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Several methods erist Cor converting optimal control problems Info parameter optimization problems, and they
are categorized by the unknowns oC the parameter optimization problem, the numerical integration technique,
and the order oC the integration technique.. Conversion oC optimal control problems Into parameter optLmiz.aUon
problems is accomplished by replacing the control and/or slate histories by control and/or slate parameters and
fonnlng the histories by interpolation. Four general classes oC methods exist, and tbe unknowns in each class are
1) control parameters, 2) control parameters and some state parameters, 3) control parameters and state para­
meters, and 4) state parameters. In methods oC classes 1 and 2, the state differential equations are Integrated by
explicit numerical integration, and in methods oC classes 3 and 4, implicit numerical integration Ls used. All orders
oC numerical integration can be used in each method.

.' Optimization Problems
The baseiine optimal control problem is to find the design param­

eter b and the control history u(l) that minimize the scalar perfor­
mance index

The dimensions ofb, U,X, t, andB are I x i,m x lIn x I, p X I,
andq x I, respectively, and the subscript s denotes a specified value.
In this formulation, the final time is fixed. A problem with free final
time can be transformed into this format by normalizing the time.
Then, t/. = 1, and the actual tinaltime is one of the elements of the
design parameter b.

(I)

(2)

(4)

(3)

9(x/, b) '" °

;Co = xo,

"!(x/, b) =0,

the unknowns (control and/or state parameters), the type of method
used to integrate the state differential equations (explicit or im·
pUcit), and the order of the integration. First, the optimal control
problem and the parameter optimization or nonlinear programming
problem are defined. Next, numerical integration is reviewed with
explicit and implicit integrators being discussed from the Runge­
Kutta approach. Finally. the four classes of conversion methods are
developed.

subject to the differential constralnt

j; = g(t, x, U, b)

to = 0,

the prescribed initial conditions

and the prescribed final conditions

Introduction

ASTANDARD method for solving an optimal control problem
is to convert it into a parameteroptirruzatioo problem and solve

it using an existing nonlinear programming code. The conversion
process begins by dividing the time interval of the optimal control
problem into a prescribed number of subintervals, with the times
at the ends of the subintervals being called nodes. Then, the basic
approach is to choose the controls andlor the states at the nodes
:alled the control parameters andlor the state parameters) to be th~

:.inknowns and to fonn the control and/or state histories by inter­
polation. Next. ;the state equations of the optimal control problem
are integrated, and the nonlinear programnting code iterates on the
unknown parameters until the parameter optimiiation problem is
solved.

There are four general classes of methods for converting the
optimal control problem into a parameter optimization problem.
By class, the unknown parameters are 1) the control parameters,
2) the control parameters and the state parameters at some nodes,
3) the control parameters a'od the state parameters. and 4) the state
;Jarameters. An example of a class I method is given elsewhere.'
Seemingiy different examples of class 3 methods also are presented
in the literature,2-4 as is a discussion of the class 4 method.$

In methods of classes I and 2, the state differential equations are
integrated explicitly. As many integration steps between nodes as
needed can be used to obtain the required accuracy. Because the
state parameters are the unknowns in methods of classes 3 and 4.
the equations of motion can be integrated implicitly or explicitly.
With implicit integration, each node represents an integration step.

Because the methods discussed in the literature have been devel­
oped over a long period of time and have been developed by different
researchers,l-S the purpose of this paper is to present these meth~

ods from a single point of view. The methods differ principally by
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(0 = II < /2 < ... < It < ... < fN _ I < IN = If (5)

The conversion of this optimal control problem into a parameter
optimization problem begins with the definition of N fixed times

called nodes, which usually are spaced equally. Then, functions of
time U(I) and x(t) are replaced by their values at the nodes (u, and
x.d and some form of interpolation. In general. the unknowns of
the parameter optimization problem are the design parameter b and
some combination of conlrol parameters UJ; and/or state parameters
XI:. If X denotes the vector of unknown parameters, the correspond­
ing parameter optimization problem is to find the value of X that
minintizes the scalar perfonnance index

In these equations. p is the number of function evaluations to be
made, and c, a, and f3 are constants whose values are to be deter­
mined. To obtain a particular integrator. p is specified; h is assumed
to be a small quantity: and Eq. (l0) is expanded in a Taylor series
~nd compared with the genera! ~aylor series expansion of Xi +', that
IS,

(12)

(13)

i=!
i = Is + hi

X- = fit + 2!t,;x + fux2 + !.,;x

Xi+1 = Xi +iih + O/2!)x;h' + (1/3!)iih' + ...

where

(6)J = F(X)

Numerical Integration
In this section, numerical integration is reviewed in tenns of the

differential equation

whose initial conditions II, X, are known. Relative to the optimal
control problem, the design parameter b and the control history U(I)
are assumed to be known. Equation (9) is assumed to be scalar, but
the results apply to vector equations. Only fixed-step integration is
considered. Explicit integrators are derived from the Runge-Kutta
approach, whereas implicit integrators are derived in several dif­
ferent ways: Runge-Kuua, finite difference, Newton-Coates, and
collocation. The derivations are different, but the resulting integra­
tors are the same.

