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Abstract

Two discretization schemes for optimal controt methods, collocation and the
method of differential inclusions, are described. They replace the original infinite
dimensional problein with a Anite-dimensional approximation and allow the use of
ordinary nonlinear optimization. The schemes are applied to atrcraft irajectory
optimization problems. Both methods seem to produce rapidly results that are
accurate enough for most purposes. [n addition, it was noted that unlike othec
direct methods, the methad of differential inclusions is not serionsly disturbed by
singuinr controls, '

Introduction

Since the early 60°s the basic methods to solve optimal control problenis have becu the
caleulus of variations and the Ponteyagin Maximum Principle. They provide a set of
necessary conditions that a Lrnjectory satishies i it is optimal, The conditions constitute
a noulinear multipvint boundary valug problem that s solved by miethors e mudtiple
shooting or quasilinearization, Tle methods that solve an optimal contzol problem v

satislying the necessary conditions are commonly eefereed 1o s indirect methods,
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Au iudirect method provides an acearate result bul also requires a good initial guess.
This stems mainfy from the nonlinear and wustable nature of the boundary value problein
and Newton-type solution methods. ln many cases the state trajectories may be easy to

guess, but the adjoint variables, whese physical meaning is often obscure, are not.

To overcome the diffienlties associated with the initial guess, alternative methods have
been developed. Direct methods for infinite-dimensional problems start [rom a feasible
nominal solution and develop it towards optimality by exploiting the cost function gradi-
ent. Unfortunately these methods succeed only partly in their goals. First order gradient
methods show poor converge in the neighborhood of the optimal solution, whereas second
order gradient methods again suffer from the small convergence radius. Also the treat-
ment of state inequality constraints must in practice be based on penalty functions. A
majorldrawback of the methods is the need to integrate the state and the cost function

gradient equations numerous times during the solution process,

[n many cases the accuracy of the soluiion is not as important as is the robust con-
vergence of the solution method. The convergence could be improved by replacing the
original infinite-dimensional problem with a finite-dimensional approximation, in which
the differential equation constraint is satisfied only pointwise and integration of the sys-
tem is totally avoided. Furtherinore, restricting to a finite dimension allows the use of
ordinary nonlinear optimization and its developed tools. Even state constraints may he

sitnply added to the problem constraints.

The discretization of the problem can be carried oul in a number of ways, For example,
Hargraves et al. [4] present the state trajectories with high-order patched polynomials
that satisfy the state equations in the least-squares sense. Belts and Huffman (2] discuss
ordinary trapetzoidal, Hermite-Simpson and Runge-Kutta discretization. In the following
wo deseribe two sehemes, direct collocation and a recently proposed method of dillerential
inclusions {11]. The first scheme, direct collocation, relies on implicit integration. The
sohition is sought among piecewise defined polynoinials that have to satisly the differential
equations in a finite set of rollocation points, The controls and the coefficients of the
polynomials are seleatad through nonlinear vptimization to satisfy the state equationy
and to minimize the coxt fonetion. The method has been applied to various trajectory

oplimization tasks (sve. e.p.[8]) but also to fadilitate the solving of complex pursuit-
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evasion gaines (see [7]).

The second approach, the method of ditferential inclusions, relates to set valued analysis
and differential inclusion {see, e [1]). Optimal coutrol problems and especially mini-
mum thne problems can be treated on the basis of what is called “the set of attainability”
(see, e, [5]). The set describes the states that can be reaclusd from Lhe given state within
a given time interval, I modern framework the set of attainability provides an ellicient
way to discretize the infinite-dimensional problem. The differential equation constraint
15 replaced by a requirement that each state must he attainable from the previaus state.
According to the approach, Lhe role of the controls is merely to parameterize the set of
attainable states. The controls may therefore be suppressed from the optimization process
by finding another, control independent way Lo represent the set. The method was first

applied to trajectory optimization problems in [11].

In the report we will first briefly describe both methods. We then describe two test prob-
lems thal are often encountered n aireralt trajectory optimization amd apply the methods
to them. We compare the accuracy of the resulting trajectories and the computational
effort required by the methods, Tn addition, we compire Lhe capability of the methods to
solve problems involving singunlar controls by including a dynamic pressure constraint to

the third test problem.

Direct collocation

Consider an optimal control problem of the Mayer form, hereafter referred to as P1,

min h(=(T), T)
subject to

Ht) = fle(thull))

20 = toma

E(T) = L final
(), w{t)) £ 0
Stelth) £ 0, te )

where *{t} € R". w{t) € R J iR x R* = ", C: R % B* — R* and §: R™ — N*,
Possible explicit time dependence of f() may he suppressed with a new independent
vartable and problems of Bolza Lype, i.e. with integral cost functional, can be turned into

Mayer form by adding a new stale variable. The final time T may be fixed or free.

