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Conversion of Optimal Control Problems
into Parameter Optimization Problems.

David G. Hull
University of Texas at Austin, Austin, Texas 78712

Several methods exist for converting optimal control problems [nto parameter optimization problemms, and they
are categorized by the unknowns of the parameter optimizatien problem, the numerical integration technique,
and the order of the integration technique, Conversion of optimal control problems into parameter optimization
problems is accomplished by replacing the control and/or state histories by control and/or state parameters and
forming the histories by inlerpolation. Four general classes of methods exist, and the unknowns in each class are
1) contrel parameters, 2) control paramelers and some state parameters, 3) conirol parameters and state para-
meters, and 4) state parameters. [n methods of classes I and 2, the state differential equations are integrated by
explicit rumerical integration, and in methods of classes 3 and 4, implicit nunerical integration Is used, Al orders
of numerical integration can be used in each method.
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Introduction the unknowns (control and/or state parameters), the type of method

STANDARD method for solving an optimal control problem used to integrate the state c{iﬁ'erent.ial equations (cxgiicit or im-

is to convert itinto a parameter optimization problemand solve plicit), and the order of the integration. First, the optimal control

it using an existing nonlinear programming code. The conversion problem and the parameter optimization or nenlinear programming

process begins by dividing the time interval of the optimal control problem are defined. Next, numerical integration is reviewed with

problem into a prescribed number of subintervals, with the times explicit and implicit integrators being discussed from the Runge~

at the ends of the subintervals being called nodes. Then, the basic Kutta approach. Finally, the four classes of conversion methods are
approach is to choose the controls andfor the states at the nodes developed.

:alled the control parameters and/or the state parameters) to be the opti tion Problems

unknowns and fo form the control and/or state histores by inter-
polation. Next, The state equations of the optimal control problem The baseline optimal control problem is to find the design param-

are integrated, and the nonlinear programming code iterates on the eter b and the control history u{t) that minimize the scalar perfor-

unknown parameters untit the parameter optimizZation problem is mance index
solved. :
There are four general classes of methods for converting the J=4(x.8) M
optimal control problem into a parameter optimization problem. subject to the differential constraint
By class, the unknown parameters are 1} the control parameters,
2) the control parameters and the state parameters at some nodes, i=gl. x.ub) 2)
3) the contro] parameters and the state parameters, and 4) the state .
sarameters, An example of a class | method is given elsewhere.! the prescribed initial conditions
Seemingly different examples of class 3 methods also are presented
in the literature,?* as is a discussion of the class 4 method.® , fo =0, o = To, @
) In methods qf f:lasscs I and %, the state differential equations are and the prescribed final conditions
integrated explicitly. As many integration steps between nodes as
needed can be used to obtain the required accuracy. Because the ty =1g, Yixp by =0, b(xp, )0 &)
state parameters are the unknowns in methods of classes 3 and 4, “ )
the equations of motion can be integrated implicitly or explicitly. The dimensions of b, 4, x, ¢, andFare I x I,mx l,nx 1, p x|,
With implicit integration, each node represents an integration step. and g x I, respectively, and the subscript s denotes a specified value,
Because the methods discussed in the Hteratire have been devel- Ine this formulation, the final time is fixed. A problem with free final
oped over aiong pedod of time and have been developed by different time can be transformed into this format by normalizing the time.
researchers,! ¥ the purpose of this paper is 1o present these meth- Then, ty, = 1, and the actual final time is one of the elements of the

ods from a single point of view. The methods differ prncipally by design parameter b,
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The conversion of this optimal control problem into a parameter
optimization problem begins with the definition of N fixed times

h=h<h<- << <y <Iy=lIf (5)
called nodes, which usually are spaced equaily. Then, functions of
time u(t) and x(r) are replaced by their values at the nodes (4, and
x;) and some form of interpolation. In general, the unknowns of
the parameter optimization problem are the design parameter & and
some combination of control parameters ) and/or state parameters
x;. If X denotes the vector of unknown parameters, the correspond-
ing parameter optimization problem is o find the value of X that

minimizes the scalar performance index

J=F(X) (6)
subject to the equality constraints

CX)y=0 )
and the inequality constraints

D(Xy=0 &

The functions F and 2 are just different names for ¢ and . The
function C contains ¥, but it also may contain equality constraints
imposed by the numerical integration of the state equations (2). The
specific forms of these functions are to be determined. In general,
the solution process is to guess values for the unknown parameters
and use a nonlinear programming code to find the values of the
parameters that minimize the performance index and satisfy the
constraints.

