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1 Introduction

1.1 Sources

The major sources for this course are:

The Theory of Plasma Waves: T.H. Stix, 1st Ed. (McGraw-Hill, New York NY, 1962).

Plasma Physics: R.A. Cairns (Blackie, Glasgow UK, 1985).

The Framework of Plasma Physics: R.D. Hazeltine, and F.L. Waelbroeck (Westview, Boulder

CO, 2004).

Other sources include:

The Mathematical Theory of Non-Uniform Gases: S. Chapman, and T.G. Cowling (Cambridge

University Press, Cambridge UK, 1953).

Physics of Fully Ionized Gases: L. Spitzer, Jr., 1st Ed. (Interscience, New York NY, 1956).

Radio Waves in the Ionosphere: K.G. Budden (Cambridge University Press, Cambridge UK,

1961).

The Adiabatic Motion of Charged Particles: T.G. Northrop (Interscience, New York NY, 1963).

Coronal Expansion and the Solar Wind: A.J. Hundhausen (Springer-Verlag, Berlin, 1972).

Solar System Magnetic Fields: E.R. Priest, Ed. (D. Reidel Publishing Co., Dordrecht, Nether-

lands, 1985).

Lectures on Solar and Planetary Dynamos: M.R.E. Proctor, and A.D. Gilbert, Eds. (Cambridge

University Press, Cambridge UK, 1994).

Introduction to Plasma Physics: R.J. Goldston, and P.H. Rutherford (Institute of Physics Pub-

lishing, Bristol UK, 1995).

Basic Space Plasma Physics: W. Baumjohann, and R. A. Treumann (Imperial College Press,

London UK, 1996).

1.2 What is Plasma?

The electromagnetic force is generally observed to create structure: e.g., stable atoms and

molecules, crystalline solids. In fact, the most widely studied consequences of the elec-

tromagnetic force form the subject matter of Chemistry and Solid-State Physics, which are

both disciplines developed to understand essentially static structures.
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Structured systems have binding energies larger than the ambient thermal energy.

Placed in a sufficiently hot environment, they decompose: e.g., crystals melt, molecules

disassociate. At temperatures near or exceeding atomic ionization energies, atoms sim-

ilarly decompose into negatively charged electrons and positively charged ions. These

charged particles are by no means free: in fact, they are strongly affected by each others’

electromagnetic fields. Nevertheless, because the charges are no longer bound, their as-

semblage becomes capable of collective motions of great vigor and complexity. Such an

assemblage is termed a plasma.

Of course, bound systems can display extreme complexity of structure: e.g., a protein

molecule. Complexity in a plasma is somewhat different, being expressed temporally as

much as spatially. It is predominately characterized by the excitation of an enormous

variety of collective dynamical modes.

Since thermal decomposition breaks interatomic bonds before ionizing, most terrestrial

plasmas begin as gases. In fact, a plasma is sometimes defined as a gas that is sufficiently

ionized to exhibit plasma-like behaviour. Note that plasma-like behaviour ensues after a

remarkably small fraction of the gas has undergone ionization. Thus, fractionally ionized

gases exhibit most of the exotic phenomena characteristic of fully ionized gases.

Plasmas resulting from ionization of neutral gases generally contain equal numbers

of positive and negative charge carriers. In this situation, the oppositely charged flu-

ids are strongly coupled, and tend to electrically neutralize one another on macroscopic

length-scales. Such plasmas are termed quasi-neutral (“quasi” because the small deviations

from exact neutrality have important dynamical consequences for certain types of plasma

mode). Strongly non-neutral plasmas, which may even contain charges of only one sign,

occur primarily in laboratory experiments: their equilibrium depends on the existence of

intense magnetic fields, about which the charged fluid rotates.

It is sometimes remarked that 95% (or 99%, depending on whom you are trying to

impress) of the baryonic content of the Universe consists of plasma. This statement has

the double merit of being extremely flattering to Plasma Physics, and quite impossible to

disprove (or verify). Nevertheless, it is worth pointing out the prevalence of the plasma

state. In earlier epochs of the Universe, everything was plasma. In the present epoch,

stars, nebulae, and even interstellar space, are filled with plasma. The Solar System is

also permeated with plasma, in the form of the solar wind, and the Earth is completely

surrounded by plasma trapped within its magnetic field.

Terrestrial plasmas are also not hard to find. They occur in lightning, fluorescent lamps,

a variety of laboratory experiments, and a growing array of industrial processes. In fact, the

glow discharge has recently become the mainstay of the micro-circuit fabrication industry.

Liquid and even solid-state systems can occasionally display the collective electromagnetic

effects that characterize plasma: e.g., liquid mercury exhibits many dynamical modes, such

as Alfvén waves, which occur in conventional plasmas.
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1.3 Brief History of Plasma Physics

When blood is cleared of its various corpuscles there remains a transparent liquid, which

was named plasma (after the Greek word πλασµα, which means “moldable substance” or

“jelly”) by the great Czech medical scientist, Johannes Purkinje (1787-1869). The Nobel

prize winning American chemist Irving Langmuir first used this term to describe an ion-

ized gas in 1927—Langmuir was reminded of the way blood plasma carries red and white

corpuscles by the way an electrified fluid carries electrons and ions. Langmuir, along with

his colleague Lewi Tonks, was investigating the physics and chemistry of tungsten-filament

light-bulbs, with a view to finding a way to greatly extend the lifetime of the filament (a

goal which he eventually achieved). In the process, he developed the theory of plasma

sheaths—the boundary layers which form between ionized plasmas and solid surfaces. He

also discovered that certain regions of a plasma discharge tube exhibit periodic variations

of the electron density, which we nowadays term Langmuir waves. This was the genesis of

Plasma Physics. Interestingly enough, Langmuir’s research nowadays forms the theoretical

basis of most plasma processing techniques for fabricating integrated circuits. After Lang-

muir, plasma research gradually spread in other directions, of which five are particularly

significant.

Firstly, the development of radio broadcasting led to the discovery of the Earth’s iono-

sphere, a layer of partially ionized gas in the upper atmosphere which reflects radio waves,

and is responsible for the fact that radio signals can be received when the transmitter

is over the horizon. Unfortunately, the ionosphere also occasionally absorbs and distorts

radio waves. For instance, the Earth’s magnetic field causes waves with different polariza-

tions (relative to the orientation of the magnetic field) to propagate at different velocities,

an effect which can give rise to “ghost signals” (i.e., signals which arrive a little before,

or a little after, the main signal). In order to understand, and possibly correct, some

of the deficiencies in radio communication, various scientists, such as E.V. Appleton and

K.G. Budden, systematically developed the theory of electromagnetic wave propagation

through non-uniform magnetized plasmas.

Secondly, astrophysicists quickly recognized that much of the Universe consists of plasma,

and, thus, that a better understanding of astrophysical phenomena requires a better grasp

of plasma physics. The pioneer in this field was Hannes Alfvén, who around 1940 devel-

oped the theory of magnetohydrodyamics, or MHD, in which plasma is treated essentially

as a conducting fluid. This theory has been both widely and successfully employed to in-

vestigate sunspots, solar flares, the solar wind, star formation, and a host of other topics

in astrophysics. Two topics of particular interest in MHD theory are magnetic reconnection

and dynamo theory. Magnetic reconnection is a process by which magnetic field-lines sud-

denly change their topology: it can give rise to the sudden conversion of a great deal of

magnetic energy into thermal energy, as well as the acceleration of some charged particles

to extremely high energies, and is generally thought to be the basic mechanism behind

solar flares. Dynamo theory studies how the motion of an MHD fluid can give rise to the

generation of a macroscopic magnetic field. This process is important because both the

terrestrial and solar magnetic fields would decay away comparatively rapidly (in astro-
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physical terms) were they not maintained by dynamo action. The Earth’s magnetic field is

maintained by the motion of its molten core, which can be treated as an MHD fluid to a

reasonable approximation.

Thirdly, the creation of the hydrogen bomb in 1952 generated a great deal of inter-

est in controlled thermonuclear fusion as a possible power source for the future. At first,

this research was carried out secretly, and independently, by the United States, the Soviet

Union, and Great Britain. However, in 1958 thermonuclear fusion research was declassi-

fied, leading to the publication of a number of immensely important and influential papers

in the late 1950’s and the early 1960’s. Broadly speaking, theoretical plasma physics first

emerged as a mathematically rigorous discipline in these years. Not surprisingly, Fusion

physicists are mostly concerned with understanding how a thermonuclear plasma can be

trapped—in most cases by a magnetic field—and investigating the many plasma instabili-

ties which may allow it to escape.

Fourthly, James A. Van Allen’s discovery in 1958 of the Van Allen radiation belts sur-

rounding the Earth, using data transmitted by the U.S. Explorer satellite, marked the start

of the systematic exploration of the Earth’s magnetosphere via satellite, and opened up the

field of space plasma physics. Space scientists borrowed the theory of plasma trapping by a

magnetic field from fusion research, the theory of plasma waves from ionospheric physics,

and the notion of magnetic reconnection as a mechanism for energy release and particle

acceleration from astrophysics.

Finally, the development of high powered lasers in the 1960’s opened up the field of

laser plasma physics. When a high powered laser beam strikes a solid target, material is im-

mediately ablated, and a plasma forms at the boundary between the beam and the target.

Laser plasmas tend to have fairly extreme properties (e.g., densities characteristic of solids)

not found in more conventional plasmas. A major application of laser plasma physics is the

approach to fusion energy known as inertial confinement fusion. In this approach, tightly

focused laser beams are used to implode a small solid target until the densities and temper-

atures characteristic of nuclear fusion (i.e., the centre of a hydrogen bomb) are achieved.

Another interesting application of laser plasma physics is the use of the extremely strong

electric fields generated when a high intensity laser pulse passes through a plasma to ac-

celerate particles. High-energy physicists hope to use plasma acceleration techniques to

dramatically reduce the size and cost of particle accelerators.

1.4 Basic Parameters

Consider an idealized plasma consisting of an equal number of electrons, with mass me

and charge −e (here, e denotes the magnitude of the electron charge), and ions, with mass

mi and charge +e. We do not necessarily demand that the system has attained thermal

equilibrium, but nevertheless use the symbol

Ts ≡
1

3
ms 〈 v 2s 〉 (1.1)
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to denote a kinetic temperature measured in energy units (i.e., joules). Here, v is a particle

speed, and the angular brackets denote an ensemble average. The kinetic temperature of

species s is essentially the average kinetic energy of particles of this species. In plasma

physics, kinetic temperature is invariably measured in electron-volts (1 joule is equivalent

to 6.24× 1018 eV).

Quasi-neutrality demands that

ni ≃ ne ≡ n, (1.2)

where ns is the number density (i.e., the number of particles per cubic meter) of species s.

Assuming that both ions and electrons are characterized by the same T (which is, by

no means, always the case in plasmas), we can estimate typical particle speeds via the

so-called thermal speed,

vts ≡
√

2 T/ms. (1.3)

Note that the ion thermal speed is usually far smaller than the electron thermal speed:

vti ∼
√

me/mi vte. (1.4)

Of course, n and T are generally functions of position in a plasma.

1.5 Plasma Frequency

The plasma frequency,

ω 2
p =

ne2

ǫ0m
, (1.5)

is the most fundamental time-scale in plasma physics. Clearly, there is a different plasma

frequency for each species. However, the relatively fast electron frequency is, by far, the

most important, and references to “the plasma frequency” in text-books invariably mean

the electron plasma frequency.

It is easily seen that ωp corresponds to the typical electrostatic oscillation frequency

of a given species in response to a small charge separation. For instance, consider a one-

dimensional situation in which a slab consisting entirely of one charge species is displaced

from its quasi-neutral position by an infinitesimal distance δx. The resulting charge density

which develops on the leading face of the slab is σ = en δx. An equal and opposite

charge density develops on the opposite face. The x-directed electric field generated inside

the slab is of magnitude Ex = −σ/ǫ0 = −en δx/ǫ0. Thus, Newton’s law applied to an

individual particle inside the slab yields

m
d2δx

dt2
= e Ex = −mω 2

p δx, (1.6)

giving δx = (δx)0 cos (ωp t).

Note that plasma oscillations will only be observed if the plasma system is studied over

time periods τ longer than the plasma period τp ≡ 1/ωp, and if external actions change the
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system at a rate no faster than ωp. In the opposite case, one is clearly studying something

other than plasma physics (e.g., nuclear reactions), and the system cannot not usefully be

considered to be a plasma. Likewise, observations over length-scales L shorter than the

distance vt τp traveled by a typical plasma particle during a plasma period will also not

detect plasma behaviour. In this case, particles will exit the system before completing a

plasma oscillation. This distance, which is the spatial equivalent to τp, is called the Debye

length, and takes the form

λD ≡
√

T/m ω−1
p . (1.7)

Note that

λD =

√

ǫ0 T

n e2
(1.8)

is independent of mass, and therefore generally comparable for different species.

Clearly, our idealized system can only usefully be considered to be a plasma provided

that
λD

L
≪ 1, (1.9)

and
τp

τ
≪ 1. (1.10)

Here, τ and L represent the typical time-scale and length-scale of the process under inves-

tigation.

It should be noted that, despite the conventional requirement (1.9), plasma physics

is capable of considering structures on the Debye scale. The most important example of

this is the Debye sheath: i.e., the boundary layer which surrounds a plasma confined by a

material surface.

1.6 Debye Shielding

Plasmas generally do not contain strong electric fields in their rest frames. The shielding

of an external electric field from the interior of a plasma can be viewed as a result of high

plasma conductivity: i.e., plasma current generally flows freely enough to short out interior

electric fields. However, it is more useful to consider the shielding as a dielectric phenom-

ena: i.e., it is the polarization of the plasma medium, and the associated redistribution of

space charge, which prevents penetration by an external electric field. Not surprisingly,

the length-scale associated with such shielding is the Debye length.

Let us consider the simplest possible example. Suppose that a quasi-neutral plasma is

sufficiently close to thermal equilibrium that its particle densities are distributed according

to the Maxwell-Boltzmann law,

ns = n0 e−esΦ/T , (1.11)

where Φ(r) is the electrostatic potential, and n0 and T are constant. From ei = −ee = e, it

is clear that quasi-neutrality requires the equilibrium potential to be a constant. Suppose
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that this equilibrium potential is perturbed, by an amount δΦ, by a small, localized charge

density δρext. The total perturbed charge density is written

δρ = δρext + e (δni − δne) = δρext − 2 e
2 n0 δΦ/T. (1.12)

Thus, Poisson’s equation yields

∇2δΦ = −
δρ

ǫ0
= −

(

δρext − 2 e
2 n0 δΦ/T

ǫ0

)

, (1.13)

which reduces to
(

∇2 −
2

λ 2
D

)

δΦ = −
δρext

ǫ0
. (1.14)

If the perturbing charge density actually consists of a point charge q, located at the origin,

so that δρext = q δ(r), then the solution to the above equation is written

δΦ(r) =
q

4πǫ0 r
e−

√
2 r/λD . (1.15)

Clearly, the Coulomb potential of the perturbing point charge q is shielded on distance

scales longer than the Debye length by a shielding cloud of approximate radius λD consist-

ing of charge of the opposite sign.

Note that the above argument, by treating n as a continuous function, implicitly as-

sumes that there are many particles in the shielding cloud. Actually, Debye shielding

remains statistically significant, and physical, in the opposite limit in which the cloud is

barely populated. In the latter case, it is the probability of observing charged particles

within a Debye length of the perturbing charge which is modified.

1.7 Plasma Parameter

Let us define the average distance between particles,

rd ≡ n−1/3, (1.16)

and the distance of closest approach,

rc ≡
e2

4πǫ0 T
. (1.17)

Recall that rc is the distance at which the Coulomb energy

U(r, v) =
1

2
mv2 −

e2

4πǫ0 r
(1.18)

of one charged particle in the electrostatic field of another vanishes. Thus, U(rc, vt) = 0.
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The significance of the ratio rd/rc is readily understood. When this ratio is small,

charged particles are dominated by one another’s electrostatic influence more or less con-

tinuously, and their kinetic energies are small compared to the interaction potential ener-

gies. Such plasmas are termed strongly coupled. On the other hand, when the ratio is large,

strong electrostatic interactions between individual particles are occasional and relatively

rare events. A typical particle is electrostatically influenced by all of the other particles

within its Debye sphere, but this interaction very rarely causes any sudden change in its

motion. Such plasmas are termed weakly coupled. It is possible to describe a weakly cou-

pled plasma using a standard Fokker-Planck equation (i.e., the same type of equation as is

conventionally used to describe a neutral gas). Understanding the strongly coupled limit

is far more difficult, and will not be attempted in this course. Actually, a strongly coupled

plasma has more in common with a liquid than a conventional weakly coupled plasma.

Let us define the plasma parameter

Λ = 4πnλ 3D . (1.19)

This dimensionless parameter is obviously equal to the typical number of particles con-

tained in a Debye sphere. However, Eqs. (1.8), (1.16), (1.17), and (1.19) can be combined

to give

Λ =
λD

rc
=

1√
4π

(

rd

rc

)3/2

=
4π ǫ

3/2
0

e3
T 3/2

n1/2
. (1.20)

It can be seen that the case Λ≪ 1, in which the Debye sphere is sparsely populated, corre-

sponds to a strongly coupled plasma. Likewise, the case Λ≫ 1, in which the Debye sphere

is densely populated, corresponds to a weakly coupled plasma. It can also be appreciated,

from Eq. (1.20), that strongly coupled plasmas tend to be cold and dense, whereas weakly

coupled plasmas are diffuse and hot. Examples of strongly coupled plasmas include solid-

density laser ablation plasmas, the very “cold” (i.e., with kinetic temperatures similar to

the ionization energy) plasmas found in “high pressure” arc discharges, and the plasmas

which constitute the atmospheres of collapsed objects such as white dwarfs and neutron

stars. On the other hand, the hot diffuse plasmas typically encountered in ionospheric

physics, astrophysics, nuclear fusion, and space plasma physics are invariably weakly cou-

pled. Table 1.1 lists the key parameters for some typical weakly coupled plasmas.

In conclusion, characteristic collective plasma behaviour is only observed on time-scales

longer than the plasma period, and on length-scales larger than the Debye length. The

statistical character of this behaviour is controlled by the plasma parameter. Although ωp,

λD, andΛ are the three most fundamental plasma parameters, there are a number of other

parameters which are worth mentioning.

1.8 Collisions

Collisions between charged particles in a plasma differ fundamentally from those between

molecules in a neutral gas because of the long range of the Coulomb force. In fact, it is
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n(m−3) T(eV) ωp(sec−1) λD(m) Λ

Interstellar 106 10−2 6× 104 0.7 4× 106
Solar Chromosphere 1018 2 6× 1010 5× 10−6 2× 103
Solar Wind (1AU) 107 10 2× 105 7 5× 1010

Ionosphere 1012 0.1 6× 107 2× 10−3 1× 105
Arc discharge 1020 1 6× 1011 7× 10−7 5× 102

Tokamak 1020 104 6× 1011 7× 10−5 4× 108
Inertial Confinement 1028 104 6× 1015 7× 10−9 5× 104

Table 1.1: Key parameters for some typical weakly coupled plasmas.

clear from the discussion in Sect. 1.7 that binary collision processes can only be defined for

weakly coupled plasmas. Note, however, that binary collisions in weakly coupled plasmas

are still modified by collective effects—the many-particle process of Debye shielding enters

in a crucial manner. Nevertheless, for large Λ we can speak of binary collisions, and

therefore of a collision frequency, denoted by νss ′ . Here, νss ′ measures the rate at which

particles of species s are scattered by those of species s ′. When specifying only a single

subscript, one is generally referring to the total collision rate for that species, including

impacts with all other species. Very roughly,

νs ≃
∑

s ′

νss ′ . (1.21)

The species designations are generally important. For instance, the relatively small elec-

tron mass implies that, for unit ionic charge and comparable species temperatures,

νe ∼

(

mi

me

)1/2

νi. (1.22)

Note that the collision frequency ν measures the frequency with which a particle trajec-

tory undergoes a major angular change due to Coulomb interactions with other particles.

Coulomb collisions are, in fact, predominately small angle scattering events, so the colli-

sion frequency is not the inverse of the typical time between collisions. Instead, it is the

inverse of the typical time needed for enough collisions to occur that the particle trajectory

is deviated through 90◦. For this reason, the collision frequency is sometimes termed the

“90◦ scattering rate.”

It is conventional to define the mean-free-path,

λmfp ≡ vt/ν. (1.23)

Clearly, the mean-free-path measures the typical distance a particle travels between “col-

lisions” (i.e., 90◦ scattering events). A collision-dominated, or collisional, plasma is simply

one in which

λmfp ≪ L, (1.24)
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where L is the observation length-scale. The opposite limit of large mean-free-path is said

to correspond to a collisionless plasma. Collisions greatly simplify plasma behaviour by

driving the system towards statistical equilibrium, characterized by Maxwell-Boltzmann

distribution functions. Furthermore, short mean-free-paths generally ensure that plasma

transport is local (i.e., diffusive) in nature, which is a considerable simplification.

The typical magnitude of the collision frequency is

ν ∼
lnΛ

Λ
ωp. (1.25)

Note that ν ≪ ωp in a weakly coupled plasma. It follows that collisions do not seriously

interfere with plasma oscillations in such systems. On the other hand, Eq. (1.25) implies

that ν ≫ ωp in a strongly coupled plasma, suggesting that collisions effectively prevent

plasma oscillations in such systems. This accords well with our basic picture of a strongly

coupled plasma as a system dominated by Coulomb interactions which does not exhibit

conventional plasma dynamics. It follows from Eqs. (1.5) and (1.20) that

ν ∼
e4 lnΛ

4πǫ 2
0 m

1/2

n

T 3/2
. (1.26)

Thus, diffuse, high temperature plasmas tend to be collisionless, whereas dense, low tem-

perature plasmas are more likely to be collisional.

Note that whilst collisions are crucial to the confinement and dynamics (e.g., sound

waves) of neutral gases, they play a far less important role in plasmas. In fact, in many

plasmas the magnetic field effectively plays the role that collisions play in a neutral gas.

In such plasmas, charged particles are constrained from moving perpendicular to the field

by their small Larmor orbits, rather than by collisions. Confinement along the field-lines

is more difficult to achieve, unless the field-lines form closed loops (or closed surfaces).

Thus, it makes sense to talk about a “collisionless plasma,” whereas it makes little sense

to talk about a “collisionless neutral gas.” Note that many plasmas are collisionless to a

very good approximation, especially those encountered in astrophysics and space plasma

physics contexts.

1.9 Magnetized Plasmas

A magnetized plasma is one in which the ambient magnetic field B is strong enough to

significantly alter particle trajectories. In particular, magnetized plasmas are anisotropic,

responding differently to forces which are parallel and perpendicular to the direction of

B. Note that a magnetized plasma moving with mean velocity V contains an electric field

E = −V × B which is not affected by Debye shielding. Of course, in the rest frame of the

plasma the electric field is essentially zero.

As is well-known, charged particles respond to the Lorentz force,

F = q v × B, (1.27)
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by freely streaming in the direction of B, whilst executing circular Larmor orbits, or gyro-

orbits, in the plane perpendicular to B. As the field-strength increases, the resulting helical

orbits become more tightly wound, effectively tying particles to magnetic field-lines.

