ERRATA

J.R. Lamarsh \& A. J. Baratta:
 Introduction to Nuclear Engineering (Third Edition) Prentice \& Hall, Inc. 2001

On page 10, the exponent in the numeric value of $m\left({ }^{12} \mathrm{C}\right)$ should be -23 .
Equation 2.19 should read $\lambda=h c / \sqrt{E_{\text {total }}^{2}-E_{\text {rest }}^{2}}$.

The last sentence of the second-to-last paragraph on page 20 should refer to β^{+}decay, not β^{-}.
In the first equation of the solution of Example 2.6, beginning " $0.90=\ldots$ ", there should be a minus sign in front of the exponent.

In Equations 2.50 and 2.51, the term $(A-2 Z)$ should be $(A-2 Z)^{2}$.
The last line of the table on page 46 should be for isotope ${ }^{238} \mathrm{U}$, not ${ }^{235} \mathrm{U}$.
In Equation 3.23 and the explanation below it, γ_{r} should be λ_{r} and Γ_{g} should be Γ_{γ}.
The caption of Figure 3.16 should refer to Eq. 3.59, not 3.53.
In Eq. 3.82, the exponent in the final form is missing a minus sign.
In Eq. 5.19, the right-hand side is missing a minus sign.
The last sentence in the first paragraph of Section 5.9 should refer to Section 2.13, not 2.12.
Equation 5.49 should read $\phi(E)=n(E) v(E)=\frac{2 \pi n}{(\pi k T)^{3 / 2}}\left(\frac{2}{m}\right)^{1 / 2} E e^{-E / k T}$.
Equation 5.51 should read $\phi_{T}=\frac{2 \pi n}{(\pi k T)^{3 / 2}}\left(\frac{2}{m}\right)^{1 / 2} \int_{0}^{\infty} E e^{-E / k T} d E=\frac{2 n}{\sqrt{\pi}}\left(\frac{2 k T}{m}\right)^{1 / 2}$.
The paragraph after Eq. 5.58 should denote the thermal diffusion coefficient as \bar{D}, not D (also on the third line of the next page). In the next paragraph, the thermal absorption cross-section should be denoted by $\overline{\Sigma_{a}}$, not Σ_{a}. After its formula, reference should be made to Eq. 3.44, not Eq. 3.38.

In Eq. 5.67, the right-hand side is missing a minus sign.
Equation 6.1 should not have a minus sign on the right-hand side.
The last column of Table 6.1 should be denoted η, and the last row should be labeled ${ }^{239} \mathrm{Pu}$.
The equation of B^{2} after Eq. 6.2 should read $\quad B^{2}=\frac{1}{D}\left(\frac{1}{k} v \Sigma_{f}-\Sigma_{a}\right)$, and B^{2} is defined as the material buckling.

On the fourth line of the paragraph after Eq. 6.6, reference should be made to the denominator, not the numerator.
In Example 6.1, the first equation should read $f=\frac{\Sigma_{a F}}{\Sigma_{a}}=\frac{\Sigma_{a F}}{\Sigma_{a F}+\Sigma_{a S}}$.
In Example 6.1, the second equation should read $f=\frac{1}{1+\Sigma_{a S} / \Sigma_{a F}}=\frac{1}{1+N_{s} \sigma_{a S} / N_{F} \sigma_{a F}}$.
The right-hand side of the first formula on page 271 should not have a minus sign.
The general solution of ϕ and Eq. 6.31 on page 276 should have $B r$, not $B R$ in the numerator.
Omitting d as small in Eq. 6.35, the sine in the numerator should be simply $\sin (\pi r / R)$.
Equation 6.39 should read $\phi(\tilde{R})=A J_{0}(B \tilde{R})=0$.

Between Eq. 6.41 and Eq. 6.42, the integral can be evaluated using the formula $\int J_{0}\left(x^{\prime}\right) x^{\prime} d x^{\prime}=x J_{1}(x)$.

On page 280 , the two equations related to $Z(z)$ should use B_{z} instead of B for clarity. The caption of Table 6.2 should end "(assuming d is small)".