Before continuing, it is remarked that the optimal control problem
can be made more complicated by including a free initial point with
equality and inequality constraints, internal points with equality and
inequality constraints, integral constraints, path equality constraints,
and path inequality constraints. In all cases, conversion into a pa-
rameler optimization problem is possible. Path constraints can be
converted 1o point constraints and included in the baseline problem
by using penalty functions.! Alternatively, path constraints can be
imposed at each node. However, if a path constraint is in effect at
several consecutive nodes, it is not, in general, satisfied between the
nodes, Satisfaction can be impraved by adding more nodes in this

" area,

Numerical Integration
In this section, numerical integration is reviewed in terms of the
differential equation

i:f(f.).’) (9)

whase initial conditions ¢, x; are known. Relative to the optimal
control prablern, the design parameter & and the control history u(f)
are assumed to be known. Equation (9) is assumed to be scalar, but
the results apply to vector equations. Only fixed-step integration is
considered. Explicit integrators are derived from the Runge-Kutta
approach, whereas implicit integrators are derived in several dif-
ferent ways: Runge—-Kutla, finite difference, Newton-Coates, and
collocation. The derivations are different, but the resulting integra-
tors are the same.

The integration methods, explicit and implicit, normally used
to convert optimal control problems into parameter optimization
problems all can be derived from the Runge-Kutta approach.5—9
Here, given the time f;, the state x; = x(¥), and the step size h =
41—t thestate x; 4 | = x{# + h) can be obtained from the relation

P
x,-+|=.x,-+hZc]fj (10

i=1

where

(tH

o
fj = f(t,- +h0t,-.x,- +h Zﬁ}lfl)
1=1

HULL

In these equations, p is the number of function evaluations 1o be
made, and ¢, &, and g are constants whose values are to be defer
mined. To oblain a particular integrator, p is specified; & is assumed
to be a small quantity; and Eq. (10) is expanded in a Taylor seres
and compared with the general Taylor series expansion of x;, |, that
is,

Yot = xR+ (205 + (/30 ER + .. {‘ (12)
where
= f
Fe=f+ fid
¥ = fir+ 2fuk+ fuit + fi3 (13)

Equating corresponding terms of the two series leads 10 a sel of
equations of condition that can be solved for ¢, o, and 8. An nth-
order integrator is obtained if the two series match through terms of
order A",

For explicit integration, the value of x needed for an evaluation
aof f must be known. Hence, the constraints @) = O and 8 = G for
J = Aareadded to the equations of condition, Explicit Runge-Kutta
integrators of all orders exist. Through order four, each additional
function evaluation increases the order by one. A fifth-order integra-
tor, however, requires 6 function evaluations, and an eighth-order
integrator, 13. Explicit integration allows the integration of Eq, (9)
from the initial time to the final lime in one pass.

Although a fourth-order Runge-Kutta integrator makes only four
function evaluations per integration step and is the integrator most
often used, higher-order integrators are more efficient. The global
truncation error (GTE) is one order of the step size less than the
Iocal truncation error. For fourth-order and eighth-order integrators,
GTE; =O(h*) and GTE; = O(*). If an integration over f; — 1
=1 is required to produce a GTE = 10%, the step sizes would be
kg=10"% and hg = 10-'. Then, the fourth-order integrator would
take 100 integration steps and make 400 function evaluations,
whereas the eighth-order integrator would take 10 integration steps
and make 130 function evaluations. Hence, based on step-size con-
siderations only, the eighth-order integrator requires much less com-
puter time thar the fourth-order integrator.

For implicit integration, the value of x needed for evaluating-
[ is not known and, to perform one integration step, a predictor—
corrector approach must be used (Ref. 6;p. 248). This local iteration
approach can be replaced by a global iteration approach (Ref. 7,
p. 194) if the value of x at the end of every integration step is
guessed and then iterated upon until the correct values are obtained.
This means that ¢, ..., ty are known, and values forx, ..., xy are
available, fn and x| being the prescribed initial conditions. It also
means that the integration formula (10) is not satisfied and that the
residuals

P
Rf.—.xm—x,-—hzc,-fj, i=1L,N~-1
j=1

(14)

must be driven to zero in the iteration process.

To save function evaluations, it is desirable to have f,
F 41, xi£1) so that the last function evaluation of one integra-
tion step can be used as the first function evaluation of the next step.
To do so, the constraints ar, = Fand §,3 =¢,. A = 1, p are added
to the equations of condition.

For one function evaluation fi, the highest-order integrator that
can be obtained is the midpoint rule ( fy = £,,}, which is of second
order. If it is required that fi= f;,, only a first-order integrator
can be obtained (implicit Euler integration), However, if fio¢ is
available on one integration step, then f; is available for the next
integration step. Hence, both f; and f; , ; are available even though
only one function ¢valuation is made on each integration step. With
these two function evaluations (f; = f; and f; = fi (), the second-
order trapezoid rule is obtained.