The typical Larmor radius, or gyroradius, of a charged particle gyrating in a magnetic

field is given by

ρ ≡ vt

Ω
, (1.28)

where

Ω = eB/m (1.29)

is the cyclotron frequency, or gyrofrequency, associated with the gyration. As usual, there

is a distinct gyroradius for each species. When species temperatures are comparable, the

electron gyroradius is distinctly smaller than the ion gyroradius:

ρe ∼

(

me

mi

)1/2

ρi. (1.30)

A plasma system, or process, is said to be magnetized if its characteristic length-scale L

is large compared to the gyroradius. In the opposite limit, ρ ≫ L, charged particles have

essentially straight-line trajectories. Thus, the ability of the magnetic field to significantly

affect particle trajectories is measured by the magnetization parameter

δ ≡ ρ

L
. (1.31)

There are some cases of interest in which the electrons are magnetized, but the ions are

not. However, a “magnetized” plasma conventionally refers to one in which both species

are magnetized. This state is generally achieved when

δi ≡
ρi

L
≪ 1. (1.32)

1.10 Plasma Beta

The fundamental measure of a magnetic field’s effect on a plasma is the magnetization

parameter δ. The fundamental measure of the inverse effect is called β, and is defined as

the ratio of the thermal energy density nT to the magnetic energy density B2/2 µ0. It is

conventional to identify the plasma energy density with the pressure,

p ≡ nT, (1.33)

as in an ideal gas, and to define a separate βs for each plasma species. Thus,

βs =
2 µ0 ps

B2
. (1.34)

The total β is written

β =
∑

s

βs. (1.35)



16 PLASMA PHYSICS



Charged Particle Motion 17

2 Charged Particle Motion

2.1 Introduction

All descriptions of plasma behaviour are based, ultimately, on the motions of the con-

stituent particles. For the case of an unmagnetized plasma, the motions are fairly trivial,

since the constituent particles move essentially in straight lines between collisions. The

motions are also trivial in a magnetized plasma where the collision frequency ν greatly

exceeds the gyrofrequency Ω: in this case, the particles are scattered after executing only

a small fraction of a gyro-orbit, and, therefore, still move essentially in straight lines be-

tween collisions. The situation of primary interest in this section is that of a collisionless

(i.e., ν≪ Ω), magnetized plasma, where the gyroradius ρ is much smaller than the typical

variation length-scale L of the E and B fields, and the gyroperiod Ω−1 is much less than

the typical time-scale τ on which these fields change. In such a plasma, we expect the

motion of the constituent particles to consist of a rapid gyration perpendicular to magnetic

field-lines, combined with free-streaming parallel to the field-lines. We are particularly in-

terested in calculating how this motion is affected by the spatial and temporal gradients in

the E and B fields. In general, the motion of charged particles in spatially and temporally

non-uniform electromagnetic fields is extremely complicated: however, we hope to consid-

erably simplify this motion by exploiting the assumed smallness of the parameters ρ/L and

(Ωτ)−1. What we are really trying to understand, in this section, is how the magnetic con-

finement of an essentially collisionless plasma works at an individual particle level. Note

that the type of collisionless, magnetized plasma considered in this section occurs primar-

ily in magnetic fusion and space plasma physics contexts. In fact, in the following we shall

be studying methods of analysis first developed by fusion physicists, and illustrating these

methods primarily by investigating problems of interest in magnetospheric physics.

2.2 Motion in Uniform Fields

Let us, first of all, consider the motion of charged particles in spatially and temporally

uniform electromagnetic fields. The equation of motion of an individual particle takes the

form

m
dv

dt
= e (E + v × B). (2.1)

The component of this equation parallel to the magnetic field,

dv‖
dt

=
e

m
E‖, (2.2)

predicts uniform acceleration along magnetic field-lines. Consequently, plasmas near equi-

librium generally have either small or vanishing E‖.
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As can easily be verified by substitution, the perpendicular component of Eq. (2.1)

yields

v⊥ =
E × B

B2
+ ρΩ [e1 sin(Ωt+ γ0) + e2 cos(Ωt+ γ0)] , (2.3)

where Ω = eB/m is the gyrofrequency, ρ is the gyroradius, e1 and e2 are unit vectors

such that (e1, e2, B) form a right-handed, mutually orthogonal set, and γ0 is the initial

gyrophase of the particle. The motion consists of gyration around the magnetic field at

frequency Ω, superimposed on a steady drift at velocity

vE =
E × B

B2
. (2.4)

This drift, which is termed the E-cross-B drift by plasma physicists, is identical for all plasma

species, and can be eliminated entirely by transforming to a new inertial frame in which

E⊥ = 0. This frame, which moves with velocity vE with respect to the old frame, can

properly be regarded as the rest frame of the plasma.

We complete the solution by integrating the velocity to find the particle position:

r(t) = R(t) + ρ(t), (2.5)

where

ρ(t) = ρ [−e1 cos(Ωt+ γ0) + e2 sin(Ωt+ γ0)], (2.6)

and

R(t) =

(

v0 ‖ t+
e

m
E‖
t2

2

)

b + vE t. (2.7)

Here, b ≡ B/B. Of course, the trajectory of the particle describes a spiral. The gyrocentre

R of this spiral, termed the guiding centre by plasma physicists, drifts across the magnetic

field with velocity vE, and also accelerates along the field at a rate determined by the

parallel electric field.

The concept of a guiding centre gives us a clue as to how to proceed. Perhaps, when

analyzing charged particle motion in non-uniform electromagnetic fields, we can somehow

neglect the rapid, and relatively uninteresting, gyromotion, and focus, instead, on the far

slower motion of the guiding centre? Clearly, what we need to do in order to achieve

this goal is to somehow average the equation of motion over gyrophase, so as to obtain a

reduced equation of motion for the guiding centre.

2.3 Method of Averaging

In many dynamical problems, the motion consists of a rapid oscillation superimposed on

a slow secular drift. For such problems, the most efficient approach is to describe the

evolution in terms of the average values of the dynamical variables. The method outlined

below is adapted from a classic paper by Morozov and Solov’ev.1

1A.I. Morozov, and L.S. Solev’ev, Motion of Charged Particles in Electromagnetic Fields, in Reviews of Plasma

Physics, Vol. 2 (Consultants Bureau, New York NY, 1966).
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Consider the equation of motion

dz

dt
= f(z, t, τ), (2.8)

where f is a periodic function of its last argument, with period 2π, and

τ = t/ǫ. (2.9)

Here, the small parameter ǫ characterizes the separation between the short oscillation

period τ and the time-scale t for the slow secular evolution of the “position” z.

The basic idea of the averaging method is to treat t and τ as distinct independent

variables, and to look for solutions of the form z(t, τ) which are periodic in τ. Thus, we

replace Eq. (2.8) by
∂z

∂t
+
1

ǫ

∂z

∂τ
= f(z, t, τ), (2.10)

and reserve Eq. (2.9) for substitution in the final result. The indeterminacy introduced by

increasing the number of variables is lifted by the requirement of periodicity in τ. All of the

secular drifts are thereby attributed to the t-variable, whilst the oscillations are described

entirely by the τ-variable.

Let us denote the τ-average of z by Z, and seek a change of variables of the form

z(t, τ) = Z(t) + ǫ ζ(Z, t, τ). (2.11)

Here, ζ is a periodic function of τ with vanishing mean. Thus,

〈ζ(Z, t, τ)〉 ≡ 1

2π

∮

ζ(Z, t, τ)dτ = 0, (2.12)

where
∮

denotes the integral over a full period in τ.

The evolution of Z is determined by substituting the expansions

ζ = ζ0(Z, t, τ) + ǫ ζ1(Z, t, τ) + ǫ
2 ζ2(Z, t, τ) + · · · , (2.13)

dZ

dt
= F0(Z, t) + ǫ F1(Z, t) + ǫ

2 F2(Z, t) + · · · , (2.14)

into the equation of motion (2.10), and solving order by order in ǫ.

To lowest order, we obtain

F0(Z, t) +
∂ζ0
∂τ

= f(Z, t, τ). (2.15)

The solubility condition for this equation is

F0(Z, t) = 〈f(Z, t, τ)〉. (2.16)



20 PLASMA PHYSICS

Integrating the oscillating component of Eq. (2.15) yields

ζ0(Z, t, τ) =

∫ τ

0

(f − 〈f〉) dτ ′. (2.17)

To first order, we obtain

F1 +
∂ζ0
∂t

+ F0 · ∇ζ0 +
∂ζ1

∂τ
= ζ0 · ∇f. (2.18)

The solubility condition for this equation yields

F1 = 〈ζ0 · ∇f〉. (2.19)

The final result is obtained by combining Eqs. (2.16) and (2.19):

dZ

dt
= 〈f〉+ ǫ 〈ζ0 · ∇f〉+O(ǫ2). (2.20)

Note that f = f(Z, t) in the above equation. Evidently, the secular motion of the “guiding

centre” position Z is determined to lowest order by the average of the “force” f, and to next

order by the correlation between the oscillation in the “position” z and the oscillation in

the spatial gradient of the “force.”

2.4 Guiding Centre Motion

Consider the motion of a charged particle in the limit in which the electromagnetic fields

experienced by the particle do not vary much in a gyroperiod: i.e.,

ρ |∇B| ≪ B, (2.21)

1

Ω

∂B

∂t
≪ B. (2.22)

The electric force is assumed to be comparable to the magnetic force. To keep track of the

order of the various quantities, we introduce the parameter ǫ as a book-keeping device,

and make the substitution ρ → ǫ ρ, as well as (E,B, Ω) → ǫ−1(E,B, Ω). The parameter ǫ

is set to unity in the final answer.

In order to make use of the technique described in the previous section, we write the

dynamical equations in first-order differential form,

dr

dt
= v, (2.23)

dv

dt
=

e

ǫm
(E + v × B), (2.24)
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and seek a change of variables,

r = R + ǫρ(R,U, t, γ), (2.25)

v = U + u(R,U, t, γ), (2.26)

such that the new guiding centre variables R and U are free of oscillations along the particle

trajectory. Here, γ is a new independent variable describing the phase of the gyrating

particle. The functions ρ and u represent the gyration radius and velocity, respectively. We

require periodicity of these functions with respect to their last argument, with period 2π,

and with vanishing mean:

〈ρ〉 = 〈u〉 = 0. (2.27)

Here, the angular brackets refer to the average over a period in γ.

The equation of motion is used to determine the coefficients in the expansion of ρ and

u:

ρ = ρ0(R,U, t, γ) + ǫρ1(R,U, t, γ) + · · · , (2.28)

u = u0(R,U, t, γ) + ǫu1(R,U, t, γ) + · · · . (2.29)

The dynamical equation for the gyrophase is likewise expanded, assuming that dγ/dt ≃
Ω = O(ǫ−1),

dγ

dt
= ǫ−1ω−1(R,U, t) +ω0(R,U, t) + · · · . (2.30)

In the following, we suppress the subscripts on all quantities except the guiding centre ve-

locity U, since this is the only quantity for which the first-order corrections are calculated.

To each order in ǫ, the evolution of the guiding centre position R and velocity U are

determined by the solubility conditions for the equations of motion (2.23)–(2.24) when

expanded to that order. The oscillating components of the equations of motion determine

the evolution of the gyrophase. Note that the velocity equation (2.23) is linear. It follows

that, to all orders in ǫ, its solubility condition is simply

dR

dt
= U. (2.31)

To lowest order [i.e., O(ǫ−1)], the momentum equation (2.24) yields

ω
∂u

∂γ
−Ωu × b =

e

m
(E + U0 × B) . (2.32)

The solubility condition (i.e., the gyrophase average) is

E + U0 × B = 0. (2.33)

This immediately implies that

E‖ ≡ E · b ∼ ǫE. (2.34)
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Clearly, the rapid acceleration caused by a large parallel electric field would invalidate the

ordering assumptions used in this calculation. Solving for U0, we obtain

U0 = U0 ‖ b + vE, (2.35)

where all quantities are evaluated at the guiding-centre position R. The perpendicular

component of the velocity, vE, has the same form (2.4) as for uniform fields. Note that the

parallel velocity is undetermined at this order.

The integral of the oscillating component of Eq. (2.32) yields

u = c + u⊥ [e1 sin (Ωγ/ω) + e2 cos (Ωγ/ω)] , (2.36)

where c is a constant vector, and e1 and e2 are again mutually orthogonal unit vectors

perpendicular to b. All quantities in the above equation are functions of R, U, and t. The

periodicity constraint, plus Eq. (2.27), require that ω = Ω(R, t) and c = 0. The gyration

velocity is thus

u = u⊥ (e1 sinγ+ e2 cosγ) , (2.37)

and the gyrophase is given by

γ = γ0 +Ωt, (2.38)

where γ0 is the initial phase. Note that the amplitude u⊥ of the gyration velocity is unde-

termined at this order.

The lowest order oscillating component of the velocity equation (2.23) yields

Ω
∂ρ

∂γ
= u. (2.39)

This is easily integrated to give

ρ = ρ (−e1 cosγ+ e2 sinγ), (2.40)

where ρ = u⊥/Ω. It follows that

u = Ωρ× b. (2.41)

The gyrophase average of the first-order [i.e., O(ǫ0)] momentum equation (2.24) re-

duces to
dU0

dt
=
e

m

[

E‖ b + U1 × B + 〈u × (ρ · ∇)B〉
]

. (2.42)

Note that all quantities in the above equation are functions of the guiding centre position

R, rather than the instantaneous particle position r. In order to evaluate the last term, we

make the substitution u = Ωρ× b and calculate

〈(ρ× b)× (ρ · ∇)B〉 = b 〈ρ · (ρ · ∇)B〉− 〈ρ b · (ρ · ∇)B〉
= b 〈ρ · (ρ · ∇)B〉− 〈ρ (ρ · ∇B)〉. (2.43)
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The averages are specified by

〈ρρ〉 = u 2
⊥

2Ω2
(I − bb), (2.44)

where I is the identity tensor. Thus, making use of I :∇B = ∇·B = 0, it follows that

−e 〈u × (ρ · ∇)B〉 = mu 2
⊥

2 B
∇B. (2.45)

This quantity is the secular component of the gyration induced fluctuations in the magnetic

force acting on the particle.

The coefficient of ∇B in the above equation,

µ =
mu 2

⊥
2 B

, (2.46)

plays a central role in the theory of magnetized particle motion. We can interpret this

coefficient as a magnetic moment by drawing an analogy between a gyrating particle and

a current loop. The (vector) magnetic moment of a current loop is simply

µ = IAn, (2.47)

where I is the current, A the area of the loop, and n the unit normal to the surface of the

loop. For a circular loop of radius ρ = u⊥/Ω, lying in the plane perpendicular to b, and

carrying the current eΩ/2π, we find

µ = I π ρ2 b =
mu 2

⊥
2 B

b. (2.48)

We shall demonstrate later on that the (scalar) magnetic moment µ is a constant of the

particle motion. Thus, the guiding centre behaves exactly like a particle with a conserved

magnetic moment µ which is always aligned with the magnetic field.

The first-order guiding centre equation of motion reduces to

m
dU0

dt
= e E‖ b + eU1 × B − µ∇B. (2.49)

The component of this equation along the magnetic field determines the evolution of the

parallel guiding centre velocity:

m
dU0 ‖
dt

= e E‖ − µ · ∇B−mb · dvE

dt
. (2.50)

Here, use has been made of Eq. (2.35) and b · db/dt = 0. The component of Eq. (2.49)

perpendicular to the magnetic field determines the first-order perpendicular drift velocity:

U1⊥ =
b

Ω
×
[

dU0

dt
+
µ

m
∇B

]

. (2.51)
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Note that the first-order correction to the parallel velocity, the parallel drift velocity, is

undetermined to this order. This is not generally a problem, since the first-order parallel

drift is a small correction to a type of motion which already exists at zeroth-order, whereas

the first-order perpendicular drift is a completely new type of motion. In particular, the

first-order perpendicular drift differs fundamentally from the E×B drift, since it is not the

same for different species, and, therefore, cannot be eliminated by transforming to a new

inertial frame.

We can now understand the motion of a charged particle as it moves through slowly

varying electric and magnetic fields. The particle always gyrates around the magnetic field

at the local gyrofrequency Ω = eB/m. The local perpendicular gyration velocity u⊥ is

determined by the requirement that the magnetic moment µ = mu 2
⊥/2 B be a constant of

the motion. This, in turn, fixes the local gyroradius ρ = u⊥/Ω. The parallel velocity of the

particle is determined by Eq. (2.50). Finally, the perpendicular drift velocity is the sum of

the E × B drift velocity vE and the first-order drift velocity U1⊥.

2.5 Magnetic Drifts

Equations (2.35) and (2.51) can be combined to give

U1⊥ =
µ

mΩ
b ×∇B+

U0 ‖
Ω

b × db

dt
+

b

Ω
× dvE

dt
. (2.52)

The three terms on the right-hand side of the above expression are conventionally called

the magnetic, or grad-B, drift, the inertial drift, and the polarization drift, respectively.

The magnetic drift,

Umag =
µ

mΩ
b ×∇B, (2.53)

is caused by the slight variation of the gyroradius with gyrophase as a charged particle

rotates in a non-uniform magnetic field. The gyroradius is reduced on the high-field side

of the Larmor orbit, whereas it is increased on the low-field side. The net result is that

the orbit does not quite close. In fact, the motion consists of the conventional gyration

around the magnetic field combined with a slow drift which is perpendicular to both the

local direction of the magnetic field and the local gradient of the field-strength.

Given that
db

dt
=
∂b

∂t
+ (vE · ∇) b +U0 ‖ (b · ∇) b, (2.54)

the inertial drift can be written

Uint =
U0 ‖
Ω

b ×
[

∂b

∂t
+ (vE · ∇) b

]

+
U 2
0 ‖
Ω

b × (b · ∇) b. (2.55)

In the important limit of stationary magnetic fields and weak electric fields, the above

expression is dominated by the final term,

Ucurv =
U 2
0 ‖
Ω

b × (b · ∇) b, (2.56)



Charged Particle Motion 25

which is called the curvature drift. As is easily demonstrated, the quantity (b · ∇) b is a

vector whose direction is towards the centre of the circle which most closely approximates

the magnetic field-line at a given point, and whose magnitude is the inverse of the radius

of this circle. Thus, the centripetal acceleration imposed by the curvature of the magnetic

field on a charged particle following a field-line gives rise to a slow drift which is perpen-

dicular to both the local direction of the magnetic field and the direction to the local centre

of curvature of the field.

The polarization drift,

Upolz =
b

Ω
× dvE

dt
, (2.57)

reduces to

Upolz =
1

Ω

d

dt

(

E⊥
B

)

(2.58)

in the limit in which the magnetic field is stationary but the electric field varies in time.

This expression can be understood as a polarization drift by considering what happens

when we suddenly impose an electric field on a particle at rest. The particle initially

accelerates in the direction of the electric field, but is then deflected by the magnetic force.

Thereafter, the particle undergoes conventional gyromotion combined with E × B drift.

The time between the switch-on of the field and the magnetic deflection is approximately

∆t ∼ Ω−1. Note that there is no deflection if the electric field is directed parallel to the

magnetic field, so this argument only applies to perpendicular electric fields. The initial

displacement of the particle in the direction of the field is of order

δ ∼
eE⊥
m

(∆t)2 ∼
E⊥
ΩB

. (2.59)

Note that, because Ω ∝ m−1, the displacement of the ions greatly exceeds that of the

electrons. Thus, when an electric field is suddenly switched on in a plasma, there is an

initial polarization of the plasma medium caused, predominately, by a displacement of

the ions in the direction of the field. If the electric field, in fact, varies continuously in

time, then there is a slow drift due to the constantly changing polarization of the plasma

medium. This drift is essentially the time derivative of Eq. (2.59) [i.e., Eq. (2.58)].

2.6 Invariance of Magnetic Moment

Let us now demonstrate that the magnetic moment µ = mu2⊥/2 B is indeed a constant of

the motion, at least to lowest order. The scalar product of the equation of motion (2.24)

with the velocity v yields

m

2

dv2

dt
= e v · E. (2.60)

This equation governs the evolution of the particle energy during its motion. Let us make

the substitution v = U+u, as before, and then average the above equation over gyrophase.
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To lowest order, we obtain

m

2

d

dt
(u 2

⊥ +U 2
0 ) = eU0 ‖ E‖ + eU1 · E + e 〈u · (ρ · ∇)E〉. (2.61)

Here, use has been made of the result

d

dt
〈f〉 = 〈df

dt
〉, (2.62)

which is valid for any f. The final term on the right-hand side of Eq. (2.61) can be written

eΩ 〈(ρ× b) · (ρ · ∇)E〉 = −µ b · ∇ × E = µ · ∂B

∂t
. (2.63)

Thus, Eq. (2.61) reduces to

dK

dt
= eU · E + µ · ∂B

∂t
= eU · E + µ

∂B

∂t
. (2.64)

Here, U is the guiding centre velocity, evaluated to first order, and

K =
m

2
(U 2

0 ‖ + v 2
E + u 2

⊥) (2.65)

is the kinetic energy of the particle. Evidently, the kinetic energy can change in one of two

ways. Either by motion of the guiding centre along the direction of the electric field, or

by the acceleration of the gyration due to the electromotive force generated around the

Larmor orbit by a changing magnetic field.

Equations (2.35), (2.50), and (2.51) can be used to eliminateU0 ‖ and U1 from Eq. (2.64).

The final result is
d

dt

(

mu 2
⊥

2 B

)

=
dµ

dt
= 0. (2.66)

Thus, the magnetic moment µ is a constant of the motion to lowest order. Kruskal2 has

shown that mu 2
⊥/2 B is the lowest order approximation to a quantity which is a constant

of the motion to all orders in the perturbation expansion. Such a quantity is called an

adiabatic invariant.

2.7 Poincaré Invariants

An adiabatic invariant is an approximation to a more fundamental type of invariant known

as a Poincaré invariant. A Poincaré invariant takes the form

I =

∮

C(t)

p · dq, (2.67)

2M. Kruskal, J. Math. Phys. 3, 806 (1962).
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where all points on the closed curve C(t) in phase-space move according to the equations

of motion.

In order to demonstrate that I is a constant of the motion, we introduce a periodic

variable s parameterizing the points on the curve C. The coordinates of a general point on

C are thus written qi = qi(s, t) and pi = pi(s, t). The rate of change of I is then

dI
dt

=

∮ (

pi
∂2qi

∂t ∂s
+
∂pi

∂t

∂qi

∂s

)

ds. (2.68)

We integrate the first term by parts, and then used Hamilton’s equations of motion to

simplify the result. We obtain

dI
dt

=

∮ (

−
∂qi

∂t

∂pi

∂s
+
∂pi

∂t

∂qi

∂s

)

ds = −

∮ (
∂H

∂pi

∂pi

∂s
+
∂H

∂qi

∂qi

∂s

)

ds, (2.69)

where H(p, q, t) is the Hamiltonian for the motion. The integrand is now seen to be the

total derivative of H along C. Since the Hamiltonian is a single-valued function, it follows

that
dI
dt

= −

∮
dH

ds
ds = 0. (2.70)

Thus, I is indeed a constant of the motion.

2.8 Adiabatic Invariants

Poincaré invariants are generally of little practical interest unless the curve C closely corre-

sponds to the trajectories of actual particles. Now, for the motion of magnetized particles

it is clear from Eqs. (2.25) and (2.38) that points having the same guiding centre at a

certain time will continue to have approximately the same guiding centre at a later time.

An approximate Poincaré invariant may thus be obtained by choosing the curve C to be a

circle of points corresponding to a gyrophase period. In other words,

I ≃ I =
∮

p · ∂q

∂γ
dγ. (2.71)

Here, I is an adiabatic invariant.

To evaluate I for a magnetized plasma recall that the canonical momentum for charged

particles is

p = m v + eA, (2.72)

where A is the vector potential. We express A in terms of its Taylor series about the guiding

centre position:

A(r) = A(R) + (ρ · ∇)A(R) +O(ρ2). (2.73)

The element of length along the curve C(t) is [see Eq. (2.39)]

dr =
∂ρ

∂γ
dγ =

u

Ω
dγ. (2.74)
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The adiabatic invariant is thus

I =

∮
u

Ω
· {m (U + u) + e [A + (ρ · ∇)A]} dγ+O(ǫ), (2.75)

which reduces to

I = 2πm
u 2
⊥
Ω

+ 2π
e

Ω
〈u · (ρ · ∇)A〉+O(ǫ). (2.76)

The final term on the right-hand side is written [see Eq. (2.41)]

2π e 〈(ρ× b) · (ρ · ∇)A〉 = −2π e
u 2
⊥

2Ω2
b · ∇ × A = −πm

u 2
⊥
Ω
. (2.77)

It follows that

I = 2π
m

e
µ+O(ǫ). (2.78)

Thus, to lowest order the adiabatic invariant is proportional to the magnetic moment µ.

