Outcome of this lecture

At the end of this lecture you will be able to:

- List the different parts of an induction machine
- Explain the operation principles of the machine
- Use the equivalent circuit model of the machine
- Analyze the steady-state operation of the machine
- Distinguish between different control methods of the machine

Your understanding of the rotating field theory will be enhanced

Contents of this lecture

- Structure and construction of Induction Machines
- Rotating magnetic field
- Operation modes of Induction Machines
- Equivalent Circuit of Induction Machines
- Performance characteristics of Induction Machines
- Basics of speed control of Induction Machines

Construction – small machine

Construction – large machine

Construction – spars parts

Active parts and mounting

Basic operation principle

- Three-phase windings displaced from each other by 120 degrees in space
- Phase coils produces sinusoidal distributed mmf wave centered on coil axis
- Alternating currents in each coil produce pulsating mmf waves
- Mmf waves are displaced by 120 degrees in space from each other
- Resultant mmf wave is rotating along the air gap with constant peak

Rotating magnetic field - currents

Balanced three-phase currents

$$\begin{split} i_{\rm a} &= I_{\rm m} \cos \omega t \\ i_{\rm b} &= I_{\rm m} \cos (\omega t - 120^\circ) \\ i_{\rm c} &= I_{\rm m} \cos (\omega t + 120^\circ) \end{split}$$

Rotating magnetic field – phase MMFs

Resulting MMF – analytical method

 $F_{a}(\theta) = Ni_{a} \cos \theta$ $F_{b}(\theta) = Ni_{b} \cos(\theta - 120^{\circ})$ $F_{c}(\theta) = Ni_{c} \cos(\theta + 120^{\circ})$

$$i_{a} = I_{m} \cos \omega t$$
$$i_{b} = I_{m} \cos(\omega t - 120^{\circ})$$
$$i_{c} = I_{m} \cos(\omega t + 120^{\circ})$$

Resultant mmf wave

$$F(\theta) = Ni_{a} \cos \theta + Ni_{b} \cos(\theta - 120^{\circ}) + Ni_{c} \cos(\theta + 120^{\circ})$$
$$\cos A \cos B = \frac{1}{2} \cos(A - B) + \frac{1}{2} \cos(A + B)$$
$$F(\theta, t) = \frac{3}{2} NI_{m} \cos(\omega t - \theta)$$

Properties of resulting MMF

• The resultant mmf vector retains its sinusoidal distribution in space

$$F = \frac{3}{2}F_{\max}$$

• It moves around the air gap – one revolution per period

$$n = \frac{2}{p}f60 = \frac{120f}{p}$$

• Reversal of currents phase sequence \implies change in direction of rotation

Induced voltages

• Sinusoidal flux density distribution in space

 $B(\theta) = B_{\max} \cos \theta$

• Flux per pole

$$\Phi_{\rm p} = \int_{-\pi/2}^{\pi/2} B(\theta) lr \, d\theta = 2B_{\rm max} lr$$

B (θ)

Ν

C

a'

• Flux linkage

$$\lambda_{\rm a}(\omega t) = N\Phi_{\rm p}\cos\omega t$$

Induced voltage

$$e_{\rm a} = -\frac{d\lambda_{\rm a}}{dt} = E_{\rm max}\sin\omega t$$

Induced voltages

$$e_{\rm a} = E_{\rm max} \sin \omega t$$
$$e_{\rm b} = E_{\rm max} \sin(\omega t - 120^{\circ})$$
$$e_{\rm c} = E_{\rm max} \sin(\omega t + 120^{\circ})$$

$$E_{\rm max} = \omega N \Phi_{\rm p}$$

$$E_{\rm rms} = \frac{E_{\rm max}}{\sqrt{2}} = \frac{2\pi}{\sqrt{2}} f N \Phi_{\rm p}$$

• Distributed winding with winding factor K_w

$$E_{\rm rms} = \frac{2\pi}{\sqrt{2}} f N_{\rm ph} \Phi_{\rm p} K_w$$

 $K_{w} \approx 0.85...0.95$

Standstill operation – phase shifter

- stationary wound rotor induction machine can be used as a phase shifter
 - Rotor open-circuited
 - Rotating field in the air gap speed ns
 - Field induces voltages in stator and rotor windings same frequency

Standstill operation - induction regulator

- Can be used as a variable polyphase voltage source too
 - Continuous variation of voltage
 - No sliding connection

- + Continuous variation of the output voltage
- + No sliding electric connections
- High leakage inductances
- High magnetizing current
- High cost

$$\boldsymbol{E}_1 = \boldsymbol{V}_{in}$$
$$\boldsymbol{V}_0 = \boldsymbol{E}_1 + \boldsymbol{E}_2$$

Running operation principles

- Rotor circuit is closed
- Induced voltages produce rotor currents
- Currents interacts with air gap field and produce torque
- Rotor starts to rotate
- Relative speed decreases
- Induced voltage decreases
- Speed settles to steady state value according to torque balance

Principal characteristics

• Slip
$$s = \frac{n_s - n_s}{n_s}$$

• Frequency of induced rotor currents $f_2 = \frac{p}{120}(n_s - n) = sf_1$

• Induced rotor voltage
$$E_{2s} = \frac{2\pi}{\sqrt{2}} f_2 N_2 \Phi_p K_{W2} = sE_2$$

• Speed of induced rotor field with respect to the rotor is

$$n_2 = \frac{120f_2}{p} = sn_s$$

• Speed of induced rotor field with respect to the stator is $n + n_2 = n_s$

Running operation - modes

Equivalent circuit model

Assume three-phase wound-rotor induction machine

- Cage winding can be represented by an equivalent three-phase winding
- At steady-state the magnetic fields rotate at synchronous speed
- Resultant air gap field induce voltages in stator and rotor windings
 - Supply frequency f_1 in stator
 - slip frequency f₂ in rotor
- Equivalent circuit appears to be identical to that of a transformer

