Outcome of this lecture

At the end of this lecture you will be able to:

- List the different parts of a synchronous machine
- Explain the operation principles of the machine
- Use the equivalent circuit model of the machine
- Analyze the steady-state operation of the machine
- Calculate the power transfer of the machine
 - (Torque, power, power factor, etc...)

Your will understand the difference between salient pole and non-salient pole machines

Contents of this lecture

- Structure, construction and use of synchronous machines
- Infinite bus and synchronization
- Equivalent circuit of synchronous machine
- Performance characteristics
 - (torque, power, power factor, etc...)
- Experimental determination of reactances
- Salient pole machine
 - phasor diagrams and power transfer

Structure of synchronous machines

Structure of synchronous machines

Main characteristics

- Rotates at constant speed.
- Primary energy conversion devices of the word's electric power system.
- Both generator and motor operations
- Can draw either a lagging or a leading reactive current from the supply.

Usage of different types of synch. machines

Non-salient pole generator

- High speed (2 4 poles)
- Large power (100 1 600 MVA)
- Steam power plants

Salient pole generator

- Low speed
- Small and mid-size power (0 800 MVA)
- Motors for electrical domestic devices
- Mid size generators for emergency power supply
- Motors for pumps and ship propulsion
- Large size generators in hydro-electric power plants

3-phase voltage generation

• Simple generator

Connecting the 3-phase voltages

• 3 single-phase circuits at different phase angle!

Connecting the 3-phase voltages

• The potential difference is known but not the potentials !

Synchronous Generators – No-load

• Excitation voltages

• Frequency depends on the speed

$$f = \frac{np}{120} \qquad n = \frac{120 f}{p}$$

→ I₄

- Open circuit characteristics
- Magnetization characteristics

Synchronous Generators - loaded

- Stator currents establish a rotating field in the air-gap
- Armature reaction flux ϕ_a
- Resultant air-gap flux

 $F_r = F_f + F_a$

The infinite bus

• The quasi totality of the electric power generated worldwide is three-phase.

Paralleling with the infinite bus

Same

- Voltage
- Frequency
- Phase sequence

same f and phase sequence

same V and phase sequence

↓ E_A

Starting the synchronous motor

• High inertia of the rotor prohibits direct connection into supply net

Variable-frequency supply

Start as an induction motor

Per phase equivalent circuit model

• Armature flux, armature reaction flux, armature leakage flux

- Magnetizing reactance X_{ar} , (reactance of armature)
- Synchronous reactance $X_s = X_{ar} + X_{al}$
- Synchronous impedance $Z_s = R_a + jX_s$

Equivalent circuit model

• Norton equivalent circuit

Determination of synchronous reactance

Open circuit test

- Synchronous speed
- Stator open-circuited
- Measure $V_t(I_f)$
 - Open-circuit characteristic
 - Air gap line

Determination of synchronous reactance

Short circuit test

- Synchronous speed
- Stator short-circuited
- Measure $I_a(I_f)$
 - Short-circuit characteristic
 - Straight line
 - Flux remains at low level

• $I_a \text{ lags } E_f \text{ by almost 90 because } R_a \ll X_s$

Unsaturated synchronous reactance

 $Z_{s(unsat)} = \frac{E_{da}}{I_{ba}} = R_a + jX_{s(unsat)}$

Unsaturated value from the air-gap line

$$X_{s(unsat)} \cong \frac{E_{da}}{I_{ba}}$$

Saturated synchronous reactance

- At infinite bus operation the saturation level is defined by terminal voltage operation point c
- If the field current is changed the excitation voltage will change along modified air-gap line OC

$$E_{\rm r} = V_{\rm t} + I_{\rm a}(R_{\rm a} + jX_{\rm al}) \gg V_{\rm t}$$
$$Z_{\rm s(sat)} = \frac{E_{\rm ca}}{I_{\rm ba}} = R_{\rm a} + jX_{\rm s(sat)}$$
$$X_{\rm s(sat)} \cong \frac{E_{ca}}{I_{ba}}$$

Phasor diagram

- Terminal voltage taken as the reference vector
- Generator load angle positive
- Motor load angle negative

$$E_{\rm f} = V_{\rm t} + I_{\rm a}R_{\rm a} + I_{\rm a}jX_{\rm s} = \left|E_{\rm f}\right|\underline{l}\underline{d}$$

$$V_{t} = E_{f} + I_{a}R_{a} + I_{a}jX_{s}$$
$$E_{f} = V_{t}|\underline{0^{\circ}} - I_{a}R_{a} - I_{a}jX_{s}$$
$$= |E_{f}||\underline{-d}$$