2.9 Magnetic Mirrors

Consider the important case in which the electromagnetic fields do not vary in time. It

immediately follows from Eq. (2.64) that

dE
dt

= 0, (2.79)

where

E = K+ eφ =
m

2
(U 2

‖ + v 2
E ) + µB+ eφ (2.80)

is the total particle energy, and φ is the electrostatic potential. Not surprisingly, a charged

particle neither gains nor loses energy as it moves around in non-time-varying electromag-

netic fields. Since both E and µ are constants of the motion, we can rearrange Eq. (2.80)

to give

U‖ = ±
√

(2/m)[E − µB− eφ] − v 2
E . (2.81)

Thus, in regions where E > µB + eφ + m v 2
E /2 charged particles can drift in either di-

rection along magnetic field-lines. However, particles are excluded from regions where

E < µB + eφ +m v 2
E /2 (since particles cannot have imaginary parallel velocities!). Ev-

idently, charged particles must reverse direction at those points on magnetic field-lines

where E = µB+ eφ+m v 2
E /2: such points are termed “bounce points” or “mirror points.”

Let us now consider how we might construct a device to confine a collisionless (i.e.,

very hot) plasma. Obviously, we cannot use conventional solid walls, because they would

melt. However, it is possible to confine a hot plasma using a magnetic field (fortunately,

magnetic fields do not melt!): this technique is called magnetic confinement. The electric

field in confined plasmas is usually weak (i.e., E≪ Bv), so that the E×B drift is similar in
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Figure 2.1: Motion of a trapped particle in a mirror machine.

magnitude to the magnetic and curvature drifts. In this case, the bounce point condition,

U‖ = 0, reduces to

E = µB. (2.82)

Consider the magnetic field configuration shown in Fig. 1. This is most easily produced

using two Helmholtz coils. Incidentally, this type of magnetic confinement device is called

a magnetic mirror machine. The magnetic field configuration obviously possesses axial

symmetry. Let z be a coordinate which measures distance along the axis of symmetry.

Suppose that z = 0 corresponds to the mid-plane of the device (i.e., halfway between the

two field-coils).

It is clear from Fig. 2.1 that the magnetic field-strength B(z) on a magnetic field-line

situated close to the axis of the device attains a local minimum Bmin at z = 0, increases

symmetrically as |z| increases until reaching a maximum value Bmax at about the location of

the two field-coils, and then decreases as |z| is further increased. According to Eq. (2.82),

any particle which satisfies the inequality

µ > µtrap =
E
Bmax

(2.83)

is trapped on such a field-line. In fact, the particle undergoes periodic motion along the

field-line between two symmetrically placed (in z) mirror points. The magnetic field-

strength at the mirror points is

Bmirror =
µtrap

µ
Bmax < Bmax. (2.84)

Now, on the mid-plane µ = mv 2⊥/2 Bmin and E = m (v 2‖ + v 2⊥)/2. (n.b. From now on,

we shall write v = v‖ b + v⊥, for ease of notation.) Thus, the trapping condition (2.83)

reduces to
|v‖|

|v⊥|
< (Bmax/Bmin − 1)

1/2. (2.85)



30 PLASMA PHYSICS
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Figure 2.2: Loss cone in velocity space. The particles lying inside the cone are not reflected by

the magnetic field.

Particles on the mid-plane which satisfy this inequality are trapped: particles which do

not satisfy this inequality escape along magnetic field-lines. Clearly, a magnetic mirror

machine is incapable of trapping charged particles which are moving parallel, or nearly

parallel, to the direction of the magnetic field. In fact, the above inequality defines a loss

cone in velocity space—see Fig. 2.2.

It is clear that if plasma is placed inside a magnetic mirror machine then all of the

particles whose velocities lie in the loss cone promptly escape, but the remaining particles

are confined. Unfortunately, that is not the end of the story. There is no such thing as

an absolutely collisionless plasma. Collisions take place at a low rate even in very hot

plasmas. One important effect of collisions is to cause diffusion of particles in velocity

space. Thus, in a mirror machine collisions continuously scatter trapped particles into the

loss cone, giving rise to a slow leakage of plasma out of the device. Even worse, plasmas

whose distribution functions deviate strongly from an isotropic Maxwellian (e.g., a plasma

confined in a mirror machine) are prone to velocity space instabilities, which tend to relax

the distribution function back to a Maxwellian. Clearly, such instabilities are likely to

have a disastrous effect on plasma confinement in a mirror machine. For these reasons,

magnetic mirror machines are not particularly successful plasma confinement devices, and

attempts to achieve nuclear fusion using this type of device have mostly been abandoned.3

3This is not quite true. In fact, fusion scientists have developed advanced mirror concepts which do not

suffer from the severe end-losses characteristic of standard mirror machines. Mirror research is still being
carried out, albeit at a comparatively low level, in Russia and Japan.
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2.10 Van Allen Radiation Belts

Plasma confinement via magnetic mirroring occurs in nature as well as in unsuccessful fu-

sion devices. For instance, the Van Allen radiation belts, which surround the Earth, consist

of energetic particles trapped in the Earth’s dipole-like magnetic field. These belts were

discovered by James A. Van Allen and co-workers using data taken from Geiger counters

which flew on the early U.S. satellites, Explorer 1 (which was, in fact, the first U.S. satel-

lite), Explorer 4, and Pioneer 3. Van Allen was actually trying to measure the flux of cosmic

rays (high energy particles whose origin is outside the Solar System) in outer space, to see

if it was similar to that measured on Earth. However, the flux of energetic particles de-

tected by his instruments so greatly exceeded the expected value that it prompted one of

his co-workers to exclaim, “My God, space is radioactive!” It was quickly realized that this

flux was due to energetic particles trapped in the Earth’s magnetic field, rather than to

cosmic rays.

There are, in fact, two radiation belts surrounding the Earth. The inner belt, which

extends from about 1–3 Earth radii in the equatorial plane is mostly populated by protons

with energies exceeding 10 MeV. The origin of these protons is thought to be the decay

of neutrons which are emitted from the Earth’s atmosphere as it is bombarded by cosmic

rays. The inner belt is fairly quiescent. Particles eventually escape due to collisions with

neutral atoms in the upper atmosphere above the Earth’s poles. However, such collisions

are sufficiently uncommon that the lifetime of particles in the belt range from a few hours

to 10 years. Clearly, with such long trapping times only a small input rate of energetic

particles is required to produce a region of intense radiation.

The outer belt, which extends from about 3–9 Earth radii in the equatorial plane, con-

sists mostly of electrons with energies below 10 MeV. The origin of these electrons is via

injection from the outer magnetosphere. Unlike the inner belt, the outer belt is very dy-

namic, changing on time-scales of a few hours in response to perturbations emanating

from the outer magnetosphere.

In regions not too far distant (i.e., less than 10 Earth radii) from the Earth, the geo-

magnetic field can be approximated as a dipole field,

B =
µ0

4π

ME

r3
(−2 cosθ,− sinθ, 0), (2.86)

where we have adopted conventional spherical polar coordinates (r, θ, ϕ) aligned with the

Earth’s dipole moment, whose magnitude isME = 8.05×1022 A m2. It is usually convenient

to work in terms of the latitude, ϑ = π/2− θ, rather than the polar angle, θ. An individual

magnetic field-line satisfies the equation

r = req cos2 ϑ, (2.87)

where req is the radial distance to the field-line in the equatorial plane (ϑ = 0◦). It is

conventional to label field-lines using the L-shell parameter, L = req/RE. Here, RE = 6.37×
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106 m is the Earth’s radius. Thus, the variation of the magnetic field-strength along a field-

line characterized by a given L-value is

B =
BE

L3
(1+ 3 sin2 ϑ)1/2

cos6 ϑ
, (2.88)

where BE = µ0ME/(4πR
3
E ) = 3.11× 10−5 T is the equatorial magnetic field-strength on the

Earth’s surface.

Consider, for the sake of simplicity, charged particles located on the equatorial plane

(ϑ = 0◦) whose velocities are predominately directed perpendicular to the magnetic field.

The proton and electron gyrofrequencies are written4

Ωp =
e B

mp

= 2.98 L−3 kHz, (2.89)

and

|Ωe| =
e B

me

= 5.46 L−3 MHz, (2.90)

respectively. The proton and electron gyroradii, expressed as fractions of the Earth’s radius,

take the form

ρp

RE
=

√

2 Emp

e BRE
=
√

E(MeV)

(

L

11.1

)3

, (2.91)

and
ρe

RE
=

√
2 Eme

e BRE
=
√

E(MeV)

(

L

38.9

)3

, (2.92)

respectively. It is clear that MeV energy charged particles in the inner magnetosphere (i.e,

L≪ 10) gyrate at frequencies which are much greater than the typical rate of change of the

magnetic field (which changes on time-scales which are, at most, a few minutes). Likewise,

the gyroradii of such particles are much smaller than the typical variation length-scale of

the magnetospheric magnetic field. Under these circumstances, we expect the magnetic

moment to be a conserved quantity: i.e., we expect the magnetic moment to be a good

adiabatic invariant. It immediately follows that any MeV energy protons and electrons

in the inner magnetosphere which have a sufficiently large magnetic moment are trapped

on the dipolar field-lines of the Earth’s magnetic field, bouncing back and forth between

mirror points located just above the Earth’s poles.

It is helpful to define the pitch-angle,

α = tan−1(v⊥/v‖), (2.93)

of a charged particle in the magnetosphere. If the magnetic moment is a conserved quan-

tity then a particle of fixed energy drifting along a field-line satisfies

sin2 α

sin2 αeq

=
B

Beq

, (2.94)

4It is conventional to take account of the negative charge of electrons by making the electron gyrofre-
quency Ωe negative. This approach is implicit in formulae such as Eq. (2.52).
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where αeq is the equatorial pitch-angle (i.e., the pitch-angle on the equatorial plane) and

Beq = BE/L
3 is the magnetic field-strength on the equatorial plane. It is clear from

Eq. (2.88) that the pitch-angle increases (i.e., the parallel component of the particle veloc-

ity decreases) as the particle drifts off the equatorial plane towards the Earth’s poles.

The mirror points correspond to α = 90◦ (i.e., v‖ = 0). It follows from Eqs. (2.88) and

(2.94) that

sin2 αeq =
Beq

Bm
=

cos6 ϑm

(1+ 3 sin2 ϑm)1/2
, (2.95)

where Bm is the magnetic field-strength at the mirror points, and ϑm is the latitude of

the mirror points. Clearly, the latitude of a particle’s mirror point depends only on its

equatorial pitch-angle, and is independent of the L-value of the field-line on which it is

trapped.

Charged particles with large equatorial pitch-angles have small parallel velocities, and

mirror points located at relatively low latitudes. Conversely, charged particles with small

equatorial pitch-angles have large parallel velocities, and mirror points located at high lat-

itudes. Of course, if the pitch-angle becomes too small then the mirror points enter the

Earth’s atmosphere, and the particles are lost via collisions with neutral particles. Neglect-

ing the thickness of the atmosphere with respect to the radius of the Earth, we can say that

all particles whose mirror points lie inside the Earth are lost via collisions. It follows from

Eq. (2.95) that the equatorial loss cone is of approximate width

sin2 αl =
cos6 ϑE

(1+ 3 sin2 ϑE)1/2
, (2.96)

where ϑE is the latitude of the point where the magnetic field-line under investigation

intersects the Earth. Note that all particles with |αeq| < αl and |π− αeq| < αl lie in the loss

cone. It is easily demonstrated from Eq. (2.87) that

cos2 ϑE = L
−1. (2.97)

It follows that

sin2 αl = (4 L6 − 3 L5)−1/2. (2.98)

Thus, the width of the loss cone is independent of the charge, the mass, or the energy of

the particles drifting along a given field-line, and is a function only of the field-line radius

on the equatorial plane. The loss cone is surprisingly small. For instance, at the radius of

a geostationary orbit (6.6 RE), the loss cone is less than 3◦ degrees wide. The smallness of

the loss cone is a consequence of the very strong variation of the magnetic field-strength

along field-lines in a dipole field—see Eqs. (2.85) and (2.88).

A dipole field is clearly a far more effective configuration for confining a collisionless

plasma via magnetic mirroring than the more traditional linear configuration shown in

Fig. 2.1. In fact, M.I.T. has recently constructed a dipole mirror machine. The dipole field

is generated by a superconducting current loop levitating in a vacuum chamber.
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The bounce period, τb, is the time it takes a particle to move from the equatorial plane

to one mirror point, then to the other, and then return to the equatorial plane. It follows

that

τb = 4

∫ϑm

0

dϑ

v‖

ds

dϑ
, (2.99)

where ds is an element of arc length along the field-line under investigation, and v‖ =

v (1 − B/Bm)
1/2. The above integral cannot be performed analytically. However, it can be

solved numerically, and is conveniently approximated as

τb ≃
LRE

(E/m)1/2
(3.7− 1.6 sinαeq). (2.100)

Thus, for protons

(τb)p ≃ 2.41
L

√

E(MeV)
(1− 0.43 sinαeq) secs, (2.101)

whilst for electrons

(τb)e ≃ 5.62× 10−2
L

√

E(MeV)
(1− 0.43 sinαeq) secs. (2.102)

It follows that MeV electrons typically have bounce periods which are less than a second,

whereas the bounce periods for MeV protons usually lie in the range 1 to 10 seconds. The

bounce period only depends weakly on equatorial pitch-angle, since particles with small

pitch angles have relatively large parallel velocities but a comparatively long way to travel

to their mirror points, and vice versa. Naturally, the bounce period is longer for longer

field-lines (i.e., for larger L).

2.11 Ring Current

Up to now, we have only considered the lowest order motion (i.e., gyration combined

with parallel drift) of charged particles in the magnetosphere. Let us now examine the

higher order corrections to this motion. For the case of non-time-varying fields, and a

weak electric field, these corrections consist of a combination of E × B drift, grad-B drift,

and curvature drift:

v1⊥ =
E × B

B2
+

µ

mΩ
b ×∇B +

v 2‖
Ω

b × (b · ∇) b. (2.103)

Let us neglect E × B drift, since this motion merely gives rise to the convection of plasma

within the magnetosphere, without generating a current. By contrast, there is a net current

associated with grad-B drift and curvature drift. In the limit in which this current does not

strongly modify the ambient magnetic field (i.e., ∇×B ≃ 0), which is certainly the situation

in the Earth’s magnetosphere, we can write

(b · ∇) b = −b × (∇× b) ≃ ∇⊥B

B
. (2.104)
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It follows that the higher order drifts can be combined to give

v1⊥ =
(v 2⊥/2+ v

2
‖ )

ΩB
b ×∇B. (2.105)

For the dipole field (2.86), the above expression yields

v1⊥ ≃ −sgn(Ω)
6 E L2
e BE RE

(1− B/2Bm)
cos5 ϑ (1+ sin2 ϑ)

(1+ 3 sin2 ϑ)2
ϕ̂. (2.106)

Note that the drift is in the azimuthal direction. A positive drift velocity corresponds

to eastward motion, whereas a negative velocity corresponds to westward motion. It is

clear that, in addition to their gyromotion and periodic bouncing motion along field-lines,

charged particles trapped in the magnetosphere also slowly precess around the Earth. The

ions drift westwards and the electrons drift eastwards, giving rise to a net westward current

circulating around the Earth. This current is known as the ring current.

Although the perturbations to the Earth’s magnetic field induced by the ring current

are small, they are still detectable. In fact, the ring current causes a slight reduction in the

Earth’s magnetic field in equatorial regions. The size of this reduction is a good measure of

the number of charged particles contained in the Van Allen belts. During the development

of so-called geomagnetic storms, charged particles are injected into the Van Allen belts from

the outer magnetosphere, giving rise to a sharp increase in the ring current, and a corre-

sponding decrease in the Earth’s equatorial magnetic field. These particles eventually pre-

cipitate out of the magnetosphere into the upper atmosphere at high latitudes, giving rise

to intense auroral activity, serious interference in electromagnetic communications, and,

in extreme cases, disruption of electric power grids. The ring current induced reduction in

the Earth’s magnetic field is measured by the so-called Dst index, which is based on hourly

averages of the northward horizontal component of the terrestrial magnetic field recorded

at four low-latitude observatories; Honolulu (Hawaii), San Juan (Puerto Rico), Hermanus

(South Africa), and Kakioka (Japan). Figure 2.3 shows the Dst index for the month of

March 1989.5 The very marked reduction in the index, centred about March 13th, cor-

responds to one of the most severe geomagnetic storms experienced in recent decades.

In fact, this particular storm was so severe that it tripped out the whole Hydro Quebec

electric distribution system, plunging more than 6 million customers into darkness. Most

of Hydro Quebec’s neighbouring systems in the United States came uncomfortably close

to experiencing the same cascading power outage scenario. Note that a reduction in the

Dst index by 600 nT corresponds to a 2% reduction in the terrestrial magnetic field at the

equator.

According to Eq. (2.106), the precessional drift velocity of charged particles in the

magnetosphere is a rapidly decreasing function of increasing latitude (i.e., most of the

ring current is concentrated in the equatorial plane). Since particles typically complete

5Dst data is freely availabel from the following web site in Kyoto (Japan):
http://swdcdb.kugi.kyoto-u.ac.jp/dstdir
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Figure 2.3: Dst data for March 1989 showing an exceptionally severe geomagnetic storm on

the 13th.

many bounce orbits during a full rotation around the Earth, it is convenient to average

Eq. (2.106) over a bounce period to obtain the average drift velocity. This averaging can

only be performed numerically. The final answer is well approximated by

〈vd〉 ≃
6 E L2
e BE RE

(0.35+ 0.15 sinαeq). (2.107)

The average drift period (i.e., the time required to perform a complete rotation around the

Earth) is simply

〈τd〉 =
2π LRE

〈vd〉
≃ π eBE R

2
E

3 E L (0.35+ 0.15 sinαeq)
−1. (2.108)

Thus, the drift period for protons and electrons is

〈τd〉p = 〈τd〉e ≃
1.05

E(MeV) L
(1+ 0.43 sinαeq)

−1 hours. (2.109)

Note that MeV energy electrons and ions precess around the Earth with about the same

velocity, only in opposite directions, because there is no explicit mass dependence in

Eq. (2.107). It typically takes an hour to perform a full rotation. The drift period only

depends weakly on the equatorial pitch angle, as is the case for the bounce period. Some-

what paradoxically, the drift period is shorter on more distant L-shells. Note, of course,

that particles only get a chance to complete a full rotation around the Earth if the inner

magnetosphere remains quiescent on time-scales of order an hour, which is, by no means,

always the case.

Note, finally, that, since the rest mass of an electron is 0.51MeV, most of the above

formulae require relativistic correction when applied to MeV energy electrons. Fortunately,

however, there is no such problem for protons, whose rest mass energy is 0.94GeV.

2.12 Second Adiabatic Invariant

We have seen that there is an adiabatic invariant associated with the periodic gyration of

a charged particle around magnetic field-lines. Thus, it is reasonable to suppose that there
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is a second adiabatic invariant associated with the periodic bouncing motion of a particle

trapped between two mirror points on a magnetic field-line. This is indeed the case.

Recall that an adiabatic invariant is the lowest order approximation to a Poincaré in-

variant:

J =

∮

C

p · dq. (2.110)

In this case, let the curve C correspond to the trajectory of a guiding centre as a charged

particle trapped in the Earth’s magnetic field executes a bounce orbit. Of course, this

trajectory does not quite close, because of the slow azimuthal drift of particles around

the Earth. However, it is easily demonstrated that the azimuthal displacement of the end

point of the trajectory, with respect to the beginning point, is of order the gyroradius.

Thus, in the limit in which the ratio of the gyroradius, ρ, to the variation length-scale of

the magnetic field, L, tends to zero, the trajectory of the guiding centre can be regarded as

being approximately closed, and the actual particle trajectory conforms very closely to that

of the guiding centre. Thus, the adiabatic invariant associated with the bounce motion can

be written

J ≃ J =
∮

p‖ ds, (2.111)

where the path of integration is along a field-line: from the equator to the upper mirror

point, back along the field-line to the lower mirror point, and then back to the equator.

Furthermore, ds is an element of arc-length along the field-line, and p‖ ≡ p · b. Using

p = m v + eA, the above expression yields

J = m

∮

v‖ ds+ e

∮

A‖ ds = m

∮

v‖ ds + eΦ. (2.112)

Here, Φ is the total magnetic flux enclosed by the curve—which, in this case, is obviously

zero. Thus, the so-called second adiabatic invariant or longitudinal adiabatic invariant takes

the form

J = m

∮

v‖ ds. (2.113)

In other words, the second invariant is proportional to the loop integral of the parallel

(to the magnetic field) velocity taken over a bounce orbit. Actually, the above “proof”

is not particularly rigorous: the rigorous proof that J is an adiabatic invariant was first

given by Northrop and Teller.6 It should be noted, of course, that J is only a constant of the

motion for particles trapped in the inner magnetosphere provided that the magnetospheric

magnetic field varies on time-scales much longer than the bounce time, τb. Since the

bounce time for MeV energy protons and electrons is, at most, a few seconds, this is not a

particularly onerous constraint.

The invariance of J is of great importance for charged particle dynamics in the Earth’s

inner magnetosphere. It turns out that the Earth’s magnetic field is distorted from pure

axisymmetry by the action of the solar wind, as illustrated in Fig. 2.4. Because of this

6T.G. Northrop, and E. Teller, Phys. Rev. 117, 215 (1960).
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Figure 2.4: The distortion of the Earth’s magnetic field by the solar wind.

asymmetry, there is no particular reason to believe that a particle will return to its earlier

trajectory as it makes a full rotation around the Earth. In other words, the particle may

well end up on a different field-line when it returns to the same azimuthal angle. However,

at a given azimuthal angle, each field-line has a different length between mirror points,

and a different variation of the field-strength B between the mirror points, for a particle

with given energy E and magnetic moment µ. Thus, each field-line represents a different

value of J for that particle. So, if J is conserved, as well as E and µ, then the particle

must return to the same field-line after precessing around the Earth. In other words, the

conservation of J prevents charged particles from spiraling radially in or out of the Van

Allen belts as they rotate around the Earth. This helps to explain the persistence of these

belts.

2.13 Third Adiabatic Invariant

It is clear, by now, that there is an adiabatic invariant associated with every periodic mo-

tion of a charged particle in an electromagnetic field. Now, we have just demonstrated

that, as a consequence of J-conservation, the drift orbit of a charged particle precessing

around the Earth is approximately closed, despite the fact that the Earth’s magnetic field

is non-axisymmetric. Thus, there must be a third adiabatic invariant associated with the

precession of particles around the Earth. Just as we can define a guiding centre associated

with a particle’s gyromotion around field-lines, we can also define a bounce centre associ-

ated with a particle’s bouncing motion between mirror points. The bounce centre lies on

the equatorial plane, and orbits the Earth once every drift period, τd. We can write the

third adiabatic invariant as

K ≃
∮

pφ ds, (2.114)

where the path of integration is the trajectory of the bounce centre around the Earth. Note

that the drift trajectory effectively collapses onto the trajectory of the bounce centre in the

limit in which ρ/L → 0—all of the particle’s gyromotion and bounce motion averages to
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zero. Now pφ = mvφ + eAφ is dominated by its second term, since the drift velocity vφ is

very small. Thus,

K ≃ e
∮

Aφ ds = eΦ, (2.115)

where Φ is the total magnetic flux enclosed by the drift trajectory (i.e., the flux enclosed

by the orbit of the bounce centre around the Earth). The above “proof” is, again, not par-

ticularly rigorous—the invariance of Φ is demonstrated rigorously by Northrup.7 Note, of

course, that Φ is only a constant of the motion for particles trapped in the inner magneto-

sphere provided that the magnetospheric magnetic field varies on time-scales much longer

than the drift period, τd. Since the drift period for MeV energy protons and electrons is

of order an hour, this is only likely to be the case when the magnetosphere is relatively

quiescent (i.e., when there are no geomagnetic storms in progress).

