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Constants, inputs, outputs and disturbances

• Constants

– System parameters

• constants originating from the system that cannot be changed, 
e.g., acceleration caused by gravity

– Design parameters

• can be varied in practice but constans in the model, e.g., mass of  
an object

• Variables

– Outputs 𝑦 𝑡 = 𝑦1 𝑡 , … , 𝑦𝑝 𝑡
𝑇

– Inputs/controls 𝑢 𝑡 = 𝑢1 𝑡 , … , 𝑢𝑚 𝑡 𝑇

• can be selected

– Disturbances 𝑤 𝑡 = 𝑤1 𝑡 , … , 𝑤𝑟 𝑡 𝑇

• cannot be selected

• In dynamic systems, 𝑦 𝑡 depends not only on 𝑢 𝑡 and 
𝑤 𝑡 but also on all 𝑢 𝑠 and 𝑤 𝑠 , 𝑠 < 𝑡

– The system has a memory



State

• The output of  the dynamic system 𝑦 𝑡 is affected by 𝑢 𝑠 and 

𝑤 𝑠 , 𝑠 < 𝑡

– Would be cumbersome to store every 𝑢 𝑠 and 𝑤 𝑠

• State 𝑥 𝑡 of  the system (or a model) is an information which

in addition to 𝑢 𝑠 and 𝑤 𝑠 (𝑠 ∈ 𝑡, 𝜏 ) enables the 

computation of  𝑦 𝜏 for some 𝜏 > 𝑡

• In practice the state plays an important role in simulation: it is 

information for each time step
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Input-output and state space models

• General (SISO) input-output model of  𝑛th order in continuous
time

𝑔 𝑦 𝑛 𝑡 , 𝑦 𝑛−1 𝑡 , … , 𝑦 𝑡 , 𝑢 𝑚′
𝑡 , … , 𝑢 𝑡 = 0, 𝑛 ≥ 𝑚′,

where 𝑎 denotes 𝑎th derivative and 𝑔 is a nonlinear function

• Transferred to a first order differential equation system by setting
𝑥𝑖 𝑡 ≔ 𝑦 𝑖−1 𝑡 , 𝑖 = 1,… , 𝑛 (is not always possible)

• State space model
ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 State equation

𝑦 𝑡 = ℎ 𝑥 𝑡 , 𝑢 𝑡 Output equation

where dim𝑥 𝑡 = 𝑛, dim𝑢 𝑡 = 𝑚, dim𝑦 𝑡 = 𝑝

• 𝑥 𝑡 is the state of  the model, 𝑛 is the order of  the model



• General linear (SISO) input-output model of  𝑛th order in 

continuous time

𝑎𝑛𝑦
𝑛 𝑡 + 𝑎𝑛−1𝑦

𝑛−1 𝑡 + ⋯+ 𝑦 𝑡 = 𝑏𝑚′𝑢 𝑚′
𝑡 +…+𝑏0𝑢 𝑡 , 

where 𝑛 ≥ 𝑚′ and 𝑎 denotes 𝑎th derivative

• Transferred to a first order differential equation by setting

𝑥𝑖 𝑡 ≔ 𝑦 𝑖−1 𝑡 , 𝑖 = 1,… , 𝑛 and by doing additional tricks if

needed

• Linear state space model
ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

– dim𝐴 = 𝑛 × 𝑛 (system matrix)

– dim𝐵 = 𝑛 × 𝑚 (control matrix)

– dim𝐶 = 𝑝 × 𝑛 (ouput matrix)

– dim𝐷 = 𝑝 ×𝑚 (feedforward matrix)

Linear input-output and state space models



Laplace transform

• Laplace transform of  function 𝑓 𝑡 (𝑓 𝑡 = 0, when 𝑡 < 0) 

is 𝐹 𝑠 = ℒ 𝑓 𝑡 = 0׬
∞
𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡

where 𝑠 is a complex variable (”frequency”)
Function L transform

𝑓′ 𝑡 𝑠𝐹 𝑠 − 𝑓 0

𝑓′′ 𝑡 𝑠2𝐹 𝑠 − 𝑠𝑓 0 − 𝑓′ 0

… …

• With dynamic systems, it is usually assumed that
𝑓 0 = 𝑓′ 0 = 𝑓′′ 0 = 𝑓′′′ 0 = ⋯ = 0