Stator side per-phase quantities

- Equivalent circuit similar to transformer primary
- Magnetizing current 20 50 % of stator current (1 5 % in transformer)
- X₁ larger than in transformer due to air gap and distributed windings

Rotor winding per-phase quantities

- E_2 induced voltage at standstill (f_1)
- R₂ winding resistance
- L₂ leakage inductance
- $f_2 = sf_1$

$$I_2 = \frac{sE_2}{R_2 + jsX_2} \qquad P_2 = I_2^2 R_2$$

• rotor current can be expressed as

$$I_2 = \frac{E_2}{(R_2 / s) + jX_2}$$

Matching the rotor an stator

• Although the amplitude and phase are the same the frequency is different !

• Power associated with the equivalent circuit (air-gap power)

$$P = I_2^2 \frac{R_2}{s} = \frac{P_2}{s}$$

Complete equivalent circuit

- Same frequency in stator and in rotor
- Turns ratio has to be taken into account
- The stator referred quantities

$$E'_{2} = E_{1} = aE_{2} R'_{2} = a^{2}R_{2}$$

$$I'_{2} = \frac{I_{2}}{a} X'_{2} = a^{2}X_{2}$$

a =

Equivalent circuit model - consequences

- Air gap power crosses the air gap
 - Includes rotor copper loss P₂ and mechanical power P_{mech}
 - A fraction s is dissipated in rotor resistance P₂
 - The fraction (1-s) is converted into mechanical power

$$P = P_{ag} = I_2^2 \frac{R_2}{s} = I_2^2 \left[R_2 + \frac{R_2}{s} (1-s) \right] = P_2 + P_{mech}$$

$$P_2 = I_2^2 R_2 = sP_{ag}$$
 $P_{mech} = I_2^2 \frac{R_2}{s} (1-s) = (1-s)P_{ag}$

$$P_{ag}: P_2: P_{mech} = 1:s:1-s$$

Different equivalent circuits

• approximate equivalent circuit

• IEEE-recommended equivalent circuit

Thevenin equivalent circuit

Equivalent circuit parameters

- No-load test at nominal voltage and frequency
- Blocked rotor test at nominal current, reduced voltage and frequency
- DC-resistance measurement

- No-load power is core losses + windage and friction losses
- Blocked rotor
 reactances

- Equivalent circuit used to predict performances characteristics:
 - Efficiency, power factor, current, starting torque, maximum (pull-out) torque, etc...

Torque

• Torque per phase T_{mech}

• 5 % difference in torque prediction depending on the kind of equivalent circuit

Torque profile

• Total torque obtained by multiplying per phase torque by number of phases

Maximum torque

- Maximum torque independent from rotor resistance
- Corresponding speed depends on rotor resistance ۲

Current and power factor

• Typical starting current 5 – 8 times the rated current

$$Z_{1} = R_{1} + jX_{1} + X_{m} // \left(\frac{R'_{2}}{s} + jX'_{2}\right)$$
$$= |Z_{1}| |\underline{\theta}_{1}$$
$$I_{1} = \frac{V_{1}}{Z_{1}} = I_{\phi} + I'_{2}$$

• Power factor

 $PF = \cos \theta_1$

Efficiency

Power flow

Effects of rotor resistance

- Small rotor resistance
 - + High efficiency
 - + Small nominal slip
 - Small starting torque
 - Large starting current
- Large rotor resistance
 - Poor efficiency
 - Large nominal slip
 - + Large starting torque
 - + Small starting current

• In wound-rotor external resistance connected to rotor through the slip rings

Deep-bar squirrel-cage

• Rotor frequency changes with speed

 Effective rotor resistance changes with frequency if adequate shape of rotor bars (skin effect)

Double-cage rotor

- Two rotor cages each with its own end ring
- Outer cage with small cross section and high resistivity material
- Inner cage with larger cross section and low resistivity material
- At standstill rotor current flows in outer cage is large resistance
- At small slip current flows in both cages is smaller resistance
- Equivalent circuit formed by additional branches in the rotor

Speed control - basics

- Speed is determined by:
 - Supply frequency
 - Number of pole-pairs
 - Slip
- Pole changing
 - Discrete steps
 - Expensive
 - Normally ratio 2:1
 - Cage induction machine only
- line voltage control
 - \bullet Torque is proportional to V^2
 - Increased slip inefficient operation
 - Used with fans and pumps

Line voltage control

Auto transformer

• Open loop operation

- Closed loop operation
 - Precise speed control
 - Requires expensive sensor

Line frequency control

For non regenerative operation a diode bridge is used as rectifier and PWM inverter is used for frequency control

Scalar control

- Below nominal speed
 - Voltage-frequency ratio kept constant to avoid saturation
 - Constant flux and constant torque
- Above nominal speed
 - Voltage kept constant to avoid electric breakdown
 - Constant voltage and constant power

Rotor resistance control

• External 3-phase resistance

- DC-resistance and chopper
 - Open or closed loop

What about the efficiency?

rotor slip energy recovery

- Efficient use of rotor slip power
- Possibility to supply power from the rotor side as well

Starting of induction motors

- Direct connection
 - Starting current 5...8 IN
 - Line voltage drop
 - Long starting time
 - Overheating

- Reduced-voltage starting
 - Step-down autotransformer
 - Star-delta method
 - Solid state voltage controller
 - Reduced torque