The invariance of Φ has interesting consequences for charged particle dynamics in the

Earth’s inner magnetosphere. Suppose, for instance, that the strength of the solar wind

were to increase slowly (i.e., on time-scales significantly longer than the drift period),

thereby, compressing the Earth’s magnetic field. The invariance of Φ would cause the

charged particles which constitute the Van Allen belts to move radially inwards, towards

the Earth, in order to conserve the magnetic flux enclosed by their drift orbits. Likewise, a

slow decrease in the strength of the solar wind would cause an outward radial motion of

the Van Allen belts.

2.14 Motion in Oscillating Fields

We have seen that charged particles can be confined by a static magnetic field. A somewhat

more surprising fact is that charged particles can also be confined by a rapidly oscillating,

inhomogeneous electromagnetic wave-field. In order to demonstrate this, we again make

use of our averaging technique. To lowest order, a particle executes simple harmonic

motion in response to an oscillating wave-field. However, to higher order, any weak in-

homogeneity in the field causes the restoring force at one turning point to exceed that at

the other. On average, this yields a net force which acts on the centre of oscillation of the

particle.

Consider a spatially inhomogeneous electromagnetic wave-field oscillating at frequency

ω:

E(r, t) = E0(r) cosωt. (2.116)

The equation of motion of a charged particle placed in this field is written

m
dv

dt
= e [E0(r) cosωt+ v × B0(r) sinωt] , (2.117)

where

B0 = −ω−1∇× E0, (2.118)

7T.G. Northrup, The Adiabatic Motion of Charged Particles (Interscience, New York NY, 1963).
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according to Faraday’s law.

In order for our averaging technique to be applicable, the electric field E0 experienced

by the particle must remain approximately constant during an oscillation. Thus,

(v · ∇)E ≪ ωE. (2.119)

When this inequality is satisfied, Eq. (2.118) implies that the magnetic force experienced

by the particle is smaller than the electric force by one order in the expansion parame-

ter. In fact, Eq. (2.119) is equivalent to the requirement, Ω ≪ ω, that the particle be

unmagnetized.

We now apply the averaging technique. We make the substitution t→ τ in the oscilla-

tory terms, and seek a change of variables,

r = R + ξ(R,U t, τ), (2.120)

v = U + u(R,U t, τ), (2.121)

such that ξ and u are periodic functions of τ with vanishing mean. Averaging dr/dt = v

again yields dR/dt = U to all orders. To lowest order, the momentum evolution equation

reduces to
∂u

∂τ
=
e

m
E0(R) cosωτ. (2.122)

The solution, taking into account the constraints 〈u〉 = 〈ξ〉 = 0, is

u =
e

mω
E0 sinωτ, (2.123)

ξ = −
e

mω2
E0 cosωτ. (2.124)

Here, 〈· · ·〉 ≡ (2π)−2
∮
(· · ·)d(ωτ) represents an oscillation average.

Clearly, there is no motion of the centre of oscillation to lowest order. To first order, the

oscillation average of Eq. (2.117) yields

dU

dt
=
e

m
〈(ξ · ∇)E + u × B〉 , (2.125)

which reduces to

dU

dt
= −

e2

m2ω2

[

(E0 · ∇)E0 〈cos2ωτ〉+ E0 × (∇× E0) 〈sin2ωτ〉
]

. (2.126)

The oscillation averages of the trigonometric functions are both equal to 1/2. Furthermore,

we have ∇(|E0|
2/2) ≡ (E0 · ∇)E0 + E0 × (∇ × E0). Thus, the equation of motion for the

centre of oscillation reduces to

m
dU

dt
= −e∇Φpond, (2.127)
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where

Φpond =
1

4

e

mω2
|E0|

2. (2.128)

It is clear that the oscillation centre experiences a force, called the ponderomotive force,

which is proportional to the gradient in the amplitude of the wave-field. The pondero-

motive force is independent of the sign of the charge, so both electrons and ions can be

confined in the same potential well.

The total energy of the oscillation centre,

Eoc =
m

2
U2 + eΦpond, (2.129)

is conserved by the equation of motion (2.126). Note that the ponderomotive potential

energy is equal to the average kinetic energy of the oscillatory motion:

eΦpond =
m

2
〈u2〉. (2.130)

Thus, the force on the centre of oscillation originates in a transfer of energy from the

oscillatory motion to the average motion.

Most of the important applications of the ponderomotive force occur in laser plasma

physics. For instance, a laser beam can propagate in a plasma provided that its frequency

exceeds the plasma frequency. If the beam is sufficiently intense then plasma particles are

repulsed from the centre of the beam by the ponderomotive force. The resulting variation

in the plasma density gives rise to a cylindrical well in the index of refraction which acts

as a wave-guide for the laser beam.
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3 Plasma Fluid Theory

3.1 Introduction

In plasma fluid theory, a plasma is characterized by a few local parameters—such as the

particle density, the kinetic temperature, and the flow velocity—the time evolution of

which are determined by means of fluid equations. These equations are analogous to,

but generally more complicated than, the equations of hydrodynamics.

Plasma physics can be viewed formally as a closure of Maxwell’s equations by means of

constitutive relations: i.e., expressions for the charge density, ρc, and the current density, j,

in terms of the electric and magnetic fields, E and B. Such relations are easily expressed

in terms of the microscopic distribution functions, Fs, for each plasma species. In fact,

ρc =
∑

s

es

∫

Fs(r, v, t)d3v, (3.1)

j =
∑

s

es

∫

vFs(r, v, t)d3v. (3.2)

Here, Fs(r, v, t) is the exact, “microscopic” phase-space density of plasma species s (charge

es, mass ms) near point (r, v) at time t. The distribution function Fs is normalized such

that its velocity integral is equal to the particle density in coordinate space. Thus,

∫

Fs(r, v, t)d3v = ns(r, t), (3.3)

where ns(r, t) is the number (per unit volume) of species-s particles near point r at time t.

If we could determine each Fs(r, v, t) in terms of the electromagnetic fields, then

Eqs. (3.1)–(3.2) would immediately give us the desired constitutive relations. Further-

more, it is easy to see, in principle, how each distribution function evolves. Phase-space

conservation requires that

∂Fs
∂t

+ v · ∇Fs + as · ∇vFs = 0, (3.4)

where ∇v is the velocity space grad-operator, and

as =
es

ms

(E + v × B) (3.5)

is the species-s particle acceleration under the influence of the E and B fields.

It would appear that the distribution functions for the various plasma species, from

which the constitutive relations are trivially obtained, are determined by a set of rather

harmless looking first-order partial differential equations. At this stage, we might wonder
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why, if plasma dynamics is apparently so simple when written in terms of distribution

functions, we need a fluid description of plasma dynamics at all. It is not at all obvious

that fluid theory represents an advance.

The above argument is misleading for several reasons. However, by far the most seri-

ous flaw is the view of Eq. (3.4) as a tractable equation. Note that this equation is easy

to derive, because it is exact, taking into account all scales from the microscopic to the

macroscopic. Note, in particular, that there is no statistical averaging involved in Eq. (3.4).

It follows that the microscopic distribution function Fs is essentially a sum of Dirac delta-

functions, each following the detailed trajectory of a single particle. Furthermore, the

electromagnetic fields in Eq. (3.4) are horribly spiky and chaotic on microscopic scales. In

other words, solving Eq. (3.4) amounts to nothing less than solving the classical electro-

magnetic many-body problem—a completely hopeless task.

A much more useful and tractable equation can be extracted from Eq. (3.4) by ensemble

averaging. The average distribution function,

F̄s ≡ 〈Fs〉ensemble, (3.6)

is sensibly smooth, and is closely related to actual experimental measurements. Simi-

larly, the ensemble averaged electromagnetic fields are also smooth. Unfortunately, the

extraction of an ensemble averaged equation from Eq. (3.4) is a mathematically challeng-

ing exercise, and always requires severe approximation. The problem is that, since the

exact electromagnetic fields depend on particle trajectories, E and B are not statistically

independent of Fs. In other words, the nonlinear acceleration term in Eq. (3.4),

〈as · ∇vFs〉ensemble 6= ās · ∇vF̄s, (3.7)

involves correlations which need to be evaluated explicitly. In the following, we introduce

the short-hand

fs ≡ F̄s. (3.8)

The traditional goal of kinetic theory is to analyze the correlations, using approxima-

tions tailored to the parameter regime of interest, and thereby express the average accel-

eration term in terms of fs and the average electromagnetic fields alone. Let us assume

that this ambitious task has already been completed, giving an expression of the form

〈as · ∇vFs〉ensemble = ās · ∇vF̄s − Cs(f), (3.9)

where Cs is a generally extremely complicated operator which accounts for the correla-

tions. Since the most important correlations result from close encounters between parti-

cles, Cs is called the collision operator (for species s). It is not necessarily a linear operator,

and usually involves the distribution functions of both species (the subscript in the argu-

ment of Cs is omitted for this reason). Hence, the ensemble averaged version of Eq. (3.4)

is written
∂fs

∂t
+ v · ∇fs + ās · ∇vfs = Cs(f). (3.10)
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In general, the above equation is very difficult to solve, because of the complexity of the

collision operator. However, there are some situations where collisions can be completely

neglected. In this case, the apparent simplicity of Eq. (3.4) is not deceptive. A useful

kinetic description is obtained by just ensemble averaging this equation to give

∂fs

∂t
+ v · ∇fs + ās · ∇vfs = 0. (3.11)

The above equation, which is known as the Vlasov equation, is tractable in sufficiently sim-

ple geometry. Nevertheless, the fluid approach has much to offer even in the Vlasov limit:

it has intrinsic advantages that weigh decisively in its favour in almost every situation.

Firstly, fluid equations possess the key simplicity of involving fewer dimensions: three

spatial dimensions instead of six phase-space dimensions. This advantage is especially

important in computer simulations.

Secondly, the fluid description is intuitively appealing. We immediately understand the

significance of fluid quantities such as density and temperature, whereas the significance

of distribution functions is far less obvious. Moreover, fluid variables are relatively easy to

measure in experiments, whereas, in most cases, it is extraordinarily difficult to measure

a distribution function accurately. There seems remarkably little point in centering our

theoretical description of plasmas on something that we cannot generally measure.

Finally, the kinetic approach to plasma physics is spectacularly inefficient. The species

distribution functions fs provide vastly more information than is needed to obtain the

constitutive relations. After all, these relations only depend on the two lowest moments

of the species distribution functions. Admittedly, fluid theory cannot generally compute ρc
and j without reference to other higher moments of the distribution functions, but it can

be regarded as an attempt to impose some efficiency on the task of dynamical closure.

3.2 Moments of the Distribution Function

The kth moment of the (ensemble averaged) distribution function fs(r, v, t) is written

Mk(r, t) =

∫

vv · · · v fs(r, v, t)d3v, (3.12)

with k factors of v. Clearly, Mk is a tensor of rank k.

The set {Mk, k = 0, 1, 2, · · ·} can be viewed as an alternative description of the distribu-

tion function, which, indeed, uniquely specifies fs when the latter is sufficiently smooth.

For example, a (displaced) Gaussian distribution is uniquely specified by three moments:

M0, the vector M1, and the scalar formed by contracting M2.

The low-order moments all have names and simple physical interpretations. First, we

have the (particle) density,

ns(r, t) =

∫

fs(r, v, t)d
3v, (3.13)
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and the particle flux density,

ns Vs(r, t) =

∫

v fs(r, v, t)d
3v. (3.14)

The quantity Vs is, of course, the flow velocity. Note that the electromagnetic sources,

(3.1)–(3.2), are determined by these lowest moments:

ρc =
∑

s

esns, (3.15)

j =
∑

s

esns Vs. (3.16)

The second-order moment, describing the flow of momentum in the laboratory frame,

is called the stress tensor, and denoted by

Ps(r, t) =

∫

ms vv fs(r, v, t)d
3v. (3.17)

Finally, there is an important third-order moment measuring the energy flux density,

Qs(r, t) =

∫
1

2
ms v

2 v fs(r, v, t)d
3v. (3.18)

It is often convenient to measure the second- and third-order moments in the rest-frame

of the species under consideration. In this case, the moments assume different names:

the stress tensor measured in the rest-frame is called the pressure tensor, ps, whereas the

energy flux density becomes the heat flux density, qs. We introduce the relative velocity,

ws ≡ v − Vs, (3.19)

in order to write

ps(r, t) =

∫

ms wsws fs(r, v, t)d
3v, (3.20)

and

qs(r, t) =

∫
1

2
msw

2
s ws fs(r, v, t)d

3v. (3.21)

The trace of the pressure tensor measures the ordinary (or “scalar”) pressure,

ps ≡
1

3
Tr (ps). (3.22)

Note that (3/2)ps is the kinetic energy density of species s:

3

2
ps =

∫
1

2
msw

2
s fs d

3v. (3.23)
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In thermodynamic equilibrium, the distribution function becomes a Maxwellian character-

ized by some temperature T , and Eq. (3.23) yields p = nT . It is, therefore, natural to

define the (kinetic) temperature as

Ts ≡
ps

ns
. (3.24)

Of course, the moments measured in the two different frames are related. By direct

substitution, it is easily verified that

Ps = ps +msns VsVs, (3.25)

Qs = qs + ps · Vs +
3

2
ps Vs +

1

2
msns V

2
s Vs. (3.26)

3.3 Moments of the Collision Operator

Boltzmann’s famous collision operator for a neutral gas considers only binary collisions,

and is, therefore, bilinear in the distribution functions of the two colliding species:

Cs(f) =
∑

s ′

Css ′(fs, fs ′), (3.27)

where Css ′ is linear in each of its arguments. Unfortunately, such bilinearity is not strictly

valid for the case of Coulomb collisions in a plasma. Because of the long-range nature of

the Coulomb interaction, the closest analogue to ordinary two-particle interaction is medi-

ated by Debye shielding, an intrinsically many-body effect. Fortunately, the departure from

bilinearity is logarithmic in a weakly coupled plasma, and can, therefore, be neglected to a

fairly good approximation (since a logarithm is a comparatively weakly varying function).

Thus, from now on, Css ′ is presumed to be bilinear.

It is important to realize that there is no simple relationship between the quantity Css ′ ,

which describes the effect on species s of collisions with species s ′, and the quantity Cs ′s.

The two operators can have quite different mathematical forms (for example, where the

masses ms and ms ′ are disparate), and they appear in different equations.

Neutral particle collisions are characterized by Boltzmann’s collisional conservation

laws: the collisional process conserves particles, momentum, and energy at each point.

We expect the same local conservation laws to hold for Coulomb collisions in a plasma:

the maximum range of the Coulomb force in a plasma is the Debye length, which is as-

sumed to be vanishingly small.

Collisional particle conservation is expressed by
∫

Css ′ d
3v = 0. (3.28)

Collisional momentum conservation requires that
∫

ms vCss ′ d
3v = −

∫

ms ′ vCs ′s d
3v. (3.29)
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That is, the net momentum exchanged between species s and s ′ must vanish. It is useful to

introduce the rate of collisional momentum exchange, called the collisional friction force,

or simply the friction force:

Fss ′ ≡
∫

ms vCss ′ d
3v. (3.30)

Clearly, Fss ′ is the momentum-moment of the collision operator. The total friction force

experienced by species s is

Fs ≡
∑

s ′

Fss ′ . (3.31)

Momentum conservation is expressed in detailed form as

Fss ′ = −Fs ′s, (3.32)

and in non-detailed form as ∑

s

Fs = 0. (3.33)

Collisional energy conservation requires the quantity

WLss ′ ≡
∫
1

2
ms v

2Css ′ d
3v (3.34)

to be conserved in collisions: i.e.,

WLss ′ +WLs ′s = 0. (3.35)

Here, the L-subscript indicates that the kinetic energy of both species is measured in the

same “lab” frame. Because of Galilean invariance, the choice of this common reference

frame does not matter.

An alternative collisional energy-moment is

Wss ′ ≡
∫
1

2
msw

2
s Css ′ d

3v : (3.36)

i.e., the kinetic energy change experienced by species s, due to collisions with species s ′,
measured in the rest frame of species s. The total energy change for species s is, of course,

Ws ≡
∑

s ′

Wss ′ . (3.37)

It is easily verified that

WLss ′ =Wss ′ + Vs · Fss ′ . (3.38)

Thus, the collisional energy conservation law can be written

Wss ′ +Ws ′s + (Vs − Vs ′) · Fss ′ = 0, (3.39)

or in non-detailed form ∑

s

(Ws + Vs · Fs) = 0. (3.40)
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3.4 Moments of the Kinetic Equation

We obtain fluid equations by taking appropriate moments of the ensemble-average kinetic

equation, (3.10). In the following, we suppress all ensemble-average over-bars for ease of

notation. It is convenient to rearrange the acceleration term,

as · ∇vfs = ∇v · (as fs). (3.41)

The two forms are equivalent because flow in velocity space under the Lorentz force is

incompressible: i.e.,

∇v · as = 0. (3.42)

Thus, Eq. (3.10) becomes

∂fs

∂t
+∇ · (v fs) +∇v · (as fs) = Cs(f). (3.43)

The rearrangement of the flow term is, of course, trivial, since v is independent of r.

The kth moment of the ensemble-average kinetic equation is obtained by multiplying

the above equation by k powers of v and integrating over velocity space. The flow term

is simplified by pulling the divergence outside the velocity integral. The acceleration term

is treated by partial integration. Note that these two terms couple the kth moment to the

(k+ 1)th and (k − 1)th moments, respectively.

Making use of the collisional conservation laws, the zeroth moment of Eq. (3.43) yields

the continuity equation for species s:

∂ns

∂t
+∇ · (ns Vs) = 0. (3.44)

Likewise, the first moment gives the momentum conservation equation for species s:

∂(msns Vs)

∂t
+∇ · Ps − esns(E + Vs × B) = Fs. (3.45)

Finally, the contracted second moment yields the energy conservation equation for species

s:
∂

∂t

(

3

2
ps +

1

2
msns V

2
s

)

+∇ · Qs − esns E · Vs =Ws + Vs · Fs. (3.46)

The interpretation of Eqs. (3.44)–(3.46) as conservation laws is straightforward. Sup-

pose that G is some physical quantity (e.g., total number of particles, total energy, . . . ),

and g(r, t) is its density:

G =

∫

gd3r. (3.47)

If G is conserved then g must evolve according to

∂g

∂t
+∇ · g = ∆g, (3.48)



50 PLASMA PHYSICS

where g is the flux density of G, and ∆g is the local rate per unit volume at which G is

created or exchanged with other entities in the fluid. Thus, the density of G at some point

changes because there is net flow of G towards or away from that point (measured by the

divergence term), or because of local sources or sinks of G (measured by the right-hand

side).

Applying this reasoning to Eq. (3.44), we see that ns Vs is indeed the species-s particle

flux density, and that there are no local sources or sinks of species-s particles.1 From

Eq. (3.45), we see that the stress tensor Ps is the species-s momentum flux density, and

that the species-s momentum is changed locally by the Lorentz force and by collisional

friction with other species. Finally, from Eq. (3.46), we see that Qs is indeed the species-s

energy flux density, and that the species-s energy is changed locally by electrical work,

energy exchange with other species, and frictional heating.

3.5 Fluid Equations

It is conventional to rewrite our fluid equations in terms of the pressure tensor, ps, and the

heat flux density, qs. Substituting from Eqs. (3.25)–(3.26), and performing a little tensor

algebra, Eqs. (3.44)–(3.46) reduce to:

dns

dt
+ ns∇·Vs = 0, (3.49)

msns
dVs

dt
+∇·ps − esns(E + Vs × B) = Fs, (3.50)

3

2

dps

dt
+
3

2
ps∇·Vs + ps : ∇Vs +∇·qs = Ws. (3.51)

Here,
d

dt
≡ ∂

∂t
+ Vs · ∇ (3.52)

is the well-known convective derivative, and

p : ∇Vs ≡ (ps)αβ
∂(Vs)β

∂rα
. (3.53)

In the above, α and β refer to Cartesian components, and repeated indices are summed

(according to the Einstein summation convention). The convective derivative, of course,

measures time variation in the local rest frame of the species-s fluid. Strictly speaking, we

should include an s subscript with each convective derivative, since this operator is clearly

different for different plasma species.

1In general, this is not true. Atomic or nuclear processes operating in a plasma can give rise to local

sources and sinks of particles of various species. However, if a plasma is sufficiently hot to be completely

ionized, but still cold enough to prevent nuclear reactions from occurring, then such sources and sinks are
usually negligible.
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There is one additional refinement to our fluid equations which is worth carrying out.

We introduce the generalized viscosity tensor, πs, by writing

ps = ps I + πs, (3.54)

where I is the unit (identity) tensor. We expect the scalar pressure term to dominate if

the plasma is relatively close to thermal equilibrium. We also expect, by analogy with

conventional fluid theory, the second term to describe viscous stresses. Indeed, this is

generally the case in plasmas, although the generalized viscosity tensor can also include

terms which are quite unrelated to conventional viscosity. Equations (3.49)–(3.51) can,

thus, be rewritten:

dns

dt
+ ns∇·Vs = 0, (3.55)

msns
dVs

dt
+∇ps +∇·πs − esns(E + Vs × B) = Fs, (3.56)

3

2

dps

dt
+
5

2
ps∇·Vs + πs : ∇Vs +∇·qs = Ws. (3.57)

According to Eq. (3.55), the species-s density is constant along a fluid trajectory unless the

species-s flow is non-solenoidal. For this reason, the condition

∇·Vs = 0 (3.58)

is said to describe incompressible species-s flow. According to Eq. (3.56), the species-s flow

accelerates along a fluid trajectory under the influence of the scalar pressure gradient, the

viscous stresses, the Lorentz force, and the frictional force due to collisions with other

species. Finally, according to Eq. (3.57), the species-s energy density (i.e., ps) changes

along a fluid trajectory because of the work done in compressing the fluid, viscous heating,

heat flow, and the local energy gain due to collisions with other species. Note that the

electrical contribution to plasma heating, which was explicit in Eq. (3.46), has now become

entirely implicit.

3.6 Entropy Production

It is instructive to rewrite the species-s energy evolution equation (3.57) as an entropy

evolution equation. The fluid definition of entropy density, which coincides with the ther-

modynamic entropy density in the limit in which the distribution function approaches a

Maxwellian, is

ss = ns log

(

T 3/2
s

ns

)

. (3.59)

The corresponding entropy flux density is written

ss = ss Vs +
qs

Ts
. (3.60)



52 PLASMA PHYSICS

Clearly, entropy is convected by the fluid flow, but is also carried by the flow of heat, in

accordance with the second law of thermodynamics. After some algebra, Eq. (3.57) can

be rearranged to give
∂ss

∂t
+∇·ss = Θs, (3.61)

where the right-hand side is given by

Θs =
Ws

Ts
−
πs : ∇Vs

Ts
−

qs

Ts
· ∇Ts
Ts
. (3.62)

It is clear, from our previous discussion of conservation laws, that the quantity Θs can

be regarded as the entropy production rate per unit volume for species s. Note that en-

tropy is produced by collisional heating, viscous heating, and heat flow down temperature

gradients.

3.7 Fluid Closure

No amount of manipulation, or rearrangement, can cure our fluid equations of their most

serious defect: the fact that they are incomplete. In their present form, (3.55)–(3.57), our

equations relate interesting fluid quantities, such as the density, ns, the flow velocity, Vs,

and the scalar pressure, ps, to unknown quantities, such as the viscosity tensor, πs, the

heat flux density, qs, and the moments of the collision operator, Fs and Ws. In order to

complete our set of equations, we need to use some additional information to express the

latter quantities in terms of the former. This process is known as closure.

Lack of closure is an endemic problem in fluid theory. Since each moment is coupled to

the next higher moment (e.g., the density evolution depends on the flow velocity, the flow

velocity evolution depends on the viscosity tensor, etc.), any finite set of exact moment

equations is bound to contain more unknowns than equations.