In the method of direct collocation, the finite dimensional solution subspace is the space
of piecewise polynomials of time and given degree, defined in the interval ¢ € [0,T). We
use llermite interpolation with 3rd degree polynomials for the state variables and linear

polynomials for the control variables. The state equation must be satisfied in the middle
of each interval.

Por simplicity, consider an equidistant division of the solution interval

I“ -
tj=j~:=jAt §=0,...,m
J] Jm J 7
In the stk subinterval we seek state component trajectories of the form
() = a+ bt + o + 4P, L E oy, L) m

We hereafter drop the subscripts i and Jf for clarity. Introducing a new transformed time
variable
t=ti

AL
and diflerentiating expression (1) with respect to 7 ylelds the following system of equa-
tions:

1 000 a z(0)
6100 b _ | #HD)
11t uble] T )
0123 d (1)

The independent variableis T and { * ) means diflerentiation with respect to r. Evaluating

(1) at 7 = 1/2 and substituting the coelficients solved from the above system of equations
leads to

f1/2) = O =1

where f(7) is an abbreviation of f{o(7) u{r}] and refers to the corresponding state

(0} 1; 1) LAt

eqitation component. Note that 22 = 45 Iy the same way we obtain the expression
1 I ar & Y P

d




w3

for 2(1/2):
o . A0 —o(l) J(0) + f(1)
KU = P - T

Using the expression for #f1/2) and linear interpolation of the controls, J(1/2) may be

calculated, Define the defect at the conter of the interval j as

A, = E(1/2) ~ f(1/2),

When the values of the state variables at the ends of the interval are chosen such that the
defect is driven to zero, Lhe cubic provides an approximation of the stale component tra-
jectory without excplicit integration. ‘The controls at the time points may now be selected
[reely within their bounds to minimize the objective function, as far as the constraints
4; =0, initial and terminal constraints, and possible state constraints are satisfied. Thus
the inifinite dimensional optimal contrel problem P1 may he approximated by an ordinary
finite dimensional nonlinear optimization problem

min . {z,.,T)

{£8 81 pecraan igath ) aenrotion 3 T)

subject to

A; =0, j=1,...,m

fo = Liu
Tm = Xfinat
Slr;) €0, j=0....m
Cle,u) €0, j=0,...,m
T <

Here x; refers to state vector r at the time instant ¢;. The state constraints may be
satisifed only pointwise, since the differential eqnations are satisfied only in the middle
points of the segments. If violations occur, the time division should be made denser to

suppress Lem.

Applying direct collocation leads Lo a nonlinear oplintization problem where the munber
of the decision variables is (n 4 «}{me + 1) + | when the final time is free. The nnmber of
constraints amounts to am + {1y + Ryeey )00+ 21k 10 1 pinat, WHOTR Ruicq, thyiey Teler o
the wirmber of control and state ineguativy constesints sl i, a6l 1.0 Lo Dhe msher

ol initial and final conditions, eespectively. The nonlivearity of the collucation constrainls

depends on the state equations. Some of the state and contro! variable constraints may
be simple bounds,

Differential inclusion

Another way to discretize the problem is to require that each subsequent state can be
attained from the preceding state. Given fo, 2(lo) = zo and f,, the set of attainability
K{rq,tg,1)) is defined as the collection of the states that can be reached from z4 in [to, 4]
with admissible controls u(t), t € [ty,£,} [5]. In general, this set cannot be expressed
explicitly. To approximate it we use the set of aftainable statc rates at state x(t), which
is defined as the set of all the state rates that can be produced in a given state by varying

the controls within their allowable bounds. The set is defined as

H(e(t)) = {2(2) € B" | (1) = [{=(t),u(}), C(=z(t),u(t)) < 0}.
In the following. we drop the argument ¢ for clarity. The set H(z) is sometimes called
the hodograph of the system. The control u may be regarded as a parameter vector
that describes the hodograph. We may therefare assume that u can be eliminated from

the definition above. That is, there exist smooth functions p : A® x R* =~ R*® and

q: " x A" — R7 such that the hodograph can be expressed as
H(e) = {& € B" [ p(,z) = 0,9(£,2) £ 0}.

The existence of such functions depends on the system under consideration. In practice,

they are derived by eliminating the controls from the state equations and then using the

control constraints.

The shape of the hodograph plays a significant role when examining the type of possible
solutions. In terms of necessary conditions the pointwise maximization of the llamiltonian
with respect to controls is equal Lo maximizing the Hamillonian with respect to state

rates that are constrained to lie in the hodograph. In the space of the state rates the
Hamiltenian is defined as

H=p"%,
where postandy for the adjoint veetor, Therefore we are faced with a series of linvar

optimization problems with nonlinear constraints. If H{r) is always strictly convex. the
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