In Example 6.3, the answers for \tilde{R}_{c} and R_{c} should be 48.5 cm and 41.7 cm , respectively.
Equation 6.86 is missing N_{M} from the numerator.
In Example 6.5, on the first line of the solution, B_{2} should be B^{2}. In the critical mass calculation, the variable with value 0.978 should be $g_{a F}(T)$, not $\sigma_{a F}(T)$.

On page 296, the relation $H=1.92 R$ should read $H=1.95 R$.
Equation 6.98 should read $A D_{c}\left(\frac{B \cos B R}{R}-\frac{\sin B R}{R^{2}}\right)=-A^{\prime} D_{r}\left(\frac{1}{R L_{r}}+\frac{1}{R^{2}}\right) e^{-R L_{r}}$.
In Example 6.10, $f=\frac{4.77 \times 10^{-5} \times 0.978 \times 681}{4.77 \times 10^{-5} \times 0.978 \times 681+0.0215 \times 0.185+0.0167 \times 0.664}=0.6783$.
On pages 316-318, the average lethargy change in the moderator should (consistently with Sec. 3.6) be denoted by ξ_{M} (letter xi), not by ζ_{M} (letter zeta).

Between Eq. 7.5 and Eq. 7.6, in the formula for the $1 / v$ absorption cross section, v_{0} should be a constant, not a function $v_{0}(E)$.

After Eq. 7.20, the sentence beginning "In section 6.5, it was shown..." should define the prompt and delayed fission neutron production rate as $\eta_{T} \varepsilon f \bar{\Sigma}_{a} \phi_{T}$ or $k_{\infty} \bar{\Sigma}_{a} \phi_{T} / p$.

In Figure 7.4, the reference should be to Equation 7.28.

In Equations 7.44 and 7.45 , there should be no p.
Deriving Eq. 7.78 on page 370 , there should be a minus sign on the right side of all three formulas of $\alpha_{\text {prompt. }}$

In Table 7.4, the scales of the A^{\prime} and C^{\prime} columns should be $A^{\prime} \times 10^{-4}$ and $C^{\prime} \times 10^{-2}$.
In Eq. $7.119, N_{25}$ is missing from the first term in the square brackets.
In Eq. $8.9, P$ is the total power of the reactor in watts.
In Eq. 8.21, there should be no minus sign in front of the integrand.
After Eq. 8.22, "The two terms on the right-hand side of this equation" should read "The first term on the right-hand side of this equation assuming an infinite reactor operation time before shutdown".
Equation 8.31 should read $\nabla^{2} T+\frac{q^{\prime \prime \prime}}{k}=0$.
In Figure 8.4 , the thickness of the plate-type element should be $2(a+b)$, not $2 a$.
Integrating Eq. 8.33 twice gives the general solution $T+\frac{q^{\prime \prime \prime}}{2 k_{f}} x^{2}=C_{1} x+C_{2}$.
In Eq. 8.63, the denominator should read $1 / h A$.
The sentence above Eq. 8.72 should begin "However, $\rho A_{c} v$ is equal to..."
In the equation before Eq. $8.76, R$ is missing from the denominator on the left side.
On page $444, T_{L B}$ should be defined as the coolant temperature at which local boiling begins, not as the fuel surface temperature.

Equation 9.10 should refer to W_{R}, not W.
In Equations 9.44 and 9.45, the exponents should be negative.
On page 583 , in the sentence beginning "From Table $10.4, \ldots$ ", $\Sigma_{R t}$ should be $\Sigma_{R} t$.
On page 592 , in the formula of E_{1}, the term in the brackets should be squared.
In Table II. 2 on page 738, the abundances in a / o for ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ have switched places. The second line for ${ }^{12} \mathrm{C}$ should be labeled ${ }^{13} \mathrm{C}$. The footnote sign in the heading of the last column $\left(\sigma_{f}\right)$ should be a dagger just like in the σ_{a} column.

In Table II. 3 on page 740, the scattering cross section for hydrogen is 21.0 barns.
In Table V. 1 on page $759, J_{0 x}(1.0)$ should be 0.7652 , and $\mathrm{J}_{0 x}(3.4)$ should be -0.3643 .
"These are the only ones of which the news has come to Harvard and there may be many others but they haven't been discover'd. "

- Tom Lehrer, The Elements Song