There are two basic types of fluid closure schemes. In truncation schemes, higher order

moments are arbitrarily assumed to vanish, or simply prescribed in terms of lower mo-

ments. Truncation schemes can often provide quick insight into fluid systems, but always

involve uncontrolled approximation. Asymptotic schemes depend on the rigorous exploita-

tion of some small parameter. They have the advantage of being systematic, and providing

some estimate of the error involved in the closure. On the other hand, the asymptotic ap-

proach to closure is mathematically very demanding, since it inevitably involves working

with the kinetic equation.

The classic example of an asymptotic closure scheme is the Chapman-Enskog theory of

a neutral gas dominated by collisions. In this case, the small parameter is the ratio of the

mean-free-path between collisions to the macroscopic variation length-scale. It is instruc-

tive to briefly examine this theory, which is very well described in a classic monograph by

Chapman and Cowling.2

2S. Chapman, and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University
Press, Cambridge UK, 1953).
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Consider a neutral gas consisting of identical hard-sphere molecules of mass m and

diameter σ. Admittedly, this is not a particularly physical model of a neutral gas, but we

are only considering it for illustrative purposes. The fluid equations for such a gas are

similar to Eqs. (3.55)–(3.57):

dn

dt
+ n∇·V = 0, (3.63)

mn
dV

dt
+∇p+∇·π+mn g = 0, (3.64)

3

2

dp

dt
+
5

2
p∇·V + π : ∇V +∇·q = 0. (3.65)

Here, n is the (particle) density, V the flow velocity, p the scalar pressure, and g the

acceleration due to gravity. We have dropped the subscript s because, in this case, there

is only a single species. Note that there is no collisional friction or heating in a single

species system. Of course, there are no electrical or magnetic forces in a neutral gas, so we

have included gravitational forces instead. The purpose of the closure scheme is to express

the viscosity tensor, π, and the heat flux density, q, in terms of n, V, or p, and, thereby,

complete the set of equations.

The mean-free-path l for hard-sphere molecules is given by

l =
1√

2 πnσ2
. (3.66)

This formula is fairly easy to understand: the volume swept out by a given molecule in

moving a mean-free-path must contain, on average, approximately one other molecule.

Note that l is completely independent of the speed or mass of the molecules. The mean-

free-path is assumed to be much smaller than the variation length-scale L of macroscopic

quantities, so that

ǫ =
l

L
≪ 1. (3.67)

In the Chapman-Enskog scheme, the distribution function is expanded, order by order,

in the small parameter ǫ:

f(r, v, t) = f0(r, v, t) + ǫ f1(r, v, t) + ǫ
2 f2(r, v, t) + · · · . (3.68)

Here, f0, f1, f2, etc., are all assumed to be of the same order of magnitude. In fact, only

the first two terms in this expansion are ever calculated. To zeroth order in ǫ, the kinetic

equation requires that f0 be a Maxwellian:

f0(r, v, t) = n(r)

(

m

2π T(r)

)3/2

exp

[

−
m (v − V)2

2 T(r)

]

. (3.69)

Recall that p = nT . Note that there is zero heat flow or viscous stress associated with

a Maxwellian distribution function. Thus, both the heat flux density, q, and the viscosity
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tensor, π, depend on the first-order non-Maxwellian correction to the distribution function,

f1.

It is possible to linearize the kinetic equation, and then rearrange it so as to obtain an

integral equation for f1 in terms of f0. This rearrangement depends crucially on the bilin-

earity of the collision operator. Incidentally, the equation is integral because the collision

operator is an integral operator. The integral equation is solved by expanding f1 in velocity

space using Laguerre polynomials (sometime called Sonine polynomials). It is possible to

reduce the integral equation to an infinite set of simultaneous algebraic equations for the

coefficients in this expansion. If the expansion is truncated, after N terms, say, then these

algebraic equations can be solved for the coefficients. It turns out that the Laguerre poly-

nomial expansion converges very rapidly. Thus, it is conventional to only keep the first two

terms in this expansion, which is usually sufficient to ensure an accuracy of about 1% in

the final result. Finally, the appropriate moments of f1 are taken, so as to obtain expression

for the heat flux density and the viscosity tensor. Strictly speaking, after evaluating f1, we

should then go on to evaluate f2, so as to ensure that f2 really is negligible compared to

f1. In reality, this is never done because the mathematical difficulties involved in such a

calculation are prohibitive.

The Chapman-Enskog method outlined above can be applied to any assumed force law

between molecules, provided that the force is sufficiently short-range (i.e., provided that

it falls off faster with increasing separation than the Coulomb force). For all sensible force

laws, the viscosity tensor is given by

παβ = −η

(

∂Vα

∂rβ
+
∂Vβ

∂rα
−
2

3
∇·V δαβ

)

, (3.70)

whereas the heat flux density takes the form

q = −κ∇T. (3.71)

Here, η is the coefficient of viscosity, and κ is the coefficient of thermal conduction. It is

convenient to write

η = mnχv, (3.72)

κ = nχt, (3.73)

where χv is the viscous diffusivity and χt is the thermal diffusivity. Note that both χv and χt
have the dimensions m2 s−1 and are, effectively, diffusion coefficients. For the special case

of hard-sphere molecules, Chapman-Enskog theory yields:

χv =
75 π1/2

64

[

1+
3

202
+ · · ·

]

ν l2 = Av ν l
2, (3.74)

χt =
5 π1/2

16

[

1+
1

44
+ · · ·

]

ν l2 = At ν l
2. (3.75)
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Here,

ν ≡ vt

l
≡
√

2 T/m

l
(3.76)

is the collision frequency. Note that the first two terms in the Laguerre polynomial expan-

sion are shown explicitly (in the square brackets) in Eqs. (3.74)–(3.75).

Equations (3.74)–(3.75) have a simple physical interpretation: the viscous and thermal

diffusivities of a neutral gas can be accounted for in terms of the random-walk diffusion of

molecules with excess momentum and energy, respectively. Recall the standard result in

stochastic theory that if particles jump an average distance l, in a random direction, ν times

a second, then the diffusivity associated with such motion is χ ∼ ν l2. Chapman-Enskog

theory basically allows us to calculate the numerical constants Av and At, multiplying ν l2

in the expressions for χv and χt, for a given force law between molecules. Obviously, these

coefficients are different for different force laws. The expression for the mean-free-path, l,

is also different for different force laws.

Let n̄, v̄t, and l̄ be typical values of the particle density, the thermal velocity, and the

mean-free-path, respectively. Suppose that the typical flow velocity is λ v̄t, and the typical

variation length-scale is L. Let us define the following normalized quantities: n̂ = n/n̄,

v̂t = vt/v̄t, l̂ = l/l̄, r̂ = r/L, ∇̂ = L∇, t̂ = λ v̄t t/L, V̂ = V/λ v̄t, T̂ = T/m v̄ 2t , ĝ =

L g/(1 + λ2) v̄ 2t , p̂ = p/m n̄ v̄ 2t , π̂ = π/λ ǫm n̄ v̄ 2t , q̂ = q/ǫm n̄ v̄ 3t . Here, ǫ = l̄/L ≪ 1.

Note that

π̂ = −Av n̂ v̂t l̂

(

∂V̂α

∂r̂β
+
∂V̂β

∂r̂α
−
2

3
∇̂·V̂ δαβ

)

, (3.77)

q̂ = −At n̂ v̂t l̂ ∇̂T̂ . (3.78)

All hatted quantities are designed to be O(1). The normalized fluid equations are written:

dn̂

dt̂
+ n̂ ∇̂·V̂ = 0, (3.79)

λ2 n̂
dV̂

dt̂
+ ∇̂p̂+ λ ǫ ∇̂·π̂+ (1+ λ2) n̂ ĝ = 0, (3.80)

λ
3

2

dp̂

dt̂
+ λ

5

2
p̂ ∇̂·V̂ + λ2 ǫ π̂ : ∇̂V̂ + ǫ ∇̂·q̂ = 0, (3.81)

where
d

dt̂
≡ ∂

∂t̂
+ V̂·∇̂. (3.82)

Note that the only large or small quantities in the above equations are the parameters λ

and ǫ.

Suppose that λ≫ 1. In other words, the flow velocity is much greater than the thermal

speed. Retaining only the largest terms in Eqs. (3.79)–(3.81), our system of fluid equations
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reduces to (in unnormalized form):

dn

dt
+ n∇·V = 0, (3.83)

dV

dt
+ g ≃ 0. (3.84)

These are called the cold-gas equations, because they can also be obtained by formally tak-

ing the limit T → 0. The cold-gas equations describe externally driven, highly supersonic,

gas dynamics. Note that the gas pressure (i.e., energy density) can be neglected in the

cold-gas limit, since the thermal velocity is much smaller than the flow velocity, and so

there is no need for an energy evolution equation. Furthermore, the viscosity can also be

neglected, since the viscous diffusion velocity is also far smaller than the flow velocity.

Suppose that λ ∼ O(1). In other words, the flow velocity is of order the thermal speed.

Again, retaining only the largest terms in Eqs. (3.79)–(3.81), our system of fluid equations

reduces to (in unnormalized form):

dn

dt
+ n∇·V = 0, (3.85)

mn
dV

dt
+∇p+mn g ≃ 0, (3.86)

3

2

dp

dt
+
5

2
p∇·V ≃ 0. (3.87)

The above equations can be rearranged to give:

dn

dt
+ n∇·V = 0, (3.88)

mn
dV

dt
+∇p+mn g ≃ 0, (3.89)

d

dt

(

p

n5/3

)

≃ 0. (3.90)

These are called the hydrodynamic equations, since they are similar to the equations gov-

erning the dynamics of water. The hydrodynamic equations govern relatively fast, inter-

nally driven, gas dynamics: in particular, the dynamics of sound waves. Note that the gas

pressure is non-negligible in the hydrodynamic limit, since the thermal velocity is of order

the flow speed, and so an energy evolution equation is needed. However, the energy equa-

tion takes a particularly simple form, because Eq. (3.90) is immediately recognizable as

the adiabatic equation of state for a monatomic gas. This is not surprising, since the flow

velocity is still much faster than the viscous and thermal diffusion velocities (hence, the

absence of viscosity and thermal conductivity in the hydrodynamic equations), in which

case the gas acts effectively like a perfect thermal insulator.

Suppose, finally, that λ ∼ ǫ. In other words, the flow velocity is of order the viscous and

thermal diffusion velocities. Our system of fluid equations now reduces to a force balance
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criterion,

∇p+mn g ≃ 0, (3.91)

to lowest order. To next order, we obtain a set of equations describing the relatively slow

viscous and thermal evolution of the gas:

dn

dt
+ n∇·V = 0, (3.92)

mn
dV

dt
+∇·π ≃ 0, (3.93)

3

2

dp

dt
+
5

2
p∇·V +∇·q ≃ 0. (3.94)

Clearly, this set of equations is only appropriate to relatively quiescent, quasi-equilibrium,

gas dynamics. Note that virtually all of the terms in our original fluid equations, (3.63)–

(3.65), must be retained in this limit.

The above investigation reveals an important truth in gas dynamics, which also applies

to plasma dynamics. Namely, the form of the fluid equations depends crucially on the

typical fluid velocity associated with the type of dynamics under investigation. As a general

rule, the equations get simpler as the typical velocity get faster, and vice versa.

3.8 Braginskii Equations

Let now consider the problem of closure in plasma fluid equations. There are, in fact, two

possible small parameters in plasmas upon which we could base an asymptotic closure

scheme. The first is the ratio of the mean-free-path, l, to the macroscopic length-scale, L.

This is only appropriate to collisional plasmas. The second is the ratio of the Larmor ra-

dius, ρ, to the macroscopic length-scale, L. This is only appropriate to magnetized plasmas.

There is, of course, no small parameter upon which to base an asymptotic closure scheme

in a collisionless, unmagnetized plasma. However, such systems occur predominately in

accelerator physics contexts, and are not really “plasmas” at all, since they exhibit virtually

no collective effects. Let us investigate Chapman-Enskog-like closure schemes in a colli-

sional, quasi-neutral plasma consisting of equal numbers of electrons and ions. We shall

treat the unmagnetized and magnetized cases separately.

The first step in our closure scheme is to approximate the actual collision operator

for Coulomb interactions by an operator which is strictly bilinear in its arguments (see

Sect. 3.3). Once this has been achieved, the closure problem is formally of the type which

can be solved using the Chapman-Enskog method.

The electrons and ions collision times, τ = l/vt = ν
−1, are written

τe =
6
√
2π3/2 ǫ 2

0

√
me T

3/2
e

lnΛe4 n
, (3.95)

and

τi =
12 π3/2 ǫ 2

0

√
mi T

3/2
i

lnΛe4 n
, (3.96)
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respectively. Here, n = ne = ni is the number density of particles, and lnΛ is a quantity

called the Coulomb logarithm whose origin is the slight modification to the collision op-

erator mentioned above. The Coulomb logarithm is equal to the natural logarithm of the

ratio of the maximum to minimum impact parameters for Coulomb “collisions.” In other

words, lnΛ = ln (dmax/dmin). The minimum parameter is simply the distance of closest

approach, dmin ≃ rc = e
2/4πǫ0 Te [see Eq. (1.17)]. The maximum parameter is the Debye

length, dmax ≃ λD =
√

ǫ0 Te/n e2, since the Coulomb potential is shielded over distances

greater than the Debye length. The Coulomb logarithm is a very slowly varying function of

the plasma density and the electron temperature, and is well approximated by

lnΛ ≃ 6.6− 0.5 lnn+ 1.5 ln Te, (3.97)

where n is expressed in units of 1020 m−3, and Te is expressed in electron volts.

The basic forms of Eqs. (3.95) and (3.96) are not hard to understand. From Eq. (3.66),

we expect

τ ∼
l

vt
∼

1

nσ2 vt
, (3.98)

where σ2 is the typical “cross-section” of the electrons or ions for Coulomb “collisions.”

Of course, this cross-section is simply the square of the distance of closest approach, rc,

defined in Eq. (1.17). Thus,

τ ∼
1

n r 2c vt
∼
ǫ 2
0

√
m T 3/2

e4 n
. (3.99)

The most significant feature of Eqs. (3.95) and (3.96) is the strong variation of the collision

times with temperature. As the plasma gets hotter, the distance of closest approach gets

smaller, so that both electrons and ions offer much smaller cross-sections for Coulomb

collisions. The net result is that such collisions become far less frequent, and the collision

times (i.e., the mean times between 90◦ degree scattering events) get much longer. It

follows that as plasmas are heated they become less collisional very rapidly.

The electron and ion fluid equations in a collisional plasma take the form [see Eqs. (3.55)–

(3.57)]:

dn

dt
+ n∇·Ve = 0, (3.100)

men
dVe

dt
+∇pe +∇·πe + en (E + Ve × B) = F, (3.101)

3

2

dpe

dt
+
5

2
pe∇·Ve + πe : ∇Ve +∇·qe = We, (3.102)

and

dn

dt
+ n∇·Vi = 0, (3.103)
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min
dVi

dt
+∇pi +∇·πi − en (E + Vi × B) = −F, (3.104)

3

2

dpi

dt
+
5

2
pi∇·Vi + πi : ∇Vi +∇·qi = Wi, (3.105)

respectively. Here, use has been made of the momentum conservation law (3.33). Equa-

tions (3.100)–(3.102) and (3.103)–(3.105) are called the Braginskii equations, since they

were first obtained in a celebrated article by S.I. Braginskii.3

In the unmagnetized limit, which actually corresponds to

Ωi τi, Ωe τe ≪ 1, (3.106)

the standard two-Laguerre-polynomial Chapman-Enskog closure scheme yields

F =
ne j

σ‖
− 0.71 n∇Te, (3.107)

Wi =
3me

mi

n (Te − Ti)

τe
, (3.108)

We = −Wi +
j · F

ne
= −Wi +

j2

σ‖
− 0.71

j · ∇Te
e

. (3.109)

Here, j = −ne (Ve−Vi) is the net plasma current, and the electrical conductivity σ‖ is given

by

σ‖ = 1.96
n e2 τe

me

. (3.110)

In the above, use has been made of the conservation law (3.40).

Let us examine each of the above collisional terms, one by one. The first term on the

right-hand side of Eq. (3.107) is a friction force due to the relative motion of electrons and

ions, and obviously controls the electrical conductivity of the plasma. The form of this term

is fairly easy to understand. The electrons lose their ordered velocity with respect to the

ions, U = Ve−Vi, in an electron collision time, τe, and consequently lose momentumme U

per electron (which is given to the ions) in this time. This means that a frictional force

(me n/τe)U ∼ ne j/(ne2 τe/me) is exerted on the electrons. An equal and opposite force is

exerted on the ions. Note that, since the Coulomb cross-section diminishes with increasing

electron energy (i.e., τe ∼ T 3/2
e ), the conductivity of the fast electrons in the distribution

function is higher than that of the slow electrons (since, σ‖ ∼ τe). Hence, electrical current

in plasmas is carried predominately by the fast electrons. This effect has some important

and interesting consequences.

One immediate consequence is the second term on the right-hand side of Eq. (3.107),

which is called the thermal force. To understand the origin of a frictional force proportional

to minus the gradient of the electron temperature, let us assume that the electron and ion

3S.I. Braginskii, Transport Processes in a Plasma, in Reviews of Plasma Physics (Consultants Bureau, New
York NY, 1965), Vol. 1, p. 205.
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fluids are at rest (i.e., Ve = Vi = 0). It follows that the number of electrons moving from

left to right (along the x-axis, say) and from right to left per unit time is exactly the same at

a given point (coordinate x0, say) in the plasma. As a result of electron-ion collisions, these

fluxes experience frictional forces, F− and F+, respectively, of order me nve/τe, where ve is

the electron thermal velocity. In a completely homogeneous plasma these forces balance

exactly, and so there is zero net frictional force. Suppose, however, that the electrons

coming from the right are, on average, hotter than those coming from the left. It follows

that the frictional force F+ acting on the fast electrons coming from the right is less than

the force F− acting on the slow electrons coming from the left, since τe increases with

electron temperature. As a result, there is a net frictional force acting to the left: i.e., in

the direction of −∇Te.
Let us estimate the magnitude of the frictional force. At point x0, collisions are expe-

rienced by electrons which have traversed distances of order a mean-free-path, le ∼ ve τe.

Thus, the electrons coming from the right originate from regions in which the temperature

is approximately le ∂Te/∂x greater than the regions from which the electrons coming from

the left originate. Since the friction force is proportional to T −1
e , the net force F+ − F− is

of order

FT ∼ −
le

Te

∂Te

∂x

me nve

τe
∼ −

me v
2
e

Te
n
∂Te

∂x
∼ −n

∂Te

∂x
. (3.111)

It must be emphasized that the thermal force is a direct consequence of collisions, despite

the fact that the expression for the thermal force does not contain τe explicitly.

The term Wi, specified by Eq. (3.108), represents the rate at which energy is acquired

by the ions due to collisions with the electrons. The most striking aspect of this term is

its smallness (note that it is proportional to an inverse mass ratio, me/mi). The smallness

of Wi is a direct consequence of the fact that electrons are considerably lighter than ions.

Consider the limit in which the ion mass is infinite, and the ions are at rest on average:

i.e., Vi = 0. In this case, collisions of electrons with ions take place without any exchange

of energy. The electron velocities are randomized by the collisions, so that the energy

associated with their ordered velocity, U = Ve − Vi, is converted into heat energy in the

electron fluid [this is represented by the second term on the extreme right-hand side of

Eq. (3.109)]. However, the ion energy remains unchanged. Let us now assume that the

ratio mi/me is large, but finite, and that U = 0. If Te = Ti, the ions and electrons are in

thermal equilibrium, so no heat is exchanged between them. However, if Te > Ti, heat is

transferred from the electrons to the ions. As is well known, when a light particle collides

with a heavy particle, the order of magnitude of the transferred energy is given by the

mass ratio m1/m2, where m1 is the mass of the lighter particle. For example, the mean

fractional energy transferred in isotropic scattering is 2m1/m2. Thus, we would expect the

energy per unit time transferred from the electrons to the ions to be roughly

Wi ∼
n

τe

2me

mi

3

2
(Te − Ti). (3.112)

In fact, τe is defined so as to make the above estimate exact.



Plasma Fluid Theory 61

The term We, specified by Eq. (3.109), represents the rate at which energy is acquired

by the electrons due to collisions with the ions, and consists of three terms. Not surpris-

ingly, the first term is simply minus the rate at which energy is acquired by the ions due

to collisions with the electrons. The second term represents the conversion of the ordered

motion of the electrons, relative to the ions, into random motion (i.e., heat) via collisions

with the ions. Note that this term is positive definite, indicating that the randomization

of the electron ordered motion gives rise to irreversible heat generation. Incidentally, this

term is usually called the ohmic heating term. Finally, the third term represents the work

done against the thermal force. Note that this term can be either positive or negative,

depending on the direction of the current flow relative to the electron temperature gradi-

ent. This indicates that work done against the thermal force gives rise to reversible heat

generation. There is an analogous effect in metals called the Thomson effect.

The electron and ion heat flux densities are given by

qe = −κe‖ ∇Te − 0.71
Te j

e
, (3.113)

qi = −κi‖ ∇Ti, (3.114)

respectively. The electron and ion thermal conductivities are written

κe‖ = 3.2
n τe Te

me

, (3.115)

κi‖ = 3.9
n τi Ti

mi

, (3.116)

respectively.

It follows, by comparison with Eqs. (3.71)–(3.76), that the first term on the right-hand

side of Eq. (3.113) and the expression on the right-hand side of Eq. (3.114) represent

straightforward random-walk heat diffusion, with frequency ν, and step-length l. Recall,

that ν = τ−1 is the collision frequency, and l = τ vt is the mean-free-path. Note that

the electron heat diffusivity is generally much greater than that of the ions, since κe‖/κ
i
‖ ∼

√

mi/me, assuming that Te ∼ Ti.

The second term on the right-hand side of Eq. (3.113) describes a convective heat flux

due to the motion of the electrons relative to the ions. To understand the origin of this

flux, we need to recall that electric current in plasmas is carried predominately by the

fast electrons in the distribution function. Suppose that U is non-zero. In the coordinate

system in which Ve is zero, more fast electron move in the direction of U, and more slow

electrons move in the opposite direction. Although the electron fluxes are balanced in this

frame of reference, the energy fluxes are not (since a fast electron possesses more energy

than a slow electron), and heat flows in the direction of U: i.e., in the opposite direction

to the electric current. The net heat flux density is of order nTeU: i.e., there is no near

cancellation of the fluxes due to the fast and slow electrons. Like the thermal force, this

effect depends on collisions despite the fact that the expression for the convective heat flux

does not contain τe explicitly.
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Finally, the electron and ion viscosity tensors take the form

(πe)αβ = −ηe0

(

∂Vα

∂rβ
+
∂Vβ

∂rα
−
2

3
∇·V δαβ

)

, (3.117)

(πi)αβ = −ηi0

(

∂Vα

∂rβ
+
∂Vβ

∂rα
−
2

3
∇·V δαβ

)

, (3.118)

respectively. Obviously, Vα refers to a Cartesian component of the electron fluid velocity in

Eq. (3.117) and the ion fluid velocity in Eq. (3.118). Here, the electron and ion viscosities

are given by

ηe0 = 0.73 n τe Te, (3.119)

ηi0 = 0.96 n τi Ti, (3.120)

respectively. It follows, by comparison with Eqs. (3.70)–(3.76), that the above expressions

correspond to straightforward random-walk diffusion of momentum, with frequency ν,

and step-length l. Again, the electron diffusivity exceeds the ion diffusivity by the square

root of a mass ratio (assuming Te ∼ Ti). However, the ion viscosity exceeds the electron

viscosity by the same factor (recall that η ∼ nmχv): i.e., ηi0/η
e
0 ∼

√

mi/me. For this reason,

the viscosity of a plasma is determined essentially by the ions. This is not surprising, since

viscosity is the diffusion of momentum, and the ions possess nearly all of the momentum

in a plasma by virtue of their large masses.

