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Constants, inputs, outputs and disturbances

e (Constants

— System parameters

* constants originating from the system that cannot be changed,
e.g., acceleration caused by gravity

— Design parameters

* can be varied in practice but constans in the model, e.g,, mass of
an object

e Variables

— Outputs y(t) = [y1(£), .., ¥y (t)]T
— Inputs/controls u(t) = [uy(t), ..., um(£)]"
e can be selected
— Disturbances w(t) = [wy(t), ..., w,.()]T
e cannot be selected
* In dynamic systems, y(t) depends not only on u(t) and
w(t) but also on all u(s) and w(s), s <t

— The system has a memory



State

* The output of the dynamic system y(t) is affected by u(s) and
w(s),s<t
— Would be cumbersome to store every u(s) and w(s)
e State x(t) of the system (or a model) is an information which
in addition to u(s) and w(s) (s € [t, t]) enables the
computation of y(r) for some 7 > ¢

* In practice the state plays an important role in simulation: it is
information for each time step
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Input-output and state space models

General (SISO) input-output model of nth order in continuous
time

g (Y, ., y(©, M@, .. u®) = 0,0 2 m,
where (a) denotes ath derivative and g is a nonlinear function

Transferred to a first order differential equation system by setting
x;(t) =y V(@),i=1,..,n (is not always possible)
State space model

x(t) =f (x(t),u(t)) State equation

y(t) = h(x(t),u(t)) Output equation

where dimx(t) = n, dimu(t) = m, dimy(t) = p
x(t) 1s the state of the model, n is the order of the model



Linear input-output and state space models

* General linear (SISO) input-output model of nth order in
continuous time

@y ™) + ap_y D) + -+ y(£) = by u™) O+ +bou(),
where n = m' and (a) denotes ath derivative

* Transferred to a first order differential equation by setting
x;(t) =y D(t),i=1,..,nand by doing additional tricks if
needed

* Linear state space model
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

- dimA=nxn (system matrix)
- dimB =nXxm  (control matrix)
- dimC=pXxn (ouput matrix)

- dimD =pxm  (feedforward matrix)



Laplace transform

* Laplace transform ot function f(¢t) (f(t) = 0, when t < 0)
is F(s) = L{F O} = [ e StF(D)de

where s is a complex variable ("frequency”)

Function L transform
f'(t) sF(s) — f(0)

£(0) $2F(s) = s£(0) — '(0)

* With dynamic systems, it is usually assumed that
F(0) = £(0) = £(0) = f"(0) = - = 0

— ”initial state of a linearized model = equilibrium point”
=> deviation of the state from the equilibrium = 0

e Remember: fM(t) = s™F(s)



Transfer function

General linear input-output model in continous time
a,y ™) + -+ y(t) = b,u™ (t)+...+bou(t),n > m
Applying Laplace transform on both sides =
bmSm + bm_lsm_l + -+ bO
= U(s)
a,s"+a,_;s" 1+ +1
The quotient 1s called the transfer function G(s) of the

Y(s) =

system
Model type of a dynamic system
Algebraic equation (cf. differential equation)

Complex valued Function of a complex variable
— Frequency domain (Laplace domain) model (cf. time-domain)
Roots of the polynomial of the denominator in the

transfer function are called the poles of the transfer
function



Transfer function corresponding to a linear
state space model

Linear state space model
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
Using Laplace transform provides
G(s)=C(sI—A)B+D

Algebraic modifications...

(...)
(...det(s] — A) ...)

The poles of the transfer function correspond to the

G(s) =

eigenvalues of the system matrix 4

Simulink: Transfer Fcn  y _1 1
a8+




Equilibrium state and point

Let u(t) = uy (constant); where will x(t) and y(t)
converge or will they?
Equilibrium state xq: f(xq,u,) = 0

— one, many, or no solutions

(xo,Ug) 1s an equilibrium point

— often desirable to get the system into an equilibrium point
The output of the equilibrium point 1s yy = h(x, ug)
In a linear system

— origin (0, 0) 1s always an equilibrium point of the system

— 1f (xg,Uup) 1s an equilibrium point, also (kxg, kugy) is with Vk €
R

— 1f A 1s invertible, for every control uq there is exactly one
equilibrium state x, = —A~'Bu,