– ”initial state of  a linearized model = equilibrium point”

=> deviation of  the state from the equilibrium = 0

• Remember: 𝑓 𝑛 𝑡 ⇒ 𝑠𝑛𝐹 𝑠



Transfer function

• General linear input-output model in continous time

𝑎𝑛𝑦
𝑛 𝑡 + ⋯+ 𝑦 𝑡 = 𝑏𝑚𝑢

𝑚 𝑡 +…+𝑏0𝑢 𝑡 , 𝑛 ≥ 𝑚

• Applying Laplace transform on both sides→

𝑌 𝑠 =
𝑏𝑚𝑠

𝑚 + 𝑏𝑚−1𝑠
𝑚−1 +⋯+ 𝑏0

𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 1
𝑈 𝑠

The quotient is called the transfer function 𝐺 𝑠 of  the

system

• Model type of  a dynamic system

• Algebraic equation (cf. differential equation)

• Complex valued Function of  a complex variable

– Frequency domain (Laplace domain) model (cf.  time-domain)

• Roots of  the polynomial of  the denominator in the

transfer function are called the poles of  the transfer

function



Transfer function corresponding to a linear

state space model

• Linear state space model
ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

• Using Laplace transform provides
𝐺 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 + 𝐷

• Algebraic modifications…

𝐺 𝑠 =
…

…det 𝑠𝐼 − 𝐴 …

• The poles of  the transfer function correspond to the 

eigenvalues of  the system matrix 𝐴

• Simulink: Transfer Fcn



Equilibrium state and point

• Let 𝑢 𝑡 = 𝑢0 (constant); where will 𝑥 𝑡 and 𝑦 𝑡

converge or will they?

• Equilibrium state 𝑥0: 𝑓 𝑥0, 𝑢𝑜 = 0

– one, many, or no solutions

• 𝑥0, 𝑢0 is an equilibrium point

– often desirable to get the system into an equilibrium point

• The output of  the equilibrium point is 𝑦0 = ℎ 𝑥0, 𝑢0

• In a linear system

– origin (0, 0) is always an equilibrium point of  the system

– if (𝑥0, 𝑢0) is an equilibrium point, also (𝑘𝑥0, 𝑘𝑢0) is with ∀𝑘 ∈
ℝ

– if 𝐴 is invertible, for every control 𝑢0 there is exactly one 

equilibrium state 𝑥0 = −𝐴−1𝐵𝑢0



Linearization

• Consider a nonlinear system (cf. slide ”Input-output and state space

models”) in an equilibrium 𝑥0, 𝑢0 and deviances Δ𝑥 𝑡 =

𝑥 𝑡 − 𝑥0, Δ𝑦 𝑡 = 𝑦 𝑡 − 𝑦0 and Δ𝑢 𝑡 = 𝑢 𝑡 − 𝑢0

• It holds that
𝑑

𝑑𝑡
Δ𝑥 𝑡 ≈ 𝐴′Δ𝑥 𝑡 + 𝐵′Δ𝑢 𝑡

Δ𝑦 𝑡 ≈ 𝐶′Δ𝑥 𝑡 + 𝐷′Δ𝑢 𝑡

where

𝐴′ =
𝜕𝑓

𝜕𝑥
, 𝐵′ =

𝜕𝑓

𝜕𝑢
, 𝐶′ =

𝜕ℎ

𝜕𝑥
, 𝐷′ =

𝜕ℎ

𝜕𝑢

evaluated at 𝑥0, 𝑢0

• Linearized model is utilized when examining, e.g., stability

or controllability of  a nonlinear system



About stability

• Is related to the equilibrium point 𝑥0, 𝑢0 .

• If  an equilibrium point is reached, the system will stay in the point
regardless of  its nature

(I) Asymptotically stable

(II) Stable

(III) Unstable

• Local I or II – Stability behavior I or II only when the state is near
the equilibrium point