Let us now examine the magnetized limit,

Ωi τi, Ωe τe ≫ 1, (3.121)

in which the electron and ion gyroradii are much smaller than the corresponding mean-

free-paths. In this limit, the two-Laguerre-polynomial Chapman-Enskog closure scheme

yields

F = ne

(

j‖
σ‖

+
j⊥
σ⊥

)

− 0.71 n∇‖Te −
3n

2 |Ωe| τe
b ×∇⊥Te, (3.122)

Wi =
3me

mi

n (Te − Ti)

τe
, (3.123)

We = −Wi +
j · F

ne
. (3.124)

Here, the parallel electrical conductivity, σ‖, is given by Eq. (3.110), whereas the perpendic-

ular electrical conductivity, σ⊥, takes the form

σ⊥ = 0.51 σ‖ =
ne2 τe

me

. (3.125)

Note that ∇‖ · · · ≡ b (b ·∇ · · ·) denotes a gradient parallel to the magnetic field, whereas

∇⊥ ≡ ∇−∇‖ denotes a gradient perpendicular to the magnetic field. Likewise, j‖ ≡ b (b· j)
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represents the component of the plasma current flowing parallel to the magnetic field,

whereas j⊥ ≡ j − j‖ represents the perpendicular component of the plasma current.

We expect the presence of a strong magnetic field to give rise to a marked anisotropy in

plasma properties between directions parallel and perpendicular to B, because of the com-

pletely different motions of the constituent ions and electrons parallel and perpendicular

to the field. Thus, not surprisingly, we find that the electrical conductivity perpendicular to

the field is approximately half that parallel to the field [see Eqs. (3.122) and (3.125)]. The

thermal force is unchanged (relative to the unmagnetized case) in the parallel direction,

but is radically modified in the perpendicular direction. In order to understand the origin

of the last term in Eq. (3.122), let us consider a situation in which there is a strong mag-

netic field along the z-axis, and an electron temperature gradient along the x-axis—see

Fig. 3.1. The electrons gyrate in the x-y plane in circles of radius ρe ∼ ve/|Ωe|. At a given

point, coordinate x0, say, on the x-axis, the electrons that come from the right and the left

have traversed distances of order ρe. Thus, the electrons from the right originate from

regions where the electron temperature is of order ρe ∂Te/∂x greater than the regions from

which the electrons from the left originate. Since the friction force is proportional to T−1e ,

an unbalanced friction force arises, directed along the −y-axis—see Fig. 3.1. This direc-

tion corresponds to the direction of −b×∇Te. Note that there is no friction force along the

x-axis, since the x-directed fluxes are due to electrons which originate from regions where

x = x0. By analogy with Eq. (3.111), the magnitude of the perpendicular thermal force is

FT⊥ ∼
ρe

Te

∂Te

∂x

me nve

τe
∼

n

|Ωe| τe

∂Te

∂x
. (3.126)

Note that the effect of a strong magnetic field on the perpendicular component of the

thermal force is directly analogous to a well-known phenomenon in metals, called the

Nernst effect.

In the magnetized limit, the electron and ion heat flux densities become

qe = −κe‖ ∇‖Te − κ
e
⊥ ∇⊥Te − κ

e
× b ×∇⊥Te

−0.71
Te j‖
e

−
3 Te

2 |Ωe| τe e
b × j⊥, (3.127)

qi = −κi‖ ∇‖Ti − κ
i
⊥ ∇⊥Ti + κ

i
× b ×∇⊥Ti, (3.128)

respectively. Here, the parallel thermal conductivities are given by Eqs. (3.115)–(3.116),

and the perpendicular thermal conductivities take the form

κe⊥ = 4.7
n Te

meΩ 2
e τe

, (3.129)

κi⊥ = 2
n Ti

miΩ
2
i τi

. (3.130)

Finally, the cross thermal conductivities are written

κe× =
5n Te

2me |Ωe|
, (3.131)
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Figure 3.1: Origin of the perpendicular thermal force in a magnetized plasma.

κi× =
5n Ti

2miΩi

. (3.132)

The first two terms on the right-hand sides of Eqs. (3.127) and (3.128) correspond to

diffusive heat transport by the electron and ion fluids, respectively. According to the first

terms, the diffusive transport in the direction parallel to the magnetic field is exactly the

same as that in the unmagnetized case: i.e., it corresponds to collision-induced random-

walk diffusion of the ions and electrons, with frequency ν, and step-length l. According

to the second terms, the diffusive transport in the direction perpendicular to the magnetic

field is far smaller than that in the parallel direction. In fact, it is smaller by a factor

(ρ/l)2, where ρ is the gyroradius, and l the mean-free-path. Note, that the perpendicular

heat transport also corresponds to collision-induced random-walk diffusion of charged

particles, but with frequency ν, and step-length ρ. Thus, it is the greatly reduced step-

length in the perpendicular direction, relative to the parallel direction, which ultimately

gives rise to the strong reduction in the perpendicular heat transport. If Te ∼ Ti, then the

ion perpendicular heat diffusivity actually exceeds that of the electrons by the square root

of a mass ratio: κi⊥/κ
e
⊥ ∼

√

mi/me.

The third terms on the right-hand sides of Eqs. (3.127) and (3.128) correspond to

heat fluxes which are perpendicular to both the magnetic field and the direction of the

temperature gradient. In order to understand the origin of these terms, let us consider

the ion flux. Suppose that there is a strong magnetic field along the z-axis, and an ion

temperature gradient along the x-axis—see Fig. 3.2. The ions gyrate in the x-y plane

in circles of radius ρi ∼ vi/Ωi, where vi is the ion thermal velocity. At a given point,

coordinate x0, say, on the x-axis, the ions that come from the right and the left have

traversed distances of order ρi. The ions from the right are clearly somewhat hotter than
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Figure 3.2: Origin of the convective perpendicular heat flux in a magnetized plasma.

those from the left. If the unidirectional particle fluxes, of order nvi, are balanced, then

the unidirectional heat fluxes, of order nTi vi, will have an unbalanced component of

fractional order (ρi/Ti)∂Ti/∂x. As a result, there is a net heat flux in the +y-direction (i.e.,

the direction of b ×∇Ti). The magnitude of this flux is

qi× ∼ nvi ρi
∂Ti

∂x
∼

nTi

mi |Ωi|

∂Ti

∂x
. (3.133)

There is an analogous expression for the electron flux, except that the electron flux is in the

opposite direction to the ion flux (because the electrons gyrate in the opposite direction to

the ions). Note that both ion and electron fluxes transport heat along isotherms, and do

not, therefore, give rise to any plasma heating.

The fourth and fifth terms on the right-hand side of Eq. (3.127) correspond to the

convective component of the electron heat flux density, driven by motion of the electrons

relative to the ions. It is clear from the fourth term that the convective flux parallel to

the magnetic field is exactly the same as in the unmagnetized case [see Eq. (3.113)].

However, according to the fifth term, the convective flux is radically modified in the per-

pendicular direction. Probably the easiest method of explaining the fifth term is via an

examination of Eqs. (3.107), (3.113), (3.122), and (3.127). There is clearly a very close

connection between the electron thermal force and the convective heat flux. In fact, start-

ing from general principles of the thermodynamics of irreversible processes, the so-called

Onsager principles, it is possible to demonstrate that an electron frictional force of the form

α (∇ Te)β i necessarily gives rise to an electron heat flux of the form α (Te jβ/ne) i, where

the subscript β corresponds to a general Cartesian component, and i is a unit vector. Thus,

the fifth term on the right-hand side of Eq. (3.127) follows by Onsager symmetry from the
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third term on the right-hand side of Eq. (3.122). This is one of many Onsager symmetries

which occur in plasma transport theory.

In order to describe the viscosity tensor in a magnetized plasma, it is helpful to define

the rate-of-strain tensor

Wαβ =
∂Vα

∂rβ
+
∂Vβ

∂rα
−
2

3
∇·V δαβ. (3.134)

Obviously, there is a separate rate-of-strain tensor for the electron and ion fluids. It is

easily demonstrated that this tensor is zero if the plasma translates or rotates as a rigid

body, or if it undergoes isotropic compression. Thus, the rate-of-strain tensor measures the

deformation of plasma volume elements.

In a magnetized plasma, the viscosity tensor is best described as the sum of five com-

ponent tensors,

π =

4∑

n=0

πn, (3.135)

where

π0 = −3 η0

(

bb −
1

3
I

)(

bb −
1

3
I

)

: ∇V, (3.136)

with

π1 = −η1

[

I⊥ ·W·I⊥ +
1

2
I⊥ (b·W·b)

]

, (3.137)

and

π2 = −4 η1 [I⊥ ·W·bb + bb·W·I⊥] . (3.138)

plus

π3 =
η3

2
[b × W·I⊥ − I⊥ ·W × b] , (3.139)

and

π4 = 2 η3 [b × W·bb − bb·W × b] . (3.140)

Here, I is the identity tensor, and I⊥ = I − bb. The above expressions are valid for both

electrons and ions.

The tensor π0 describes what is known as parallel viscosity. This is a viscosity which

controls the variation along magnetic field-lines of the velocity component parallel to field-

lines. The parallel viscosity coefficients, ηe0 and ηi0 are specified in Eqs. (3.119)–(3.120).

Note that the parallel viscosity is unchanged from the unmagnetized case, and is due to the

collision-induced random-walk diffusion of particles, with frequency ν, and step-length l.

The tensors π1 and π2 describe what is known as perpendicular viscosity. This is a

viscosity which controls the variation perpendicular to magnetic field-lines of the velocity

components perpendicular to field-lines. The perpendicular viscosity coefficients are given

by

ηe1 = 0.51
n Te

Ω 2
e τe

, (3.141)



Plasma Fluid Theory 67

ηi1 =
3n Ti

10Ω 2
i τi

. (3.142)

Note that the perpendicular viscosity is far smaller than the parallel viscosity. In fact, it

is smaller by a factor (ρ/l)2. The perpendicular viscosity corresponds to collision-induced

random-walk diffusion of particles, with frequency ν, and step-length ρ. Thus, it is the

greatly reduced step-length in the perpendicular direction, relative to the parallel direc-

tion, which accounts for the smallness of the perpendicular viscosity compared to the

parallel viscosity.

Finally, the tensors π3 and π4 describe what is known as gyroviscosity. This is not

really viscosity at all, since the associated viscous stresses are always perpendicular to the

velocity, implying that there is no dissipation (i.e., viscous heating) associated with this

effect. The gyroviscosity coefficients are given by

ηe3 = −
nTe

2 |Ωe|
, (3.143)

ηi3 =
nTi

2Ωi

. (3.144)

The origin of gyroviscosity is very similar to the origin of the cross thermal conductivity

terms in Eqs. (3.127)–(3.128). Note that both cross thermal conductivity and gyroviscosity

are independent of the collision frequency.

3.9 Normalization of the Braginskii Equations

As we have just seen, the Braginskii equations contain terms which describe a very wide

range of physical phenomena. For this reason, they are extremely complicated. Fortu-

nately, however, it is not generally necessary to retain all of the terms in these equations

when investigating a particular problem in plasma physics: e.g., electromagnetic wave

propagation through plasmas. In this section, we shall attempt to construct a systematic

normalization scheme for the Braginskii equations which will, hopefully, enable us to de-

termine which terms to keep, and which to discard, when investigating a particular aspect

of plasma physics.

Let us consider a magnetized plasma. It is convenient to split the friction force F into a

component FU due to resistivity, and a component FT corresponding to the thermal force.

Thus,

F = FU + FT , (3.145)

where

FU = ne

(

j‖
σ‖

+
j⊥
σ⊥

)

, (3.146)

FT = −0.71 n∇‖Te −
3n

2 |Ωe| τe
b ×∇⊥Te. (3.147)
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Likewise, the electron collisional energy gain term We is split into a component −Wi due

to the energy lost to the ions (in the ion rest frame), a component WU due to work done

by the friction force FU, and a component WT due to work done by the thermal force FT .

Thus,

We = −Wi +WU +WT , (3.148)

where

WU =
j · FU

ne
, (3.149)

WT =
j · FT

ne
. (3.150)

Finally, it is helpful to split the electron heat flux density qe into a diffusive component qTe
and a convective component qUe. Thus,

qe = qTe + qUe, (3.151)

where

qTe = −κe‖ ∇‖Te − κ
e
⊥ ∇⊥Te − κ

e
× b ×∇⊥Te, (3.152)

qUe = 0.71
Te j‖
e

−
3 Te

2 |Ωe| τe e
b × j⊥. (3.153)

Let us, first of all, consider the electron fluid equations, which can be written:

dn

dt
+ n∇·Ve = 0, (3.154)

men
dVe

dt
+∇pe +∇·πe + en (E + Ve × B) = FU + FT , (3.155)

3

2

dpe

dt
+
5

2
pe∇·Ve + πe : ∇Ve +∇·qTe +∇·qUe = −Wi (3.156)

+WU +WT .

Let n̄, v̄e, l̄e, B̄, and ρ̄e = v̄e/(eB̄/me), be typical values of the particle density, the electron

thermal velocity, the electron mean-free-path, the magnetic field-strength, and the electron

gyroradius, respectively. Suppose that the typical electron flow velocity is λe v̄e, and the

typical variation length-scale is L. Let

δe =
ρ̄e

L
, (3.157)

ζe =
ρ̄e

l̄e
, (3.158)

µ =

√

me

mi

. (3.159)
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All three of these parameters are assumed to be small compared to unity.

We define the following normalized quantities: n̂ = n/n̄, v̂e = ve/v̄e, r̂ = r/L,

∇̂ = L∇, t̂ = λe v̄e t/L, V̂e = Ve/λe v̄e, B̂ = B/B̄, Ê = E/λe v̄e B̄, Û = U/(1 + λ 2
e ) δe v̄e,

plus p̂e = pe/me n̄ v̄
2
e , π̂e = πe/λe δe ζ

−1
e me n̄ v̄

2
e , q̂Te = qTe/δe ζ

−1
e me n̄ v̄

3
e , q̂Ue = qUe/(1 +

λ 2
e ) δeme n̄ v̄

3
e , F̂U = FU/(1+λ

2
e ) ζeme n̄ v̄

2
e /L, F̂T = FT/me n̄ v̄

2
e /L, Ŵi =Wi/δ

−1
e ζe µ

2me n̄ v̄
3
e /L,

ŴU =WU/(1+ λ
2
e )

2 δe ζeme n̄ v̄
3
e /L, ŴT =WT/(1+ λ

2
e ) δeme n̄ v̄

3
e /L.

The normalization procedure is designed to make all hatted quantities O(1). The nor-

malization of the electric field is chosen such that the E×B velocity is of order the electron

fluid velocity. Note that the parallel viscosity makes an O(1) contribution to π̂e, whereas

the gyroviscosity makes an O(ζe) contribution, and the perpendicular viscosity only makes

an O(ζ 2e ) contribution. Likewise, the parallel thermal conductivity makes an O(1) contri-

bution to q̂Te, whereas the cross conductivity makes anO(ζe) contribution, and the perpen-

dicular conductivity only makes an O(ζ 2e ) contribution. Similarly, the parallel components

of FT and qUe are O(1), whereas the perpendicular components are O(ζe).

The normalized electron fluid equations take the form:

dn̂

dt̂
+ n̂ ∇̂·V̂e = 0, (3.160)

λ 2e δe n̂
dV̂e

dt̂
+ δe ∇̂p̂e + λe δ 2e ζ−1e ∇̂·π̂e (3.161)

+λe n̂ (Ê + V̂e × B̂) = (1+ λ 2
e ) δe ζe F̂U + δe F̂T ,

λe
3

2

dp̂e

dt̂
+ λe

5

2
p̂e ∇̂·V̂e + λ 2

e δe ζ
−1
e π̂e : ∇̂·V̂e (3.162)

+δe ζ
−1
e ∇̂·q̂Te + (1+ λ 2e ) δe ∇̂·q̂Ue = −δ−1e ζe µ

2 Ŵi

+(1+ λ 2e )
2 δe ζe ŴU

+(1+ λ 2e ) δe ŴT .

Note that the only large or small quantities in these equations are the parameters λe, δe,

ζe, and µ. Here, d/dt̂ ≡ ∂/∂t̂+ V̂e ·∇̂. It is assumed that Te ∼ Ti.

Let us now consider the ion fluid equations, which can be written:

dn

dt
+ n∇·Vi = 0, (3.163)

min
dVi

dt
+∇pi +∇·πi − en (E + Vi × B) = −FU − FT , (3.164)

3

2

dpi

dt
+
5

2
pi∇·Vi + πi : ∇Vi +∇·qi = Wi. (3.165)

It is convenient to adopt a normalization scheme for the ion equations which is similar

to, but independent of, that employed to normalize the electron equations. Let n̄, v̄i, l̄i,

B̄, and ρ̄i = v̄i/(eB̄/mi), be typical values of the particle density, the ion thermal velocity,

the ion mean-free-path, the magnetic field-strength, and the ion gyroradius, respectively.
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Suppose that the typical ion flow velocity is λi v̄i, and the typical variation length-scale is

L. Let

δi =
ρ̄i

L
, (3.166)

ζi =
ρ̄i

l̄i
, (3.167)

µ =

√

me

mi

. (3.168)

All three of these parameters are assumed to be small compared to unity.

We define the following normalized quantities: n̂ = n/n̄, v̂i = vi/v̄i, r̂ = r/L, ∇̂ = L∇,

t̂ = λi v̄i t/L, V̂i = Vi/λi v̄i, B̂ = B/B̄, Ê = E/λi v̄i B̄, Û = U/(1 + λ 2
i ) δi v̄i, p̂i = pi/mi n̄ v̄

2
i ,

π̂i = πi/λi δi ζ
−1
i mi n̄ v̄

2
i , q̂i = qi/δi ζ

−1
i mi n̄ v̄

3
i , F̂U = FU/(1 + λ

2
i ) ζi µmi n̄ v̄

2
i /L, F̂T =

FT/mi n̄ v̄
2
i /L, Ŵi =Wi/δ

−1
i ζi µmi n̄ v̄

3
i /L.

As before, the normalization procedure is designed to make all hatted quantities O(1).

The normalization of the electric field is chosen such that the E × B velocity is of order

the ion fluid velocity. Note that the parallel viscosity makes an O(1) contribution to π̂i,

whereas the gyroviscosity makes an O(ζi) contribution, and the perpendicular viscosity

only makes an O(ζ 2i ) contribution. Likewise, the parallel thermal conductivity makes an

O(1) contribution to q̂i, whereas the cross conductivity makes an O(ζi) contribution, and

the perpendicular conductivity only makes an O(ζ 2i ) contribution. Similarly, the parallel

component of FT is O(1), whereas the perpendicular component is O(ζi µ).

The normalized ion fluid equations take the form:

dn̂

dt̂
+ n̂ ∇̂·V̂i = 0, (3.169)

λ 2
i δi n̂

dV̂i

dt̂
+ δi ∇̂p̂i + λi δ 2i ζ−1i ∇̂·π̂i (3.170)

−λi n̂ (Ê + V̂i × B̂) = −(1+ λ 2i ) δi ζi µ F̂U − δi F̂T ,

λi
3

2

dp̂i

dt̂
+ λi

5

2
p̂i ∇̂·V̂i + λ 2

i δi ζ
−1
i π̂i : ∇̂·V̂i (3.171)

+δi ζ
−1
i ∇̂·q̂i = δ−1i ζi µ Ŵi.

Note that the only large or small quantities in these equations are the parameters λi, δi, ζi,

and µ. Here, d/dt̂ ≡ ∂/∂t̂+ V̂i ·∇̂.

Let us adopt the ordering

δe, δi ≪ ζe, ζi, µ≪ 1, (3.172)

which is appropriate to a collisional, highly magnetized plasma. In the first stage of our

ordering procedure, we shall treat δe and δi as small parameters, and ζe, ζi, and µ as O(1).

In the second stage, we shall take note of the smallness of ζe, ζi, and µ. Note that the

parameters λe and λi are “free ranging:” i.e., they can be either large, small, or O(1). In
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the initial stage of the ordering procedure, the ion and electron normalization schemes we

have adopted become essentially identical [since µ ∼ O(1)], and it is convenient to write

λe ∼ λi ∼ λ, (3.173)

δe ∼ δi ∼ δ, (3.174)

Ve ∼ Vi ∼ V, (3.175)

ve ∼ vi ∼ vt, (3.176)

Ωe ∼ Ωi ∼ Ω. (3.177)

There are three fundamental orderings in plasma fluid theory. These are analogous to

the three orderings in neutral gas fluid theory discussed in Sect. 3.7.

The first ordering is

λ ∼ δ−1. (3.178)

This corresponds to

V ≫ vt. (3.179)

In other words, the fluid velocities are much greater than the thermal velocities. We also

have
V

L
∼ Ω. (3.180)

Here, V/L is conventionally termed the transit frequency, and is the frequency with which

fluid elements traverse the system. It is clear that the transit frequencies are of order the

gyrofrequencies in this ordering. Keeping only the largest terms in Eqs. (3.160)–(3.162)

and (3.169)–(3.171), the Braginskii equations reduce to (in unnormalized form):

dn

dt
+ n∇·Ve = 0, (3.181)

men
dVe

dt
+ en (E + Ve × B) = [ζ] FU, (3.182)

and

dn

dt
+ n∇·Vi = 0, (3.183)

min
dVi

dt
− en (E + Vi × B) = −[ζ] FU. (3.184)

The factors in square brackets are just to remind us that the terms they precede are smaller

than the other terms in the equations (by the corresponding factors inside the brackets).

Equations (3.181)–(3.182) and (3.183)–(3.184) are called the cold-plasma equations,

because they can be obtained from the Braginskii equations by formally taking the limit

Te, Ti → 0. Likewise, the ordering (3.178) is called the cold-plasma approximation. Note

that the cold-plasma approximation applies not only to cold plasmas, but also to very fast
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disturbances which propagate through conventional plasmas. In particular, the cold-plasma

equations provide a good description of the propagation of electromagnetic waves through

plasmas. After all, electromagnetic waves generally have very high velocities (i.e., V ∼ c),

which they impart to plasma fluid elements, so there is usually no difficulty satisfying the

inequality (3.179).

Note that the electron and ion pressures can be neglected in the cold-plasma limit,

since the thermal velocities are much smaller than the fluid velocities. It follows that there

is no need for an electron or ion energy evolution equation. Furthermore, the motion of

the plasma is so fast, in this limit, that relatively slow “transport” effects, such as viscosity

and thermal conductivity, play no role in the cold-plasma fluid equations. In fact, the only

collisional effect which appears in these equations is resistivity.

The second ordering is

λ ∼ 1, (3.185)

which corresponds to

V ∼ vt. (3.186)

In other words, the fluid velocities are of order the thermal velocities. Keeping only the

largest terms in Eqs. (3.160)–(3.162) and (3.169)–(3.171), the Braginskii equations re-

duce to (in unnormalized form):

dn

dt
+ n∇·Ve = 0, (3.187)

men
dVe

dt
+∇pe + [δ−1] en (E + Ve × B) = [ζ] FU + FT , (3.188)

3

2

dpe

dt
+
5

2
pe∇·Ve = −[δ−1 ζ µ2]Wi, (3.189)

and

dn

dt
+ n∇·Vi = 0, (3.190)

min
dVi

dt
+∇pi − [δ−1] en (E + Vi × B) = −[ζ] FU − FT , (3.191)

3

2

dpi

dt
+
5

2
pi∇·Vi = [δ−1 ζ µ2]Wi. (3.192)

Again, the factors in square brackets remind us that the terms they precede are larger, or

smaller, than the other terms in the equations.

Equations (3.187)–(3.189) and (3.190)–(3.191) are called the magnetohydrodynamical

equations, or MHD equations, for short. Likewise, the ordering (3.185) is called the MHD

approximation. The MHD equations are conventionally used to study macroscopic plasma

instabilities possessing relatively fast growth-rates: e.g., “sausage” modes, “kink” modes.

Note that the electron and ion pressures cannot be neglected in the MHD limit, since

the fluid velocities are of order the thermal velocities. Thus, electron and ion energy
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evolution equations are needed in this limit. However, MHD motion is sufficiently fast that

“transport” effects, such as viscosity and thermal conductivity, are too slow to play a role

in the MHD equations. In fact, the only collisional effects which appear in these equations

are resistivity, the thermal force, and electron-ion collisional energy exchange.

