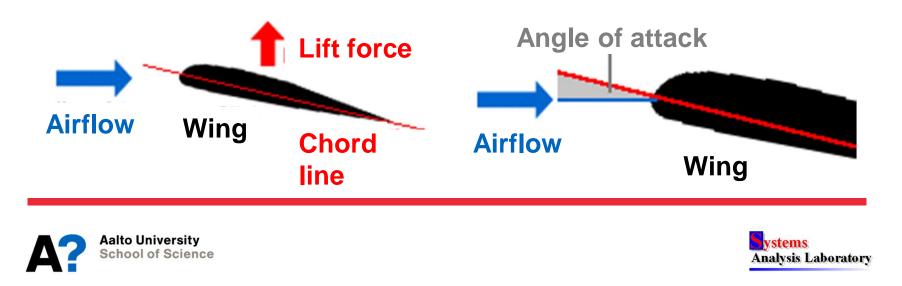
Find the best possible way to control a dynamic system



On theory of flight - forces

• Flight vehicle is affected by four forces:

On theory of flight – angle of attack

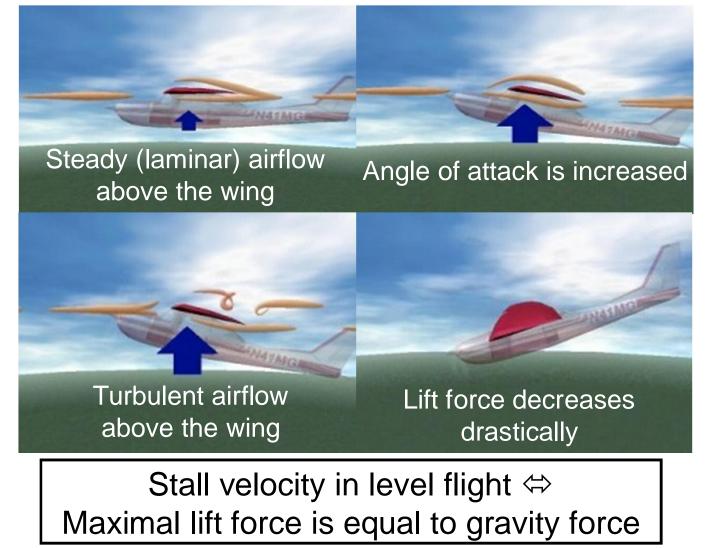

• Chord line and velocity vector of a flight vehicle not parallel

=> Lift force

- Angle of attack α = Angle between chord line and velocity vector
- Lift coefficient $C_L = C_L(\alpha)$

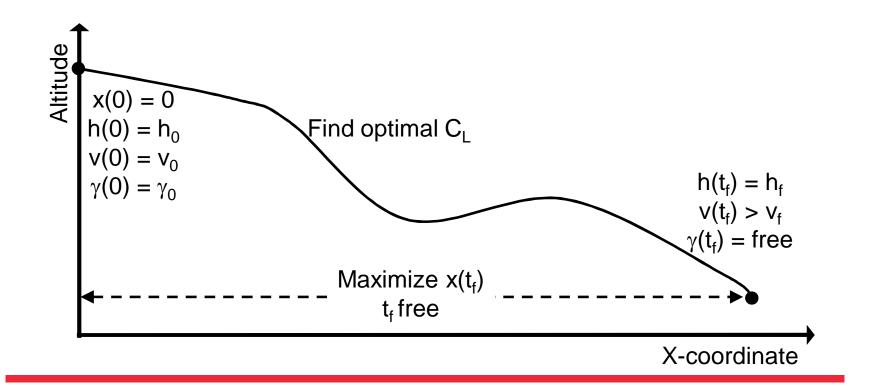
=> Lift force is controlled by angle of attack

• C_L = the control variable in the model of the glider!