The integration methods, explicit and implicit, normally used
to convert optimal control problems into parameter optimization
problems all can be derived from the Runge-Kutla approach.'-9
Here, given the time ti. the state Xi :::: X(ti), and the step size h =
1;+ ,-/;, thestatexi+' = x(t; +h) can be obtained from the relation

The functions F and D are just different names for 4> and 8. The
function C contains 1{!. but it also may contain equality constraints
imposed by the numerical integration ofthe state equations (2). The
specific forms of these functions are to be determined. In general,
the solution process is to guess values for the unknown parameters
and use a nonlinear programming code to find the values of the
parameters that minimize the perfonnance index and satisfy the
constraints.

Before continuing, it is remarked that the optimal control problem
can be made more complicated by including a free initial point with
equality and inequality constraints, internal points with equality and
inequality constraints, integral constraints, path bquality constraints,
and path inequality constraints. In all cases. conversion into a pa~

rarneler optimization problem is possible. Path constraints can be
converted to point constraints and included in the baseline problem
by using penalty functions.' Alternatively, path constraints can be
imposed at each node. However. jf a path constraint is in effect at
several consecutive nodes, it is not. in general, satisfied between the

. nodes. Satisfaction can be improved by adding more nodes in this
area.

(14)i=l,N-I

Equating corresponding terms of the two series leads to a set of
equations of condition that can be solved for c, a, and fl. An nth­
order integrator is obtained if the two series match through terms of
order h".

For explicit integration, the value of x needed for an evaluation
of! must be known. Hence, the constraints "I = 0 and fJ 'A = 0 for
j ~ ). are added to the equations ofcondition. Explicit Ru~ge-Kutta
integrators of all orders exist. Through order four, each additional
function evaluation increases the order by one. Afifth-order integra­
tor, however, requires 6 function evaluations, and an eighth-order
integrator, 13. Explicit inlegration allows the integration of Eq. (9)
from the initial time to the final time in one pass.

Although a fourth*Order Runge-Kutta integrator makes only four
function evaluations per integration step and is the integrator most
often used, higher·order integrators are more efficient. The global
truncation error (GTE) is one order of the step size less than the
local truncation error. For fourth-order and eighlh-order integrators.
GTE, =O(h') and GTE, =O(h'). If an integration over If - 10

=I is required to produce a GTE =10-', the step sizes would be
h, = 10-2 and h, = 1O- t. Then, the fourth-order integrator would
take 100 integration steps and make 400 function evaluations,
whereas the eighth-order integrator would take 10 integration steps
and make 130 function evaluations. Hence, based on step¥size con­
siderations only, the eighth-order integrator requires much less com~
puter time than the fourth-order integrator.

For implicit integration, the value of x needed for evaluating·
I is not known and, to perfonn one integration step, a predictor­
corrector approach must be used (Ref. 6,-p. 248). This local iteration
approach can be replaced by a global iteration approach (Ref. 7,
p. 194) if the value of X at the end of every integration step is
guessed and then iterated upon until the correct values are obtained.
This means thau' •... , tN are known, and values for x, •...• XN are
available, t( and x( being the prescribed initial conditions. It also
means that the integration foomula (10) is not satisfied and that the
residuals

,
Rf =Xi+I-Xj -h LCj/i,

/=1

must be driven to zero in t.he iteration process,
To save function evaluations. it is desirable to have I p ::::

I(ti +', Xi + d so that the last function evaluation of one integra·
tion step can be used as the first function evaluation of the next step.
To do so, the constraints ", = I and fJPA = CA ,), = 1, P are added
to the equations of condition.

For one function evaluation fl. the highest-order integrator that
can be obtained is the midpoint rule (f, =1m)' which is of second
order. If it is required that /,::;:: Ji +I, only a first-order integrator
can be obtained (implicit Euler integration). However, if .Ji +' is
available on one integration step. then .Ji is available for the next
integration step. Hence, both Ii and f; +' are available even though
only one function evaluation is made on each integration step. With
these two function evaluations (/, ::;:: fi and h =Ji + 1), the second­
order trapezoid rule is obtained.