The final ordering is

λ ∼ δ, (3.193)

which corresponds to

V ∼ δ vt ∼ vd, (3.194)

where vd is a typical drift (e.g., a curvature or grad-B drift—see Sect. 2) velocity. In other

words, the fluid velocities are of order the drift velocities. Keeping only the largest terms

in Eqs. (3.113) and (3.116), the Braginskii equations reduce to (in unnormalized form):

dn

dt
+ n∇·Ve = 0, (3.195)

men
dVe

dt
+ [δ−2]∇pe + [ζ−1]∇·πe (3.196)

+[δ−2] en (E + Ve × B) = [δ−2 ζ] FU + [δ−2] FT ,

3

2

dpe

dt
+
5

2
pe∇·Ve + [ζ−1]∇·qTe +∇·qUe = −[δ−2 ζ µ2]Wi (3.197)

+[ζ]WU +WT ,

and

dn

dt
+ n∇·Vi = 0, (3.198)

min
dVi

dt
+ [δ−2]∇pi + [ζ−1]∇·πi (3.199)

−[δ−2] en (E + Vi × B) = −[δ−2 ζ] FU − [δ−2] FT ,

3

2

dpi

dt
+
5

2
pi∇·Vi + [ζ−1]∇·qi = [δ−2 ζ µ2]Wi. (3.200)

As before, the factors in square brackets remind us that the terms they precede are larger,

or smaller, than the other terms in the equations.

Equations (3.195)–(3.198) and (3.198)–(3.200) are called the drift equations. Like-

wise, the ordering (3.193) is called the drift approximation. The drift equations are con-

ventionally used to study equilibrium evolution, and the slow growing “microinstabilities”

which are responsible for turbulent transport in tokamaks. It is clear that virtually all of

the original terms in the Braginskii equations must be retained in this limit.

In the following sections, we investigate the cold-plasma equations, the MHD equa-

tions, and the drift equations, in more detail.



74 PLASMA PHYSICS

3.10 Cold-Plasma Equations

Previously, we used the smallness of the magnetization parameter δ to derive the cold-

plasma equations:

∂n

∂t
+∇·(nVe) = 0, (3.201)

men
∂Ve

∂t
+men (Ve · ∇)Ve + en (E + Ve × B) = [ζ] FU, (3.202)

and

∂n

∂t
+∇·(nVi) = 0, (3.203)

min
∂Vi

∂t
+min (Vi · ∇)Vi − en (E + Vi × B) = −[ζ] FU. (3.204)

Let us now use the smallness of the mass ratio me/mi to further simplify these equations.

In particular, we would like to write the electron and ion fluid velocities in terms of the

centre-of-mass velocity,

V =
mi Vi +me Ve

mi +me

, (3.205)

and the plasma current

j = −neU, (3.206)

where U = Ve − Vi. According to the ordering scheme adopted in the previous section,

U ∼ Ve ∼ Vi in the cold-plasma limit. We shall continue to regard the mean-free-path

parameter ζ as O(1).

It follows from Eqs. (3.205) and (3.206) that

Vi ≃ V +O(me/mi), (3.207)

and

Ve ≃ V −
j

ne
+O

(

me

mi

)

. (3.208)

Equations (3.201), (3.203), (3.207), and (3.208) yield the continuity equation:

dn

dt
+ n∇·V = 0, (3.209)

where d/dt ≡ ∂/∂t + V ·∇. Here, use has been made of the fact that ∇· j = 0 in a

quasi-neutral plasma.

Equations (3.202) and (3.204) can be summed to give the equation of motion:

min
dV

dt
− j × B ≃ 0. (3.210)
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Finally, Eqs. (3.202), (3.207), and (3.208) can be combined and to give a modified

Ohm’s law:

E + V × B ≃ FU

ne
+

j × B

ne
+
me

ne2
dj

dt
(3.211)

+
me

ne2
(j·∇)V −

me

n2e3
(j·∇)j.

The first term on the right-hand side of the above equation corresponds to resistivity, the

second corresponds to the Hall effect, the third corresponds to the effect of electron inertia,

and the remaining terms are usually negligible.

3.11 MHD Equations

The MHD equations take the form:

∂n

∂t
+∇·(nVe) = 0, (3.212)

men
∂Ve

∂t
+men (Ve ·∇)Ve +∇pe (3.213)

+[δ−1] en (E + Ve × B) = [ζ] FU + FT ,

3

2

∂pe

∂t
+
3

2
(Ve ·∇)pe +

5

2
pe∇·Ve = −[δ−1 ζ µ2]Wi, (3.214)

and

∂n

∂t
+∇·(nVi) = 0, (3.215)

min
∂Vi

∂t
+min (Vi ·∇)Vi +∇pi (3.216)

−[δ−1] en (E + Vi × B) = −[ζ] FU − FT ,

3

2

∂pi

∂t
+
3

2
(Vi ·∇)pi +

5

2
pi∇·Vi = [δ−1 ζ µ2]Wi. (3.217)

These equations can also be simplified by making use of the smallness of the mass ratio

me/mi. Now, according to the ordering adopted in Sect. 3.9, U ∼ δVe ∼ δVi in the MHD

limit. It follows from Eqs. (3.207) and (3.208) that

Vi ≃ V +O(me/mi), (3.218)

and

Ve ≃ V − [δ]
j

ne
+O

(

me

mi

)

. (3.219)

The main point, here, is that in the MHD limit the velocity difference between the electron

and ion fluids is relatively small.
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Equations (3.212) and (3.215) yield the continuity equation:

dn

dt
+ n∇·V = 0, (3.220)

where d/dt ≡ ∂/∂t+ V·∇.

Equations (3.213) and (3.216) can be summed to give the equation of motion:

min
dV

dt
+∇p− j × B ≃ 0. (3.221)

Here, p = pe + pi is the total pressure. Note that all terms in the above equation are the

same order in δ.

The O(δ−1) components of Eqs. (3.213) and (3.216) yield the Ohm’s law:

E + V × B ≃ 0. (3.222)

This is sometimes called the perfect conductivity equation, since it is identical to the Ohm’s

law in a perfectly conducting liquid.

Equations (3.214) and (3.217) can be summed to give the energy evolution equation:

3

2

dp

dt
+
5

2
p∇·V ≃ 0. (3.223)

Equations (3.220) and (3.223) can be combined to give the more familiar adiabatic equa-

tion of state:
d

dt

(

p

n5/3

)

≃ 0. (3.224)

Finally, the O(δ−1) components of Eqs. (3.214) and (3.217) yield

Wi ≃ 0, (3.225)

or Te ≃ Ti [see Eq. (3.108)]. Thus, we expect equipartition of the thermal energy between

electrons and ions in the MHD limit.

3.12 Drift Equations

The drift equations take the form:

∂n

∂t
+∇·(nVe) = 0, (3.226)

men
∂Ve

∂t
+men (Ve ·∇)Ve + [δ−2]∇pe + [ζ−1]∇·πe (3.227)

+[δ−2] en (E + Ve × B) = [δ−2 ζ] FU + [δ−2] FT ,

3

2

∂pe

∂t
+
3

2
(Ve ·∇)pe +

5

2
pe∇·Ve (3.228)

+[ζ−1]∇·qTe +∇·qUe = −[δ−2 ζ µ2]Wi

+[ζ]WU +WT ,



Plasma Fluid Theory 77

and

∂n

∂t
+∇·(nVi) = 0, (3.229)

min
∂Vi

∂t
+min (Vi ·∇)Vi + [δ−2]∇pi + [ζ−1]∇·πi (3.230)

[0.5ex] − [δ−2] en (E + Vi × B) = −[δ−2 ζ] FU − [δ−2] FT ,

3

2

∂pi

∂t
+
3

2
(Vi ·∇)pi +

5

2
pi∇·Vi (3.231)

+[ζ−1]∇·qi = [δ−2 ζ µ2]Wi.

In the drift limit, the motions of the electron and ion fluids are sufficiently different

that there is little to be gained in rewriting the drift equations in terms of the centre of

mass velocity and the plasma current. Instead, let us consider the O(δ−2) components of

Eqs. (3.227) and (3.231):

E + Ve × B ≃ −
∇pe
en

−
0.71∇‖Te

e
, (3.232)

E + Vi × B ≃ +
∇pi
en

−
0.71∇‖Te

e
. (3.233)

In the above equations, we have neglected all O(ζ) terms for the sake of simplicity. Equa-

tions (3.232)–(3.233) can be inverted to give

V⊥ e ≃ VE + V∗ e, (3.234)

V⊥ i ≃ VE + V∗ i. (3.235)

Here, VE ≡ E × B/B2 is the E × B velocity, whereas

V∗ e ≡
∇pe × B

enB2
, (3.236)

and

V∗ i ≡ −
∇pi × B

enB2
, (3.237)

are termed the electron diamagnetic velocity and the ion diamagnetic velocity, respectively.

According to Eqs. (3.234)–(3.235), in the drift approximation the velocity of the elec-

tron fluid perpendicular to the magnetic field is the sum of the E × B velocity and the

electron diamagnetic velocity. Similarly, for the ion fluid. Note that in the MHD approxi-

mation the perpendicular velocities of the two fluids consist of the E×B velocity alone, and

are, therefore, identical to lowest order. The main difference between the two ordering

lies in the assumed magnitude of the electric field. In the MHD limit

E

B
∼ vt, (3.238)
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whereas in the drift limit
E

B
∼ δ vt ∼ vd. (3.239)

Thus, the MHD ordering can be regarded as a strong (in the sense used in Sect. 2) electric

field ordering, whereas the drift ordering corresponds to a weak electric field ordering.

The diamagnetic velocities are so named because the diamagnetic current,

j∗ ≡ −en (V∗ e − V∗ i) = −
∇p× B

B2
, (3.240)

generally acts to reduce the magnitude of the magnetic field inside the plasma.

The electron diamagnetic velocity can be written

V∗ e =
Te∇n× b

enB
+

∇Te × b

e B
. (3.241)

In order to account for this velocity, let us consider a simplified case in which the electron

temperature is uniform, there is a uniform density gradient running along the x-direction,

and the magnetic field is parallel to the z-axis—see Fig. 3.3. The electrons gyrate in the x-y

plane in circles of radius ρe ∼ ve/|Ωe|. At a given point, coordinate x0, say, on the x-axis,

the electrons that come from the right and the left have traversed distances of order ρe.

Thus, the electrons from the right originate from regions where the particle density is of

order ρe ∂n/∂x greater than the regions from which the electrons from the left originate. It

follows that the y-directed particle flux is unbalanced, with slightly more particles moving

in the −y-direction than in the +y-direction. Thus, there is a net particle flux in the −y-

direction: i.e., in the direction of ∇n× b. The magnitude of this flux is

nV∗ e ∼ ρe
∂n

∂x
ve ∼

Te

e B

∂n

∂x
. (3.242)

Note that there is no unbalanced particle flux in the x-direction, since the x-directed fluxes

are due to electrons which originate from regions where x = x0. We have now accounted

for the first term on the right-hand side of the above equation. We can account for the

second term using similar arguments. The ion diamagnetic velocity is similar in magnitude

to the electron diamagnetic velocity, but is oppositely directed, since ions gyrate in the

opposite direction to electrons.

The most curious aspect of diamagnetic flows is that they represent fluid flows for

which there is no corresponding motion of the particle guiding centres. Nevertheless, the

diamagnetic velocities are real fluid velocities, and the associated diamagnetic current is a

real current. For instance, the diamagnetic current contributes to force balance inside the

plasma, and also gives rise to ohmic heating.

3.13 Closure in Collisionless Magnetized Plasmas

Up to now, we have only considered fluid closure in collisional magnetized plasmas. Un-

fortunately, most magnetized plasmas encountered in nature—in particular, fusion, space,



Plasma Fluid Theory 79

electron motion particle flux

density gradient

x = x0

z x

y

B

Figure 3.3: Origin of the diamagnetic velocity in a magnetized plasma.

and astrophysical plasmas—are collisionless. Let us consider what happens to the cold-

plasma equations, the MHD equations, and the drift equations, in the limit in which the

mean-free-path goes to infinity (i.e., ζ→ 0).

In the limit ζ→ 0, the cold-plasma equations reduce to

dn

dt
+ n∇·V = 0, (3.243)

min
dV

dt
− j × B = 0, (3.244)

E + V × B =
j × B

ne
+
me

ne2
dj

dt
(3.245)

+
me

ne2
(j·∇)V −

me

n2e3
(j·∇)j.

Here, we have neglected the resistivity term, since it isO(ζ). Note that none of the remain-

ing terms in these equations depend explicitly on collisions. Nevertheless, the absence of

collisions poses a serious problem. Whereas the magnetic field effectively confines charged

particles in directions perpendicular to magnetic field-lines, by forcing them to execute

tight Larmor orbits, we have now lost all confinement along field-lines. But, does this

matter?

The typical frequency associated with fluid motion is the transit frequency, V/L. How-

ever, according to Eq. (3.180), the cold-plasma ordering implies that the transit frequency

is of order a typical gyrofrequency:
V

L
∼ Ω. (3.246)
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So, how far is a charged particle likely to drift along a field-line in an inverse transit

frequency? The answer is

∆l‖ ∼
vt L

V
∼
vt

Ω
∼ ρ. (3.247)

In other words, the fluid motion in the cold-plasma limit is so fast that charged particles

only have time to drift a Larmor radius along field-lines on a typical dynamical time-scale.

Under these circumstances, it does not really matter that the particles are not localized

along field-lines—the lack of parallel confinement manifests itself too slowly to affect the

plasma dynamics. We conclude, therefore, that the cold-plasma equations remain valid in

the collisionless limit, provided, of course, that the plasma dynamics are sufficiently rapid

for the basic cold-plasma ordering (3.246) to apply. In fact, the only difference between

the collisional and collisionless cold-plasma equations is the absence of the resistivity term

in Ohm’s law in the latter case.

Let us now consider the MHD limit. In this case, the typical transit frequency is

V

L
∼ δΩ. (3.248)

Thus, charged particles typically drift a distance

∆l‖ ∼
vt L

V
∼
vt

δΩ
∼ L (3.249)

along field-lines in an inverse transit frequency. In other words, the fluid motion in the

MHD limit is sufficiently slow that changed particles have time to drift along field-lines

all the way across the system on a typical dynamical time-scale. Thus, strictly speaking,

the MHD equations are invalidated by the lack of particle confinement along magnetic

field-lines.

In fact, in collisionless plasmas, MHD theory is replaced by a theory known as kinetic-

MHD.4 The latter theory is a combination of a one-dimensional kinetic theory, describing

particle motion along magnetic field-lines, and a two-dimensional fluid theory, describing

perpendicular motion. As can well be imagined, the equations of kinetic-MHD are consid-

erably more complicated that the conventional MHD equations. Is there any situation in

which we can salvage the simpler MHD equations in a collisionless plasma? Fortunately,

there is one case in which this is possible.

It turns out that in both varieties of MHD the motion of the plasma parallel to magnetic

field-lines is associated with the dynamics of sound waves, whereas the motion perpendic-

ular to field-lines is associated with the dynamics of a new type of wave called an Alfvén

wave. As we shall see, later on, Alfvén waves involve the “twanging” motion of magnetic

field-lines—a bit like the twanging of guitar strings. It is only the sound wave dynamics

which are significantly modified when we move from a collisional to a collisionless plasma.

It follows, therefore, that the MHD equations remain a reasonable approximation in a colli-

sionless plasma in situations where the dynamics of sound waves, parallel to the magnetic

4Kinetic-MHD is described in the following two classic papers: M.D. Kruskal, and C.R. Oberman, Phys.
Fluids 1, 275 (1958): M.N. Rosenbluth, and N. Rostoker, Phys. Fluids 2, 23 (1959).
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field, are unimportant compared to the dynamics of Alfvén waves, perpendicular to the

field. This situation arises whenever the parameter

β =
2 µ0 p

B2
(3.250)

(see Sect. 1.10) is much less than unity. In fact, it is easily demonstrated that

β ∼

(

VS

VA

)2

, (3.251)

where VS is the sound speed (i.e., thermal velocity), and VA is the speed of an Alfvén wave.

Thus, the inequality

β≪ 1 (3.252)

ensures that the collisionless parallel plasma dynamics are too slow to affect the perpen-

dicular dynamics.

We conclude, therefore, that in a low-β, collisionless, magnetized plasma the MHD

equations,

dn

dt
+ n∇·V = 0, (3.253)

min
dV

dt
= j × B −∇p, (3.254)

E + V × B = 0, (3.255)

d

dt

(

p

n5/3

)

= 0, (3.256)

fairly well describe plasma dynamics which satisfy the basic MHD ordering (3.248).

Let us, finally, consider the drift limit. In this case, the typical transit frequency is

V

L
∼ δ2Ω. (3.257)

Thus, charged particles typically drift a distance

∆l‖ ∼
vt L

V
∼
L

δ
(3.258)

along field-lines in an inverse transit frequency. In other words, the fluid motion in the

drift limit is so slow that charged particles drifting along field-lines have time to traverse

the system very many times on a typical dynamical time-scale. In fact, in this limit we

have to draw a distinction between those particles which always drift along field-lines in

the same direction, and those particles which are trapped between magnetic mirror points

and, therefore, continually reverse their direction of motion along field-lines. The former

are termed passing particles, whereas the latter are termed trapped particles.
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Now, in the drift limit, the perpendicular drift velocity of charged particles, which is a

combination of E × B drift, grad-B drift, and curvature drift (see Sect. 2), is of order

vd ∼ δ vt. (3.259)

Thus, charged particles typically drift a distance

∆l⊥ ∼
vd L

V
∼ L (3.260)

across field-lines in an inverse transit time. In other words, the fluid motion in the drift

limit is so slow that charged particles have time to drift perpendicular to field-lines all the

way across the system on a typical dynamical time-scale. It is, thus, clear that in the drift

limit the absence of collisions implies lack of confinement both parallel and perpendicular

to the magnetic field. This means that the collisional drift equations, (3.226)–(3.229) and

(3.229)–(3.232), are completely invalid in the long mean-free-path limit.

In fact, in collisionless plasmas, Braginskii-type transport theory—conventionally known

as classical transport theory—is replaced by a new theory—known as neoclassical transport

theory5 —which is a combination of a two-dimensional kinetic theory, describing particle

motion on drift surfaces, and a one-dimensional fluid theory, describing motion perpendic-

ular to the drift surfaces. Here, a drift surface is a closed surface formed by the locus of

a charged particle’s drift orbit (including drifts parallel and perpendicular to the magnetic

field). Of course, the orbits only form closed surfaces if the plasma is confined, but there is

little point in examining transport in an unconfined plasma. Unlike classical transport the-

ory, which is strictly local in nature, neoclassical transport theory is nonlocal, in the sense

that the transport coefficients depend on the average values of plasma properties taken

over drift surfaces. Needless to say, neoclassical transport theory is horribly complicated!

3.14 Langmuir Sheaths

Virtually all terrestrial plasmas are contained inside solid vacuum vessels. So, an obvious

question is: what happens to the plasma in the immediate vicinity of the vessel wall? Ac-

tually, to a first approximation, when ions and electrons hit a solid surface they recombine

and are lost to the plasma. Hence, we can treat the wall as a perfect sink of particles.

Now, given that the electrons in a plasma generally move much faster than the ions, the

initial electron flux into the wall greatly exceeds the ion flux, assuming that the wall starts

off unbiased with respect to the plasma. Of course, this flux imbalance causes the wall to

charge up negatively, and so generates a potential barrier which repels the electrons, and

thereby reduces the electron flux. Debye shielding confines this barrier to a thin layer of

plasma, whose thickness is a few Debye lengths, coating the inside surface of the wall. This

5Neoclassical transport theory in axisymmetric systems is described in the following classic papers:

I.B. Bernstein, Phys. Fluids 17, 547 (1974): F.L. Hinton, and R.D. Hazeltine, Rev. Mod. Phys. 48, 239
(1976).
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layer is known as a plasma sheath or a Langmuir sheath. The height of the potential barrier

continues to grow as long as there is a net flux of negative charge into the wall. This

process presumably comes to an end, and a steady-state is attained, when the potential

barrier becomes sufficiently large to make electron flux equal to the ion flux.

Let us construct a one-dimensional model of an unmagnetized, steady-state, Langmuir

sheath. Suppose that the wall lies at x = 0, and that the plasma occupies the region x > 0.

Let us treat the ions and the electrons inside the sheath as collisionless fluids. The ion and

electron equations of motion are thus written

mi ni Vi
dVi

dx
= −Ti

dni

dx
− eni

dφ

dx
, (3.261)

me ne Ve
dVe

dx
= −Te

dne

dx
+ ene

dφ

dx
, (3.262)

respectively. Here, φ(x) is the electrostatic potential. Moreover, we have assumed uniform

ion and electron temperatures, Ti and Te, respectively, for the sake of simplicity. We have

also neglected any off-diagonal terms in the ion and electron stress-tensors, since these

terms are comparatively small. Note that quasi-neutrality does not apply inside the sheath,

and so the ion and electron number densities, ne and ni, respectively, are not necessarily

equal to one another.

Consider the ion fluid. Let us assume that the mean ion velocity, Vi, is much greater

than the ion thermal velocity, (Ti/mi)
1/2. Since, as will become apparent, Vi ∼ (Te/mi)

1/2,

this ordering necessarily implies that Ti ≪ Ti: i.e., that the ions are cold with respect to

the electrons. It turns out that plasmas in the immediate vicinity of solid walls often have

comparatively cold ions, so our ordering assumption is fairly reasonable. In the cold ion

limit, the pressure term in Eq. (3.261) is negligible, and the equation can be integrated to

give
1

2
mi V

2
i (x) + eφ(x) =

1

2
mi V

2
s + eφs. (3.263)

Here, Vs and φs are the mean ion velocity and electrostatic potential, respectively, at the

edge of the sheath (i.e., x→ ∞). Now, ion fluid continuity requires that

ni(x)Vi(x) = ns Vs, (3.264)

where ns is the ion number density at the sheath boundary. Incidentally, since we expect

quasi-neutrality to hold in the plasma outside the sheath, the electron number density at

the edge of the sheath must also be ns (assuming singly charged ions). The previous two

equations can be combined to give

Vi = Vs

[

1−
2 e

mi V 2
s

(φ− φs)

]1/2

, (3.265)

ni = ns

[

1−
2 e

mi V 2
s

(φ− φs)

]−1/2

. (3.266)
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Consider the electron fluid. Let us assume that the mean electron velocity, Ve, is much

less than the electron thermal velocity, (me/Te)
1/2. In fact, this must be the case, otherwise,

the electron flux to the wall would greatly exceed the ion flux. Now, if the electron fluid is

essentially stationary then the left-hand side of Eq. (3.262) is negligible, and the equation

can be integrated to give

ne = ns exp

[

e (φ− φs)

Te

]

. (3.267)

Here, we have made use of the fact that ne = ns at the edge of the sheath.

Now, Poisson’s equation is written

ǫ0
d2φ

dx2
= e (ne − ni). (3.268)

It follows that

ǫ0
d2φ

dx2
= ens



exp

[

e (φ− φs)

Te

]

−

[

1−
2 e

mi V 2
s

(φ−φs)

]−1/2


 . (3.269)

Let Φ = −e (φ− φs)/Te, y =
√
2 x/λD, and

K =
mi V

2
s

2 Te
, (3.270)

where λD = (ǫ0 Te/e
2 ns)

1/2 is the Debye length. Equation (3.269) transforms to

2
d2Φ

dy2
= −e−Φ +

(

1+
Φ

K

)−1/2

, (3.271)

subject to the boundary condition Φ → 0 as y → ∞. Multiplying through by dΦ/dy,

integrating with respect to y, and making use of the boundary condition, we obtain

(

dΦ

dy

)2

= e−Φ − 1+ 2K





(

1+
Φ

K

)1/2

− 1



 . (3.272)

Unfortunately, the above equation is highly nonlinear, and can only be solved numerically.

However, it is not necessary to attempt this to see that a physical solution can only exist if

the right-hand side of the equation is positive for all y ≥ 0. Consider the the limit y→ ∞.

