
Outcome of this lecture

At the end of this lecture you will be able to:

• List the different parts of a synchronous machine
• Explain the operation principles of the machine
• Use the equivalent circuit model of the machine
• Analyze the steady-state operation of the machine
• Calculate the power transfer of the machine

– (Torque, power, power factor, etc…)

Your will understand the difference between salient pole and non-salient pole
machines



Contents of this lecture

• Structure, construction and use of synchronous machines
• Infinite bus and synchronization
• Equivalent circuit of synchronous machine
• Performance characteristics

• (torque, power, power factor, etc…)

• Experimental determination of reactances
• Salient pole machine

– phasor diagrams and power transfer



Structure of synchronous machines



Structure of synchronous machines



• Rotates at constant speed.
• Primary energy conversion devices of the word’s electric power system.
• Both generator and motor operations
• Can draw either a lagging or a leading reactive current from the supply.

Main characteristics



Non-salient pole generator
– High speed (2 - 4 poles)
– Large power (100 – 1 600 MVA)
– Steam power plants

Salient pole generator
– Low speed
– Small and mid-size power (0 – 800 MVA)
– Motors for electrical domestic devices
– Mid size generators for emergency power supply
– Motors for pumps and ship propulsion
– Large size generators in hydro-electric power plants

Usage of different types of synch. machines



3-phase voltage generation
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Connecting the 3-phase voltages

• 3 single-phase circuits at different phase angle!
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Connecting the 3-phase voltages

• The potential difference is known but not the potentials !



• Excitation voltages
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• Open circuit characteristics
• Magnetization characteristics

• Frequency depends on the speed

Synchronous Generators – No-load



Synchronous Generators - loaded

r afF F F= +

• Stator currents establish a rotating field in the air-gap
• Armature reaction flux a

• Resultant air-gap flux



Power plants

Load centers

Substations
and
Transformer

Transmission lines

Industrial and Residential loads

International links

The infinite bus

• The quasi totality of the electric power generated worldwide is three-phase.



Same
• Voltage
• Frequency
• Phase sequence
• Phase

same f and phase sequence

same V and phase sequence

same V and f

Paralleling with the infinite bus



Variable-frequency supply

Start as an induction motor

• High inertia of the rotor prohibits direct connection into supply net

Starting the synchronous motor



• Armature flux, armature reaction flux, armature leakage flux

r ar fE E E= +

a ar rfE I jX E= +

r arf ( ) ( )f aI IF F F= +

a ar alF F F= +

• Magnetizing reactance Xar , (reactance of armature)
• Synchronous reactance Xs =Xar + Xal
• Synchronous impedance Zs =Ra + jXs

ar ar aE jX I- =

Per phase equivalent circuit model



f
f

s

EI
X

¢ = ar
f f

s

XI nI
X

¢ = re

se

2
3

Nn
N

=

• Norton equivalent circuit

Equivalent circuit model



Open circuit test
• Synchronous speed
• Stator open-circuited
• Measure Vt(If)

– Open-circuit characteristic
– Air gap line

Determination of synchronous reactance



Short circuit test
• Synchronous speed
• Stator short-circuited
• Measure Ia(If)

– Short-circuit characteristic
– Straight line
– Flux remains at low level

• Ia lags Ef by almost 90 because

Determination of synchronous reactance



da
as(unsat) s(unsat)

ba

EZ R jX
I

= = +

Unsaturated value from the air-gap line

Unsaturated synchronous reactance



• At infinite bus operation the saturation level is defined by terminal voltage
operation point c

• If the field current is changed the excitation voltage will change along
modified air-gap line OC
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Saturated synchronous reactance



Phasor diagram

• Terminal voltage taken as the reference vector
• Generator load angle positive
• Motor load angle negative

Convention: generating current flows out of the machine
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convention: lagging reactive power positive

Main operation quantities



• Complex power

• Real power

• Reactive power
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Per phase power



Power and torque

Ra neglected

• Real power

• Reactive power

• Torque
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Capability curves

• Armature heating, length of OM
• Field heating, length of YM
• Steady-state stability d



Power factor control

• Connected to an infinite bus

• Constant power operation

• Reactive current can be controlled by field current

• Also
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• Purely inductive load (Isc is short-circuit current)

• Purely resistive load

quarter ellipse

Independent generators



Salient pole machines
• Field mmf and flux along the d-axis
• Same magnitude of armature mmf produces more flux in d- than in

q-directionè magnetizing reactance not unique in salient pole machine

Ia in phase with voltage Ia lagging voltage by 90°

How reactance is
related to inductance ?
What was the definition

of inductance ?



Two axis decomposition

• Armature quantities can be resolved into two components ( d, Id)  ( q, Iq)
• Components produce fluxes along respective axes ( ad, aq)
• d-axis armature reactance Xd

• q-axis armature reactance Xq

• Leakage reactance Xal

• Synchronous reactances

d ad alX X X= +

q aq alX X X= +



• Component currents (Id, Iq) produce voltage drops (jIdXd, jIqXq)

Phasor Diagrams

t a a q qf d dE V I R I jX I jX= + + + a qdI I I= +

• Generator phasor diagram (Ia lagging)
• y internal power factor angle
• f terminal power factor angle
• d load angle

Ra neglected
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• Motoring phasor diagram (Ia lagging)
• y internal power factor angle
• f terminal power factor angle
• d torque angle

Currents from phasor Diagrams
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Power Transfer
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if Xd = Xq, then:

How do you
increase the
power of a
generator?

Power transfer
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What if the
rotor is at

synch. speed

Determination of Xd and Xq

Slip test
– Rotor driven at small slip
– Field winding open-circuited
– Stator connected to balanced three phase supply
– Stator encounters varying reluctance path
– Amplitude of the stator current varies



• No filed control
• No Field current
• Cost of PM
• Power factor ?

Permanent Magnet Machine
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a)                                                 b)                                                              c)

d)                                                     e)                                                            f)                                                          g)

a) surface mounted magnets
b) inset rotor with surface magnets
c) surface magnets with pole shoes
d) embedded circumferential magnets

e) embedded radial magnets
f) embedded V-magnets with shaped air-gap
g) permanent magnet assisted synchronous
reluctance

PM rotor configurations