• Global I or II – Stability behavior I or II independent of  the
current state



About the stability of  linear systems 1/2

• Consider a linear dynamic system

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 , s.t., dim𝑥 = 𝑛 and assume a constant 

control 𝑢0 and initial state 𝑥 0

• The solution of  the system is

𝑥1 𝑡 = 𝛼1𝑒
𝜆1𝑡 + 𝛼2𝑒

𝜆2𝑡 +⋯+ 𝛼𝑛𝑒
𝜆𝑛𝑡 + 𝑘1

𝑥2 𝑡 = 𝛽1𝑒
𝜆1𝑡 + 𝛽2𝑒

𝜆2𝑡 +⋯+ 𝛽𝑛𝑒
𝜆𝑛𝑡 + 𝑘2

⋮
𝑥𝑛 𝑡 = 𝜈1𝑒

𝜆1𝑡 + 𝜈2𝑒
𝜆2𝑡 +⋯+ 𝜈𝑛𝑒

𝜆𝑛𝑡 + 𝑘𝑛

where 𝜆1, … , 𝜆𝑛 are the eigenvalues of  the system matrix 𝐴, 

i.e., det 𝜆𝐼 − 𝐴 = 0

• 𝑒𝜆𝑡 = 𝑒Re 𝜆 𝑡 cos Im 𝜆 𝑡 + 𝑖 sin Im 𝜆 𝑡



About the stability of  linear systems 2/2

• Real parts of  the eigenvalues of  the system matrix 𝐴 determine the
behavior of  the solution and consequently the nature of  the
equilibrium point (𝑢0, 𝑥0 = −𝐴−1𝐵𝑢0)

– All Re 𝜆 < 0 → Asymptotically stable

– At least one Re 𝜆 > 0 → Unstable

– All Re 𝜆 ≤ 0 and

• only unique solutions with Re 𝜆 = 0 → Stable

• non-unique solutions with Re 𝜆 = 0 → Unstable (𝑡 cos 𝜆𝑡 )

• In a linear case, stability is an attribute of  the whole system
(global), and it does not depend on the values of  the states or
controls

– In linear systems, the nature of  all the equilibrium points (infinite
amount) is same

• In a nonlinear case, stability/unstability/asymptotical stability
can be only determined locally for an equilibrium point



Stability of  a transfer function

• Applying the Laplace transform for a linear state space
model yields

𝐺 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 + 𝐷,

i.e., the poles of  the transfer function (tf) correspond to 
the eigenvalues of  system matrix 𝐴

• The input-output model provided by the tf 𝐺 𝑠 is

– Asymptotically stable, if the roots of  the denominator in the
tf, i.e., the poles of  the tf, lie strictly on the left half of  the
complex plane

– Stable, if 1) the poles lie on the left half of  the complex plane, 
and 2) some of  the poles are on the imaginary axis and they
are unique

– Unstable, if even one of  the poles lie on the right half of  the
complex plane

– Unstable, if there are non-unique poles on the imaginary axis



Definition of  controllability

System is controllable



There exists a control which can drive the system from an 
arbitrary initial state to any state within a finite time

interval

• If  a system (open loop) is controllable, a state feedback 
controller can be constructed and the poles of  the
resulting feedback system can be selected arbitrarily, e.g., 
such that the feedback system is asymptotically stable



Testing of  controllability

• Difficult for nonlinear systems (linearization!)

• Linear systems: Time-invariant continuous time linear

system
ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

is controllable if  and only if an 𝑛 × 𝑛𝑚 matrix
𝑄𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵|… 𝐴𝑛−1𝐵

has a rank of  𝑛 (𝑛 = dim𝑥, 𝑚 = dim𝑢)

• Rank = number of  linearly independent rows/columns

• Matrix 𝑄𝑐 is so called controllability matrix

• Holds also for discrete time systems



Interpretation of  controllability

• Consider a discrete time system
𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡

• Assume that initial state 𝑥0 is given

• The state at time 𝑛 (𝑛 = order of  the system) is

𝑥 𝑛 = 𝐴𝑛𝑥0 +෍

𝑘=0

𝑛−1

𝐴𝑛−𝑘−1𝐵𝑢 𝑘 = 𝐴𝑛𝑥0 + 𝑄𝑐

𝑢 𝑛 − 1
⋮

𝑢 0

• If  the rank of  the controllability matrix is 𝑛, then every vector

𝑥 of   ℝ𝑛 can be represented in a form

𝑥 = 𝐴𝑛𝑥0 + 𝑄𝑐

𝑢 𝑛 − 1
⋮

𝑢 0
,

i.e., with a suitable choice of  controls, the system can be driven

from its initial state 𝑥0 to a desired state 𝑥 𝑛

• The solution (i.e., controls) is not unique, if there is more than

one control