With two function evaluations /1 and h, it is possible lo develop
a fourth-order integrator, bur it is not possible to have /2 = Ii + I. If

(7)

(8)

(9)

(10)

C(X) = 0

D(X) 2: 0

i = !(I,x)

,
Xi+1 = X; +h Leili

j=1

subject to the equality constraints

and the inequality constraints

where
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so thalthere are now / +mN +n{[(N - 1)lv] - I) unknown pa­
rameters. If i denotes the computed value and

Conversion with b l UtlXj as Unknowns
The method defined in the preceding section is characterized by

a single integration over the time interval [to. If]. If the time interval
is very long, the accuracy of the integration is affected, and the
accuracy of the numerical derivatives for a given perturbation size
is even worse. One way to reduce this problem is to guess the value
of the state..t at the end of every v intervals (N - I must be an integer
multiple of v) and to start a new integration. Then. as a part of the
optimization process, the difference of the computed and guessed
values of x at each of these nodes is driven to zero. This method
could be called direct multiple shooting.

For this method. the u!1k.nown parame.ter vector (15) becomes

.". :... ~Jken to be Ii + I and 11 i= h. only a third~order integrator can
~ dt:rived. However. if fi + I is computed on one integration step,
it is available as Ii on the next integration step. If three function
evaluations (1, = /;. h = 1m' and fJ = /; + ,) are used. even though
only tWO are made on each integration step, a founh·order integrator
C30 be obtained. which is called the Simpson one-third rule.

Higher-order implicit integrators are discussed e1sewhere.9•10

Conversion with hI Uk as UnknOWIL5

fn this conversion method. l thedesign parameter b and the control
..:TItters Ul., ..• UN (values orthe controls at the nodes) are the

iJ=;;:,10wns, and the control history u(t) is formed by interpolation.
Because only the control history is known. the state differential
equation must be integrated explicitly.

Assume that values for the design parameter and the control pa­
rameters are given and placed in the unknown parameter vector X,
that is.

T ]TxN _, (20)

(21)

(22)

(24)

(25)

2

R =x-x

X,t+Xt+1
Xm =

>/t[Xr(X). b]

R, (x,+ ,)

C(X) = R,(x,,+.J =0

tt+tt+-l

2

denotes the difference between the guessed and the computed values
of x, the equality constraint (18) becomes the foHowing:

R{(N-1UIo'1-I(XN -y)

and contains p + n([(N - 1)lv] - I} elements. 11Iere is no change
in F(X) or D(X).

In the limit, the value of x can be guessed at every node, with
explicit integration taking place between (he nodes. If the nodes are
sufficiently close together. a single integration step can bt: taken. In
this case, it is possible to use implicit integration. which has more
accuracy per function evaluation than explicit integration.

Conversion with b, Ut,Xk as Unknowns
For this conversion method,2-4 the design parameter b, the control

paramete~s Ut, ••• , UH, and the state parameters X2, •••• XN, are the
unknowns. Note that Xl = ..to from the prescribed initial conditions
(3). Again. the symbol z, denotes the vector Z at the node f,. 11Ie
vector of unknown parameters is given by

X = (b T u[ u~ xi x~r (23)

and has / +mN +n(N -I) elements. Whereas band u, arenorma1
optimization variables, n(N - I) additional constraints must be
imposed to compute X:z. ••• , XH.

Implicit integration of Eq. (2) is performed by calculating the
residuais (one for each interval) and driving them to zero as a part
of the optimization process. For the second-order midpoint rule.
which has one function evaluation at 1m• the integration formula is
applied in the form

where

and

For the second·order trapezoid rule, which uses values of g at r, and
It + I. the residual is given by

R, = XH I ~ x, - t(g, + gH t)(tH t - t,) (21)

For the fourth-order Simpson one-third rule, which uses the function
evaluations at It I IIl'l' and l,t + I. the residual is

R, = x, + I - x, - ~ (g, + 4gm+g, + .JOH I - f,) (28)

(16)

(18)

(17)

(19)

F(X) = .p[xr(X). b]

CeX) = if/[xr(X).bJ

.. ~~ equality constraint function is

and the inequality constraint function is

DeX) = B[xr (X). b]

meaning that the final state is a function only ofthe unknown param~

eters. Substitution of Eq. (16) into the pelformance Index (I) and
constraints (4) reduces the optimal control problem to the parame­
ter optimization problem defined by Eqs. (6-8). In other words, the
performance index function is defined as

x = (b" u[ u~r (15)

which contains I + mN elements. Because the design parameter b
'cd the control history u(t) are known. the state equation (2) can be

.~grated from 10. Xo to If to obtain the final state

because b is contained in X.
Examples of methods for interpolating the control table Ut •••••

U,v are high-order polynomials and piecewise polynomials such as
linear and cubic splines. High·order polynomial curve fits can be ex·
_·.~ssively wavy and can affect numerical inlegration. Cubic splines
also can produce wavy fits. For the cubic spline to be done correctly,
the initial and final slopes should be included as optimization pa­
rameters. A linear spline or linear interpolation does not produce
wavy fits. Also, in the computation of numerical derivatives, it is
possible to save computer time by integrating only from the node
previous to the perturbed node to the final time. This is not pos­
sible with the other two methods because changing one parameter
changes the entire curve fit.