With two function evaluations f; and f;, it is possible to develop
a fourth-order integrator, but it is not possible to have fa = fis1- If




;- aken to be Sfi+1and fi # f;, only athird-order integrator can
b,: derived. However, if fiy is computcd on one integration step,
it is available as f; on the next integration step. If three function
cvalualions (fi=fi, fr=Fnoand f5= f; ) are used, even though
only two are made on each integration step, a fourth-order integrator
can be obtained, which is called the Simpson one-third rule,

Higher-order implicit integrators are discussed elsewhere.1?

Conversion with 4, u; as Upknowns

Ia this conversion method,! the design parameter b and the control
« - .meters 4y, . .. , iy {values of the controls at the nodes) are the
anznowns, and the control history u(r) is fonmed by interpolation,
Because only the control history is kmown, the state differential
equation must be integrated explicitly.

Assume that values for the design parameter and the control pa-
rameters are given and placed in the unknown parameter vector X,

that is,
x=[" W - W] (15)
which contains [ 4+ m N elements, Because the design parameter b

ar«l the control histary u(¢) are known, the state equation (2} can be
v-xgrated from fop, Xo to £ to obtain the final state

meaning that the final state is a function only of the unknown param-
eters. Substitution of Eq. (18} into the performance index {1) and
constraints (4) reduces the optimal control problem to the parame-
ter optimization problem defined by Egs. (6-8). In other words, the
performance index function is defined as

F(X) = ¢[x,(X). 0] in
.+ equality constraint function is

C(X) = ¥lx,(X). b] {18)
and the inequality constraint function is ;

D(X) = 0{x;(X), 8] (19)

because b is contained in X.

Examples of methods for interpolating the control table uy, ...,
uy are high-order polynomials and piecewise polynomials such as
inear and cubic splines. High-order polynomial curve fits can be ex-
;zssively wavy and can affect numerical integration. Cubic splines
also can produce wavy fits. For the cubic spline to be done correctly,
the initial and final slopes should be included as optimization pa-
rameters. A linear spline or linear interpolation does not produce
wavy fits. Also, in the computation of numerical derivatives, it is
possible to save computer time by integrating onty from the node
previous to the perturbed node to the final ttne. This is not pos-
sible with the other two methods because changing one parameter
changes the entire curve fit,

Any order of integrator can be used, but considerable accuracy
is needed for computing the partial derivatives needed by nonlinear
programming. Accuracy is achieved by a tradeoff between order
and step size. Derivatives are computed by finite differences, and
fixed-step integration is employed on the notion that the difference
used in computing a derivative cancels GTE. This can be explained
by considering a nominal path and a neighboring path obtained by
perturbing one of the parameters, If fixed-step integration Is used,
the GTE along each path is roughly the same so that differencing the
final values of the states cancels the truncation error. Variable-step
integration does not control the truncation emor; it just keeps it below
acertaintolerance, Hence, if something should cause the step pattern
on the perturbed path to be substantially different from that on the
nominal path, the global truncation errors on the two paths would
be different. Then, the difference used in computing the numerical
derivative would not cancel the emror, and the derivative would be
less accurate.

I the optimization literature, this conversion method is beginning
to be called the direct shooting method becavse once the guess is
made the differential equations are integrated from fg to {y in one
pass.

=
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Conversion with &, uy, x; as Unknowns

The method defined in the preceding section is charaeterized by
a single integration over the time interval [f, ¢ ] I the time mtervaj
is very long, the accuracy of the integration is affected, and the
accuracy of the numerical derivatives for a given perturbation size
is even worse. One way to reduce this problem is to guess the value
of the state x at the end of every v intervals (N — | must be an integer
multiple of v) and to start a new integration, Then, as a part of the
optimization process, the difference of the computed and guessad
values of x at each of these nodes is driven to zero. This method
could be called direct multiple shooting.

For this method, the unknown patameter vector (15) becomes

X = [br uj Uy Xoay ey x;-v]r (20
so that there are now [ 4 mN + a{[{N — 1}/v] — 1} unknown pa-
rameters. If £ denates the computed value and

R=x-3% 21)

denotes the difference between the guessed and the computed values
of x, the equality constraint (18) becomes the following:

Vixs (X}, 8]
Rl(xv+i)
C(X) = Ra{x3,41) =0 (22)

Ryv—uyp-1(xn —v)
and contains p + n{{{N — 1)/v] — 1} elements. There is no change
in F{X) or D(X). ‘

In the limit, the value of x can be guessed at every node, with
explicit integration taking place between the nodes. If the nodes are
sufficiently close together, a single integration step can ba taken. In
this case, it is possible to use implicit integration, which has more
accuracy per function evaluation than explicit integration.