Linearization

 (Consider a nonlinear system (ct. slide ”Input-output and state space
models”) 10 an equilibrium (xg, up) and deviances Ax(t) =

x(t) — xo, Ay(t) = y(t) — yo and Au(t) = u(t) —u,
e [t holds that

d
an(t) ~ A'Ax(t) + B'Au(t)

Ay(t) = C'Ax(t) + D'Au(t)

where

o O o _0of ,_oh ok
S ox’T ou’ T ox’T  odu

evaluated at (xg, ug)

* Linearized model is utilized when examining, e.g., stability
or controllability of a nonlinear system



About stability

Is related to the equilibrium point (xg, ug).

If an equilibrium point is reached, the system will stay in the point
regardless of its nature

() Asymptotically stable % lllllll
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Local I or IT — Stability behavior I or II only when the state is near
the equilibrium point

* Global I or II — Stability behavior I or II independent of the

current state




About the stability of linear systems 1/2

* Consider a linear dynamic system
x(t) = Ax(t) + Bu(t), s.t., dim x = n and assume a constant
control uy and initial state x(0)

* 'The solution of the system i1s

x1 () = a;eMt + azet2t + -+ apetnt + kg
x2(t) = Bret + Bre’2t + o+ Bretnt + k,

xn(t) = vieMt + v et + oty etnt + &

where 44, ..., 4, are the eigenvalues of the system matrix 4,
Le.,det(Al —A) =0

o et = gReMt(co5(Im(N) t) + i sin(Im(R) t))



About the stability of linear systems 2/2

* Real parts of the eigenvalues of the system matrix A determine the
behavior of the solution and consequently the nature of the
equilibrium point (ug, xo = —A™*Buy)

— AllRe(1) < 0 = Asymptotically stable
— Atleast one Re(1) > 0 = Unstable
— AllRe(1) < 0 and

e only unique solutions with Re(1) = 0 > Stable
* non-unique solutions with Re(1) = 0 > Unstable (t cos(At))

* In alinear case, stability is an attribute of the whole system
(global), and it does not depend on the values of the states or
controls

— In linear systems, the nature of all the equilibrium points (infinite
amount) 1s same

* In a nonlinear case, stability/unstability/asymptotical stability
can be only determined locally for an equilibrium point



Stability of a transfer function

* Applying the Laplace transform for a linear state space
model yields

G(s)=C(sI—A)~'B+D,

i.e., the poles of the transfer function (tf) correspond to
the eigenvalues of system matrix 4

* The input-output model provided by the tf G(s) 1s

— Asymptotically stable, if the roots of the denominator in the
tf, 1.e., the poles of the tf, lie strictly on the left half of the
complex plane

— Stable, if 1) the poles lie on the left half of the complex plane,
and 2) some of the poles are on the imaginary axis and they
are unique

— Unstable, if even one of the poles lie on the right half of the
complex plane

— Unstable, if there are non-unique poles on the imaginary axis



Definition of controllability

System 1s controllable

&
There exists a control which can drive the system from an

arbitrary initial state to any state within a finite time
interval

* If a system (open loop) is controllable, a state teedback
controller can be constructed and the poles of the
resulting feedback system can be selected arbitrarily, e.g,,
such that the feedback system 1s asymptotically stable



Testing of controllability

Ditticult for nonlinear systems (linearization!)

Linear systems: Time-invariant continuous time linear

system
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

is controllable if and only if an n X nm matrix
0. = [B|AB|A?B| ...|A""1B]

has a rank of n (n = dimx, m = dimu)
Rank = number of lineatly independent rows/columns
Matrix Q. 1s so called controllability matrix

Holds also for discrete time systems



Interpretation of controllability

Consider a discrete time system
x(t+1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Assume that 1nitial state X 1s given

The state at time n (n = order of the system) is
n-—1

u(n —1)
x(n) = A"xy + 2 AYRTIBy (k) = Axg + Q. : ‘
k=0

u(0)
If the rank of the controllability matrix 1s n, then every vector
x of R™ can be represented in a form

u(n—1)
u(.O) ] ,

L.e., with a suitable choice of controls, the system can be driven
from its initial state X to a desired state x(n)

x = A"xy + Q.

The solution (1.e., controls) is not unique, if there is more than
one control