Any order of integrator can be used, but considerable accuracy
is needed for computing the partial derivatives nee<led by nonlinear
programming. Accuracy is achieved by a tradeoff between order
and step size. Derivatives are computed by finite differences, and
fixed-step integration is employed on the notion that the difference
used in computing a derivative cancels GTE. This can be explained
by considering a nominal path and a neighboring path obtained by
perturbing one of the parameters. If fixed-step integration is used,
the GTE along each path is roughly the same so that differencing the
final values of the states cancels the truncation error. Variable-step
integration does not control the truncation error; it just keeps it below
acertain tolerance. Hence, ifsometlUng should cause the step pattern
on the perturbed path to be substantially different from that on the
nominal path. the global truncation errors on the two paths would
be different. Then. the difference used in computing the numerical
derivative would not cancel the error, and the derivative would be
less accurate.

In the optimization literature, this conversion method is beginning
to be called the direct shooting method because once the guess is
made the differential equations are integrated from to to tI in one
pass.

i,
I

I



t

~l'rl!!!IlIIlIIl PUl••• ._ ,.., -- lIIIIIliIIllIIIlIll!

• J

.' HULL

(37)

if! (XN. b)

R, (b. x,)

R,(b. x,. x)C(X) ;

Conclusions
In recent years, several methods have been proposed for convert·

ing optimal control problems into parameter optimization problems.
Because these methods have a lot of similarities not immediately
obvious from reading the papers, the purpose of this paper has been
to summarize these methods and to categorize them in terms of the
choice of the unknowns (control andlor state parameters), the nu·
mencal integration technique (explicit or implicit) used to integrate
the state differential equation, and the order of the numerical inte·
gration technique. Four general classes of methods exist. depending
on the selection of the unknowns: 1) control parameters, 2) control
parameters and some state parameters, 3) control parameters and
state parameters, and 4) state parameters. In the methods of the first
two classes, the state differential equations are integrated explicitly.
In the remaining two classes, the equations are integrated implic.
illy because the state parameters are available. Finally, all orders of
numerical integration can be used in each class of methods.
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and has p + (n - m)(N - I) elements. Once the design and state
parameters are known, the control parameters are obtained from
their defining equations. In the optimization literature, this method
is called differential inclusion.

To form Eq. (35). it may not be possible to eliminate the control
analytically. However, if the control must be eliminated numerically,
the attractiveness of this method is reduced.

Relative to the parameter optimization problem. F(X) and D(X}
are the Same as those for the previous method. but the equality
constraint function becomes

(29)

(30)

(31)

(32)

(33)

(34)

X
m

= xu, -x, (36)
1.1:+1 -It2

x T,

t(XN. h)

R,(h.u,.u"x,)

R,(h, u,. u,. x,. x)

X=g(t.x.u,b)

F(t,x,x,b) ;0

Xl +Xl+1
XIII =

x = [hT

C(X) =

where gm is evaluated at

11; + It+ I Uk + U,t + I
r", = 2 u,.. = 2

Xl + X.l:+ 1 I
xm = 2 -i(g,+,-g,)(t,+,-t,)

The use of higher-order rules is discussed elsewhere. lo

Note that, when u'" is required, it has been computed by linear
interpolation of the node values. In the development of a numerical
integrator, it is assumed that U(I) is known so that the way in which
"m is computed does not affect the order of the integrator. However,
it may affect the overall accuracy of the integration. Hence. more ac­
curate interpolation can be used, or Um can be made an optimization
parameter. For the midpoint rule, the UIl'l would be the parameters
instead of lhe UI;.

Regardless of the integration method used, the parameter opti·
mization problem is the same. The performance index and inequality
constraint function are given by

while the equality constraint function becomes

and contains only I + n(N - 1) elements. Here, m of the n state
equations

and now contains p + n (N - I) elements.
In the optimization literature, the Simpson one· third rule is used

in collocation.2 The use of any rule is caned direct transcription.).4
The use of higher·order rules iO is called collocation. Hence, what is
being called collocation and what is being called'direct transcription
are the same thing.

Conversion with h, x, as Unknowns
If the controls are eliminated from the optimization problem,5 the

unknown parameter vector becomes

are solved for the controls, which are !.hen eliminated from the re·
mairung equations. This process results in n - m constraints of the
form

where

These constraints can be imposed at the midpoint of each interval as

R, = F(tm. Xm, Xm. b) = 0 (35)

Upon convergence, the integration has been performed by the mid·
point rule as can be seen from the expression for xm • The use of
higher-order integrators has yet to be discussed in the literature.
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