Conversion with b, u;, x; as Unknowns
For this conversion method,?™* the design parameter b, the control
parameters uy, . .., 4y, and the state parameters x, .. ., xy, are the
unknowns. Note that x; = xo from the prescribed initial conditions
{3). Again, the symbol z; denotes the vector z at the node . The
vector of unknown parameters is given by

X:[br ul oeoouly oxl e xﬁ]r (23)

and has !+ m¥ + n(¥ — 1) elements, Whereas b and «, are normal
optimization variables, n{N — 1) additional constraints must be
imposed to compute x3, ..., Xy

Implicit integration of Bq. (2) is performed by calculating the
residuals (one for each interval) and driving them to zero as a pant
of the optimization process. For the second-order midpoint rule,
which has one function evaluation at t,,, the integeation formula is
applied in the form

Ry = ppy — % — Emlles — 1) 24
where
&m =8(‘m-xm-“m-b) 25
and
LTS Xy Xpgy y 4 Be 4t
T emmm— = m———— = e— {2
lm 5 m 3+ Hm 3 {26)

For the second-order trapezoid rule, which uses values of g at £; and
t; 41, the residual is given by

%(3*'*'8“1)(1'&“ —- 1) vi)]

For the fourth-order Simpson ore-thicd rule, whichuses the function
evaluations at &, ¢, and f;, ;, the residual is

Ry = Xppy = xp —

(28)

Re=xp, — X — Hegr +48m + o)l e1 — 1)




where g, is evaluated at

it _ M Fueg
mT Ty =Ty
Xy + Xk @9
= —é—+‘ = 1@ =gy — 1)

The use of higher-order rules is discussed elsewhere. '

Note that, when u,, is required, it has been computed by linear
interpolation of the node values. In the development of 2 numerical
integrator, it is assumed that u{z) is known so that the way in which
ity is computed does not affect the order of the integrator. However,
it may affect the overall accuracy of the integration. Hence, more ac-
curate interpolation can be used, or u,, can be made an optimization
parameter. For the midpoint rule, the u,, would be the parameters
instead of the u,.

Regardless of the integration method used, the parameter opti-
mization problem is the same. The performance index and inequality
constraint function are given by

- F(X) = ¢(xn. B), D(X}) = 6(xn. b) (306
while the equality constraint function becomes
¥{xw. b)
Ry(b, up,uz, x2)
C(X) = RZ(bnuZ' 3. xZ-IJ) (31)

Ry tlb uy_ 1 uy, Xy 1,2n)

and now contains p + n(N — 1) elements,

In the optimization literature, the Simpson one-third rule is used
in collocation.? The use of any ntle is catled direct transcription, >
‘The use of higher-order rules' is called collocation. Hence, what is
being called collocation and what is being catled’direct transcription
are the same thing.

Conversion with b, x; as Unknowns
if the controls are eliminated from the optimization problem,® the
unknown parameter vector becomes
r il
=5 ]

X= [bT .r{
and contains only / + n(N¥ — 1) elements. Here, m of the n state
equations

(32)

P=g(t.x. ub) 33)

are solved for the controls, which are then eliminated from the re-
maining equations, This process results in n — mt constraints of the
form

Flt,x,%,b) =0 (349
These constraints can be imposed at the midpoint of each interval as
Ry =Flmi Xm X B) =0 (35
where -
mzft.*‘fkn' m=1’k+l’t+1’ m=n+|—~’-’x (36)
2 2 fext—

Upon convergence, the integration has been performed by the mid-
point rule as can be seen from the expression for %,. The use of
higher-order integrators has yet to be discussed in the literature.
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Relative to the parameter optimization problem., F(X) and D(X)
are the same as those for the previous method, but the equality
constraint function becomes

Vixy.b)
Ry(b, x2)

cxy=| Rlboxaxn) 37

Ry_ (b xn-1.x8)

and has p + (n — m}(N — 1} elements. Once the design and state
paramelers are known, the control parameters are obtained from
their defining equations. In the optimization literature, this method
is called differential inclusion.

To form Eq. (35), it may not be possible to eliminate the control
analytically. However, if the control must be eliminated numerically,
the attractiveness of this method is reduced.

Conclusions

In recent years, several methods have been proposed for convert-
ing optimal control problems into parameter optimization problems.
Because these methods have a lot of similarities not immediately
obvious from reading the papers, the purpose of this paper has been
to summarize these methods and to categorize them in terms of the
choice of the unknowns (control and/or state parameters), the nu-
merical integration technique (explicit or implicit) used to integrate
the state differential equation, and the order of the numerical inte-
gration technigue. Four general classes of methods exist, depending
on the selection of the unknowns: 1) control parameters, 2) control
parameters and some state parameters, 3) control parameters and
state parameters, and 4) state parameters. In the methods of the first
two classes, the state differential equations are integrated explicitly.
In the remaining two classes, the equations are integrated implic-
itly because the state parameters are available. Finally, all orders of
numerical integration can be used in each class of methods,
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