Model of glider

- Movement dynamics (no rotation dynamics)
- Flight in vertical plane
- State variables: x-coordinate, altitude, velocity, flight path angle
- Control variable: lift coefficient
- Free body diagram
- *F=ma*, *v=dx/dt* etc. => state equations
- Validation of the model using simulation; Effects of parameters
- Stall?

Stall (http://vfinn.fsnordic.net/)



Aalto University School of Science

Optimization of flight

Find the control such that one glides as far along the x-coordinate as possible for each unit of lost altitude

Aalto University School of Science

Optimization problems

- "Static" optimization problem:
 - max $\Delta x I$ - Δh , multiply $\Delta t I \Delta t$ and $\Delta t \rightarrow 0$, therefore max ??
 - Simplify state equations
 - Maximize the objective function with respect to C_L
 - Verify:

Maximal distance per one altitude unit is glided when total drag coefficient C_D / lift coefficient C_L is as low as possible

- Dynamic optimization problem with the free final time
 max x(t_f) can be expressed in other forms
- Comparison of solutions

On solution of dynamic optimization problems

- Open-loop solution / open-loop optimal control
- Indirect solution methods:
 - Derive (see the material of the MS-E2148 course) and solve the necessary conditions for the optimal control
 - Multiple-point boundary value problem
 - e.g., multiple-point shooting method (see additional material)
- Direct solution methods
 - Discretization + nonlinear programming \langle
 - Comparison of the solution methods (see additional material)

0 0

0 0

Discretization methods

- Controls are discretized
 - State equations are integrated explicitly
 - "control parameterization", "direct shooting"
- Controls and states are discretized
 - Implicit integration, number of decision variables increases
 - Euler, Runge-Kutta, direct collocation (see additional material)
 - "direct transcription"
- States are discretized
 - Controls are eliminated
 - Discrete state is achievable from the previous state
 - "difference inclusion"

Pros & cons of discretization

- Derivation of necessary optimality conditions not required
 - Initial guesses of Lagrange multipliers/co-state variables not needed
 - Switching structure not needed
- Existing routines for solving nonlinear optimization problems
 - Rough initial guess is adequate (see ready-made Matlab files)
- Automated solution
- Approximate solution accuracy depends on the order of discretization and ΔT
 - Higher order => more constraints
 - Smaller $\Delta T =>$ more decision variables, more constraints
- Increasing accuracy of solution
 - Adaptive non-uniform discretization points (=> estimation of error)
 - Continuation with respect to the number of points (see ready-made Matlab files)
- Constraints satisfied only at discretization points

Solution of discrete time dynamic optimization problems (DTDOPs)

- Discretization => Nonlinear constrained optimization
- SQP (sequential quadratic programming)
 - (see the material of the MS-E2139 course)
 - Most used method for solving DTDOPs
 - NPSOL, NAG, FSQP, LANCELOT
 - MATLAB fmincon-routine (see ready-made Matlab files)
 - Scaling of decision variables!
 - Numerical gradients calculated automatically in several implementations
- Matrices are sparse in DTDOPs
 - Calculation eased in large scale problems

Analysis and comparison of the optimal solutions

- "Static" versus dynamic problem in windless condition
- Direct collocation versus multiple-point shooting
 - Reference solution
 - Co-states approximated by Lagrange multipliers
- Dynamic problem in thermal
 - Rising velocity of airflow as a function of the x-coordinate
 - State equations are modified => new state variables v_x ja v_h
 - Solution with direct collocation and SQP
 - Ready-made Matlab files

Report

- Written in a scientific, academic and professional manner
 - Sections
 - Legends for figures/tables; every figure/table must be referred to from the text
 - Substance important, not fancy layout
 - Understandable, easily readable; rational structure
- Introduction
 - Background and goal of the problem solving setting at hand
- Answers to all exercises and questions in the work instructions
 - Appropriate amount of figures dealing with simulation and optimization results
- Conclusion and discussion
 - Comments on models and methods
 - Comments on the assignment; suggestions for future improvements