Convention: generating current flows out of the machine

Main operation quantities

convention: lagging reactive power positive

Per phase power

• Complex power

$$S = \frac{|V_{\rm t}||E_{\rm f}|}{|Z_{\rm s}|} \underline{|q_{\rm s} - d} - \frac{|V_{\rm t}|^2}{|Z_{\rm s}|} \underline{|q_{\rm s}|}$$

• Real power $P = \frac{|V_t||E_f|}{|Z_s|} \cos(q_s - d) - \frac{|V_t|^2}{|Z_s|} \cos q_s$

Reactive power

$$Q = \frac{|V_{\rm t}||E_{\rm f}|}{|Z_{\rm s}|} \sin(q_{\rm s} - d) - \frac{|V_{\rm t}|^2}{|Z_{\rm s}|} \sin q_{\rm s}$$

Complex power locus

$$P_{3f} = \frac{3|V_t||E_f|}{|X_s|} \sin d = P_{\max} \sin d$$

$$O_{3f} = \frac{3|V_t||E_f|}{|X_s|} \cos d - \frac{3|V_t|^2}{|X_s|}$$

Capability curves

- Armature heating, length of OM
- Field heating, length of YM
- Steady-state stability d

Power factor control

• Connected to an infinite bus

 $P = 3V_t I_a \cos f$

• Constant power operation $|I_a \cos f| = \text{const.}$

 $jX_{s}I_{a} = V_{t} - E_{f}$

• Reactive current can be controlled by field current

Also
$$P = 3 \frac{V_t E_f}{X_s} \sin d$$
 $E_f \sin d = \text{const}$

Independent generators

• Purely inductive load (*I*_{sc} is short-circuit current)

$$V_{t} = E_{f} - I_{a}X_{s}$$
$$= X_{s}(I_{sc} - I_{a})$$

Salient pole machines

- Field mmf and flux along the d-axis
- Same magnitude of armature mmf products more flux in d- than in q-direction è magnetizing reactance not unique in salient pole machine

¢_{ar}

 I_a in phase with voltage

How reactance is related to inductance ?

What was the definition of inductance ?

 I_a lagging voltage by 90°

Two axis decomposition

- Armature quantities can be resolved into two components (ϕ_d , I_d) (ϕ_q , I_q)
- Components produce fluxes along respective axes (ϕ_{ad} , ϕ_{aq})

Phasor Diagrams

• Component currents (I_d , I_q) produce voltage drops (jI_dX_d , jI_qX_q)

$$E_{\rm f} = V_{\rm t} + I_{\rm a}R_{\rm a} + I_{\rm d}jX_{\rm d} + I_{\rm q}jX_{\rm q} \qquad I_{\rm a} = A$$

- Generator phasor diagram (*I*_a lagging)
- *y* internal power factor angle
- *f* terminal power factor angle
- dload angle

Currents from phasor Diagrams

- Motoring phasor diagram (*I*_a lagging)
 - *y* internal power factor angle
 - *f* terminal power factor angle
 - *d* torque angle

$$V_{t} = E_{f} + I_{d}jX_{d} + I_{q}jX_{q}$$
$$y = f \pm d$$

$$I_{d} = I_{a} \sin y = I_{a} \sin(f \pm d)$$
$$I_{q} = I_{a} \cos y = I_{a} \cos(f \pm d)$$

$$\tan d = \frac{I_a X_q \cos f}{V_t \pm I_a X_q \sin f}$$

$$E_{\rm f} = V_{\rm t} \cos d \pm I_{\rm d} X_{\rm d}$$

Power Transfer

Determination of X_d and X_q

Slip test

- Rotor driven at small slip-
- Field winding open-circuited
- Stator connected to balanced three phase supply
- Stator encounters varying reluctance path
- Amplitude of the stator current varies

$$X_{\rm d} = \frac{V_{\rm t}}{i_{\rm min}/\sqrt{2}}$$

$$X_{\rm q} = \frac{V_{\rm t}}{i_{\rm max}/\sqrt{2}}$$

What if the rotor is at

Permanent Magnet Machine

- No filed control
- No Field current
- Cost of PM
- Power factor ?

PM rotor configurations

a) surface mounted magnetsb) inset rotor with surface magnetsc) surface magnets with pole shoesd) embedded circumferential magnets

e) embedded radial magnetsf) embedded V-magnets with shaped air-gapg) permanent magnet assisted synchronousreluctance