It follows from the boundary condition that Φ → 0. Expanding the right-hand side of

Eq. (3.272) in powers of Φ, we find that the zeroth- and first-order terms cancel, and we

are left with
(

dΦ

dy

)2

≃ Φ2

2

(

1−
1

2K

)

+
Φ3

3

(

3

8K2
− 1

)

+O(Φ4). (3.273)

Now, the purpose of the sheath is to shield the plasma from the wall potential. It can

be seen, from the above expression, that the physical solution with maximum possible
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shielding corresponds to K = 1/2, since this choice eliminates the first term on the right-

hand side (thereby makingΦ as small as possible at large y) leaving the much smaller, but

positive (note that Φ is positive), second term. Hence, we conclude that

Vs =

(

Te

mi

)1/2

. (3.274)

This result is known as the Bohm sheath criterion. It is a somewhat surprising result, since

it indicates that ions at the edge of the sheath are already moving toward the wall at a

considerable velocity. Of course, the ions are further accelerated as they pass through

the sheath. Since the ions are presumably at rest in the interior of the plasma, it is clear

that there must exist a region sandwiched between the sheath and the main plasma in

which the ions are accelerated from rest to the Bohm velocity, Vs = (Te/mi)
1/2. This region

is called the pre-sheath, and is both quasi-neutral and much wider than the sheath (the

actual width depends on the nature of the ion source).

The ion current density at the wall is

ji = −eni(0)Vi(0) = −ens Vs = −ens

(

Te

mi

)1/2

. (3.275)

This current density is negative because the ions are moving in the negative x-direction.

What about the electron current density? Well, the number density of electrons at the

wall is ne(0) = ns exp[ e (φw − φs)/Te)], where φw = φ(0) is the wall potential. Let us

assume that the electrons have a Maxwellian velocity distribution peaked at zero velocity

(since the electron fluid velocity is much less than the electron thermal velocity). It follows

that half of the electrons at x = 0 are moving in the negative-x direction, and half in the

positive-x direction. Of course, the former electrons hit the wall, and thereby constitute

an electron current to the wall. This current is je = (1/4) ene(0) V̄e, where the 1/4 comes

from averaging over solid angle, and V̄e = (8 Te/πme)
1/2 is the mean electron speed cor-

responding to a Maxwellian velocity distribution. Thus, the electron current density at the

wall is

je = ens

(

Te

2 πme

)1/2

exp

[

e (φw − φs)

Te

]

. (3.276)

Now, in order to replace the electrons lost to the wall, the electrons must have a mean

velocity

Ve s =
je

ens
=

(

Te

2πme

)1/2

exp

[

e (φw − φs)

Te

]

(3.277)

at the edge of the sheath. However, we previously assumed that any electron fluid velocity

was much less than the electron thermal velocity, (Te/me)
1/2. As is clear from the above

equation, this is only possible provided that

exp

[

e (φw − φs)

Te

]

≪ 1. (3.278)
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i.e., provided that the wall potential is sufficiently negative to strongly reduce the electron

number density at the wall. The net current density at the wall is

j = ens

(

Te

mi

)1/2{(
mi

2πme

)1/2

exp

[

e (φw − φs)

Te

]

− 1

}

. (3.279)

Of course, we require j = 0 in a steady-state sheath, in order to prevent wall charging, and

so we obtain

e (φw −φs) = −Te ln

(

mi

2πme

)1/2

. (3.280)

We conclude that, in a steady-state sheath, the wall is biased negatively with respect to the

sheath edge by an amount which is proportional to the electron temperature.

For a hydrogen plasma, ln(mi/2πme) ≃ 2.8. Thus, hydrogen ions enter the sheath with

an initial energy (1/2)mi V
2
s = 0.5 Te eV, fall through the sheath potential, and so impact

the wall with energy 3.3 Te eV.

A Langmuir probe is a device used to determine the electron temperature and electron

number density of a plasma. It works by inserting an electrode which is biased with respect

to the vacuum vessel into the plasma. Provided that the bias voltage is not too positive,

we would expect the probe current to vary as

I = Aens

(

Te

mi

)1/2 [(
mi

2πme

)1/2

exp

(

e V

Te

)

− 1

]

, (3.281)

where A is the surface area of the probe, and V its bias with respect to the vacuum vessel—

see Eq. (3.279). For strongly negative biases, the probe current saturates in the ion (neg-

ative) direction. The characteristic current which flows in this situation is called the ion

saturation current, and is of magnitude

Is = Aens

(

Te

mi

)1/2

. (3.282)

For less negative biases, the current-voltage relation of the probe has the general form

ln I = C+
e V

Te
, (3.283)

where C is a constant. Thus, a plot of ln I versus V gives a straight-line from whose

slope the electron temperature can be deduced. Note, however, that if the bias voltage

becomes too positive then electrons cease to be effectively repelled from the probe surface,

and the current-voltage relation (3.281) breaks down. Given the electron temperature,

a measurement of the ion saturation current allows the electron number density at the

sheath edge, ns, to be calculated from Eq. (3.282). Now, in order to accelerate ions to the

Bohm velocity, the potential drop across the pre-sheath needs to be e (φp − φs) = −Te/2,

where φp is the electric potential in the interior of the plasma. It follows from Eq. (3.267)
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that the relationship between the electron number density at the sheath boundary, ns, and

the number density in the interior of the plasma, np, is

ns = np e−0.5 ≃ 0.61 np. (3.284)

Thus, np can also be determined from the probe.
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4 Waves in Cold Plasmas

4.1 Introduction

The cold-plasma equations describe waves, and other perturbations, which propagate

through a plasma much faster than a typical thermal velocity. It is instructive to consider

the relationship between the collective motions described by the cold-plasma model and

the motions of individual particles that we studied in Sect. 2. The key observation is that in

the cold-plasma model all particles (of a given species) at a given position effectively move

with the same velocity. It follows that the fluid velocity is identical to the particle velocity,

and is, therefore, governed by the same equations. However, the cold-plasma model goes

beyond the single-particle description because it determines the electromagnetic fields self-

consistently in terms of the charge and current densities generated by the motions of the

constituent particles of the plasma.

What role, if any, does the geometry of the plasma equilibrium play in determining the

properties of plasma waves? Clearly, geometry plays a key role for modes whose wave-

lengths are comparable to the dimensions of the plasma. However, we shall show that

modes whose wave-lengths are much smaller than the plasma dimensions have properties

which are, in a local sense, independent of the geometry. Thus, the local properties of small-

wave-length oscillations are universal in nature. To investigate these properties, we may, to

a first approximation, represent the plasma as a homogeneous equilibrium (corresponding

to the limit k L→ 0, where k is the magnitude of the wave-vector, and L is the characteristic

equilibrium length-scale).

4.2 Plane Waves in a Homogeneous Plasma

The propagation of small amplitude waves is described by linearized equations. These are

obtained by expanding the equations of motion in powers of the wave amplitude, and

neglecting terms of order higher than unity. In the following, we use the subscript 0

to distinguish equilibrium quantities from perturbed quantities, for which we retain the

previous notation.

Consider a homogeneous, quasi-neutral plasma, consisting of equal numbers of elec-

trons and ions, in which both plasma species are at rest. It follows that E0 = 0, and

j0 = ∇ × B0 = 0. In a homogeneous medium, the general solution of a system of linear

equations can be constructed as a superposition of plane wave solutions:

E(r, t) = Ek exp[ i (k·r −ωt)], (4.1)

with similar expressions for B and V. The surfaces of constant phase,

k·r −ωt = constant, (4.2)
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are planes perpendicular to k, traveling at the velocity

vph =
ω

k
k̂, (4.3)

where k ≡ |k|, and k̂ is a unit vector pointing in the direction of k. Here, vph is termed the

phase-velocity. Henceforth, we shall omit the subscript k from field variables, for ease of

notation.

Substitution of the plane wave solution (4.1) into Maxwell’s equations yields:

k × B = −iµ0 j −
ω

c2
E, (4.4)

k × E = ωB. (4.5)

In linear theory, the current is related to the electric field via

j = σ·E, (4.6)

where the conductivity tensor σ is a function of both k and ω. Note that the conductivity

tensor is anisotropic in the presence of a non-zero equilibrium magnetic field. Furthermore,

σ completely specifies the plasma response.

Substitution of Eq. (4.6) into Eq. (4.4) yields

k × B = −
ω

c2
K·E, (4.7)

where we have introduced the dielectric permittivity tensor,

K = I +
iσ

ǫ0ω
. (4.8)

Here, I is the identity tensor. Eliminating the magnetic field between Eqs. (4.5) and (4.7),

we obtain

M·E = 0, (4.9)

where

M = kk − k2 I +
ω2

c2
K. (4.10)

The solubility condition for Eq. (4.10),

M(ω, k) ≡ det(M) = 0, (4.11)

is called the dispersion relation. The dispersion relation relates the frequency, ω, to the

wave-vector, k. Also, as the name “dispersion relation” indicates, it allows us to determine

the rate at which the different Fourier components in a wave-train disperse due to the

variation of their phase-velocity with wave-length.
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4.3 Cold-Plasma Dielectric Permittivity

In a collisionless plasma, the linearized cold-plasma equations are written [see Eqs. (3.243)–

(3.246)]:

min
∂V

∂t
= j × B0, (4.12)

E = −V × B0 +
j × B0

ne
+
me

ne2
∂j

∂t
. (4.13)

Substitution of plane wave solutions of the type (4.1) into the above equations yields

−iωminV = j × B0, (4.14)

E = −V × B0 +
j × B0

ne
− iω

me

ne2
j. (4.15)

Let

Πe =

√

ne2

ǫ0me

, (4.16)

Πi =

√

ne2

ǫ0mi

, (4.17)

Ωe = −
e B0

me

, (4.18)

Ωi =
e B0

mi

, (4.19)

be the electron plasma frequency, the ion plasma frequency, the electron cyclotron frequency,

and the ion cyclotron frequency, respectively. The “plasma frequency,” ωp, mentioned in

Sect. 1, is identical to the electron plasma frequency, Πe. Eliminating the fluid velocity V

between Eqs. (4.14) and (4.15), and making use of the above definitions, we obtain

iωǫ0 E =
ω2 j − iωΩe j × b +ΩeΩi j⊥

Π 2
e

. (4.20)

The parallel component of the above equation is readily solved to give

j‖ =
Π 2
e

ω2
(iωǫ0 E‖). (4.21)

In solving for j⊥, it is helpful to define the vectors:

e+ =
e1 + i e2√

2
, (4.22)

e− =
e1 − i e2√

2
. (4.23)
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Here, (e1, e2, b) are a set of mutually orthogonal, right-handed unit vectors. Note that

b × e± = ∓i e±. (4.24)

It is easily demonstrated that

j± =
Π 2
e

ω2 ±ωΩe +ΩeΩi

iωǫ0 E±, (4.25)

where j± = j · e±, etc.

The conductivity tensor is diagonal in the basis (e+, e−, b). Its elements are given by

the coefficients of E± and E‖ in Eqs. (4.25) and (4.21), respectively. Thus, the dielectric

permittivity (4.8) takes the form

Kcirc =







R 0 0

0 L 0

0 0 P





 , (4.26)

where

R ≃ 1−
Π 2
e

ω2 +ωΩe +ΩeΩi

, (4.27)

L ≃ 1−
Π 2
e

ω2 −ωΩe +ΩeΩi

, (4.28)

P ≃ 1−
Π 2
e

ω2
. (4.29)

Here, R and L represent the permittivities for right- and left-handed circularly polarized

waves, respectively. The permittivity parallel to the magnetic field, P, is identical to that

of an unmagnetized plasma.

In fact, the above expressions are only approximate, because the small mass-ratio or-

dering me/mi ≪ 1 has already been folded into the cold-plasma equations. The exact

expressions, which are most easily obtained by solving the individual charged particle

equations of motion, and then summing to obtain the fluid response, are:

R = 1−
Π 2
e

ω2

(

ω

ω+Ωe

)

−
Π 2
i

ω2

(

ω

ω+Ωi

)

, (4.30)

L = 1−
Π 2
e

ω2

(

ω

ω−Ωe

)

−
Π 2
i

ω2

(

ω

ω−Ωi

)

, (4.31)

P = 1−
Π 2
e

ω2
−
Π 2
i

ω2
. (4.32)

Equations (4.27)–(4.29) and (4.30)–(4.32) are equivalent in the limit me/mi → 0. Note

that Eqs. (4.30)–(4.32) generalize in a fairly obvious manner in plasmas consisting of more

than two particle species.
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In order to obtain the actual dielectric permittivity, it is necessary to transform back

to the Cartesian basis (e1, e2, b). Let b ≡ e3, for ease of notation. It follows that the

components of an arbitrary vector W in the Cartesian basis are related to the components

in the “circular” basis via






W1

W2

W3





 = U







W+

W−

W3





 , (4.33)

where the unitary matrix U is written

U =
1√
2







1 1 0

i −i 0

0 0
√
2





 . (4.34)

The dielectric permittivity in the Cartesian basis is then

K = U Kcirc U†. (4.35)

We obtain

K =







S −iD 0

iD S 0

0 0 P





 , (4.36)

where

S =
R+ L

2
, (4.37)

and

D =
R− L

2
, (4.38)

represent the sum and difference of the right- and left-handed dielectric permittivities,

respectively.

4.4 Cold-Plasma Dispersion Relation

It is convenient to define a vector

n =
k c

ω
, (4.39)

which points in the same direction as the wave-vector, k, and whose magnitude n is the

refractive index (i.e., the ratio of the velocity of light in vacuum to the phase-velocity). Note

that n should not be confused with the particle density. Equation (4.9) can be rewritten

M · E = (n · E)n − n2 K·E = 0. (4.40)

We may, without loss of generality, assume that the equilibrium magnetic field is di-

rected along the z-axis, and that the wave-vector, k, lies in the xz-plane. Let θ be the angle
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subtended between k and B0. The eigenmode equation (4.40) can be written






S− n2 cos2 θ −iD n2 cos θ sinθ

iD S− n2 0

n2 cosθ sinθ 0 P − n2 sin2 θ













Ex
Ey
Ez





 = 0. (4.41)

The condition for a nontrivial solution is that the determinant of the square matrix be zero.

With the help of the identity

S2 −D2 ≡ RL, (4.42)

we find that

M(ω, k) ≡ An4 − Bn2 + C = 0, (4.43)

where

A = S sin2 θ+ P cos2 θ, (4.44)

B = RL sin2 θ + P S (1+ cos2 θ), (4.45)

C = P R L. (4.46)

The dispersion relation (4.43) is evidently a quadratic in n2, with two roots. The

solution can be written

n2 =
B± F
2A

, (4.47)

where

F2 = (RL− P S)2 sin4 θ+ 4 P2D2 cos2 θ. (4.48)

Note that F2 ≥ 0. It follows that n2 is always real, which implies that n is either purely real

or purely imaginary. In other words, the cold-plasma dispersion relation describes waves

which either propagate without evanescense, or decay without spatial oscillation. The two

roots of opposite sign for n, corresponding to a particular root for n2, simply describe

waves of the same type propagating, or decaying, in opposite directions.

The dispersion relation (4.43) can also be written

tan2 θ = −
P (n2 − R) (n2 − L)

(Sn2 − RL) (n2 − P)
. (4.49)

For the special case of wave propagation parallel to the magnetic field (i.e., θ = 0), the

above expression reduces to

P = 0, (4.50)

n2 = R, (4.51)

n2 = L. (4.52)

Likewise, for the special case of propagation perpendicular to the field (i.e., θ = π/2),

Eq. (4.49) yields

n2 =
RL

S
, (4.53)

n2 = P. (4.54)
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4.5 Polarization

A pure right-handed circularly polarized wave propagating along the z-axis takes the form

Ex = A cos(k z−ωt), (4.55)

Ey = −A sin(k z−ωt). (4.56)

In terms of complex amplitudes, this becomes

iEx

Ey
= 1. (4.57)

Similarly, a left-handed circularly polarized wave is characterized by

iEx

Ey
= −1. (4.58)

The polarization of the transverse electric field is obtained from the middle line of

Eq. (4.41):
iEx

Ey
=
n2 − S

D
=
2n2 − (R+ L)

R− L
. (4.59)

For the case of parallel propagation, with n2 = R, the above formula yields iEx/Ey = 1.

Similarly, for the case of parallel propagation, with n2 = L, we obtain iEx/Ey = −1. Thus,

it is clear that the roots n2 = R and n2 = L in Eqs. (4.50)–(4.52) correspond to right- and

left-handed circularly polarized waves, respectively.

4.6 Cutoff and Resonance

For certain values of the plasma parameters, n2 goes to zero or infinity. In both cases, a

transition is made from a region of propagation to a region of evanescense, or vice versa.

It will be demonstrated later on that reflection occurs wherever n2 goes through zero, and

that absorption takes place wherever n2 goes through infinity. The former case is called a

wave cutoff, whereas the latter case is termed a wave resonance.

According to Eqs. (4.43) and (4.44)–(4.46), cutoff occurs when

P = 0, (4.60)

or

R = 0, (4.61)

or

L = 0. (4.62)

Note that the cutoff points are independent of the direction of propagation of the wave

relative to the magnetic field.
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According to Eq. (4.49), resonance takes place when

tan2 θ = −
P

S
. (4.63)

Evidently, resonance points do depend on the direction of propagation of the wave relative

to the magnetic field. For the case of parallel propagation, resonance occurs whenever

S→ ∞. In other words, when

R→ ∞, (4.64)

or

L→ ∞. (4.65)

For the case of perpendicular propagation, resonance takes place when

S = 0. (4.66)

4.7 Waves in an Unmagnetized Plasma

Let us now investigate the cold-plasma dispersion relation in detail. It is instructive to first

consider the limit in which the equilibrium magnetic field goes to zero. In the absence of

the magnetic field, there is no preferred direction, so we can, without loss of generality,

assume that k is directed along the z-axis (i.e., θ = 0). In the zero magnetic field limit (i.e.,

Ωe, Ωi → 0), the eigenmode equation (4.41) reduces to







P − n2 0 0

0 P − n2 0

0 0 P













Ex
Ey
Ez





 = 0, (4.67)

where

P ≃ 1− Π 2
e

ω2
. (4.68)

Here, we have neglected Πi with respect to Πe.

It is clear from Eq. (4.67) that there are two types of wave. The first possesses the

eigenvector (0, 0, Ez), and has the dispersion relation

1−
Π 2
e

ω2
= 0. (4.69)

The second possesses the eigenvector (Ex, Ey, 0), and has the dispersion relation

1−
Π 2
e

ω2
−
k2 c2

ω2
= 0. (4.70)

Here, Ex, Ey, and Ez are arbitrary non-zero quantities.

The first wave has k parallel to E, and is, thus, a longitudinal wave. This wave is know

as the plasma wave, and possesses the fixed frequency ω = Πe. Note that if E is parallel to
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k then it follows from Eq. (4.5) that B = 0. In other words, the wave is purely electrostatic

in nature. In fact, a plasma wave is an electrostatic oscillation of the type discussed in

Sect. 1.5. Since ω is independent of k, the group velocity,

vg =
∂ω

∂k
, (4.71)

associated with a plasma wave, is zero. As we shall demonstrate later on, the group

velocity is the propagation velocity of localized wave packets. It is clear that the plasma

wave is not a propagating wave, but instead has the property than an oscillation set up in

one region of the plasma remains localized in that region. It should be noted, however,

that in a “warm” plasma (i.e., a plasma with a finite thermal velocity) the plasma wave

acquires a non-zero, albeit very small, group velocity (see Sect. 6.2).

The second wave is a transverse wave, with k perpendicular to E. There are two inde-

pendent linear polarizations of this wave, which propagate at identical velocities, just like

a vacuum electromagnetic wave. The dispersion relation (4.70) can be rearranged to give

ω2 = Π 2
e + k2c2, (4.72)

showing that this wave is just the conventional electromagnetic wave, whose vacuum dis-

persion relation is ω2 = k2c2, modified by the presence of the plasma. An important

property, which follows immediately from the above expression, is that for the propaga-

tion of this wave we needω ≥ Πe. Since Πe is proportional to the square root of the plasma

density, it follows that electromagnetic radiation of a given frequency will only propagate

through a plasma when the plasma density falls below a critical value.

4.8 Low-Frequency Wave Propagation

Let us now consider wave propagation through a magnetized plasma at frequencies far

below the ion cyclotron or plasma frequencies, which are, in turn, well below the corre-

sponding electron frequencies. In the low-frequency regime (i.e., ω ≪ Ωi, Πi), we have

[see Eqs. (4.27)–(4.29)]

S ≃ 1+
Π 2
i

Ω2
i

, (4.73)

D ≃ 0, (4.74)

P ≃ −
Π 2
e

ω2
. (4.75)

Here, use has been made of Π 2
e /ΩeΩi = −Π 2

i /Ω
2
i . Thus, the eigenmode equation (4.41)

reduces to






1+Π 2
i
/Ω2

i
−n2 cos2 θ 0 n2 cos θ sinθ

0 1+Π 2
i
/Ω2

i
−n2 0

n2 cos θ sin θ 0 −Π 2
e /ω

2−n2 sin2 θ













Ex
Ey
Ez





 = 0. (4.76)
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The solubility condition for Eq. (4.76) yields the dispersion relation

∣

∣

∣

∣

∣

∣

∣

1+ Π 2
i /Ω

2
i − n

2 cos2 θ 0 n2 cosθ sinθ

0 1+ Π 2
i /Ω

2
i − n

2 0

n2 cos θ sinθ 0 −Π 2
e /ω

2 − n2 sin2 θ

∣

∣

∣

∣

∣

∣

∣

= 0. (4.77)

Note that in the low-frequency ordering, Π 2
e /ω

2 ≫ Π 2
i /Ω

2
i . Thus, we can see that the

bottom right-hand element of the above determinant is far larger than any of the other

elements, so to a good approximation the roots of the dispersion relation are obtained by

equating the term multiplying this large factor to zero. In this manner, we obtain two

roots:

n2 cos2 θ = 1+
Π 2
i

Ω 2
i

, (4.78)

and

n2 = 1+
Π 2
i

Ω 2
i

. (4.79)

It is fairly easy to show, from the definitions of the plasma and cyclotron frequencies

[see Eqs. (4.16)–(4.19], that
Π 2
i

Ω 2
i

=
c2

B 2
0 /µ0ρ

=
c2

V 2
A

. (4.80)

Here, ρ ≃ nmi is the plasma mass density, and

VA =

√

√

√

√

B 2
0

µ0 ρ
(4.81)

is called the Alfvén velocity. Thus, the dispersion relations of the two low-frequency waves

can be written

ω =
kVA cosθ
√

1+ V 2
A /c

2
≃ kVA cosθ ≡ k‖ VA, (4.82)

and

ω =
kVA

√

1+ V 2
A /c

2
≃ kVA. (4.83)

Here, we have made use of the fact that VA ≪ c in conventional plasmas.

The dispersion relation (4.82) corresponds to the slow or shear Alfvén wave, whereas

the dispersion relation (4.83) corresponds to the fast or compressional Alfvén wave. The

fast/slow terminology simply refers to the ordering of the phase velocities of the two

waves. The shear/compressional terminology refers to the velocity fields associated with

the waves. In fact, it is clear from Eq. (4.76) that Ez = 0 for both waves, whereas Ey = 0

for the shear wave, and Ex = 0 for the compressional wave. Both waves are, in fact, MHD

modes which satisfy the linearized MHD Ohm’s law [see Eq. (3.222)]

E + V × B0 = 0. (4.84)
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Figure 4.1: Magnetic field perturbation associated with a shear-Alfvén wave.

Thus, for the shear wave

Vy = −
Ex

B0
, (4.85)

and Vx = Vz = 0, whereas for the compressional wave

Vx =
Ey

B0
, (4.86)

and Vy = Vz = 0. Now ∇·V = i k·V = i kVx sinθ. Thus, the shear-Alfvén wave is a torsional

wave, with zero divergence of the flow, whereas the compressional wave involves a non-

zero divergence of the flow. It is important to realize that the thing which is resisting

compression in the compressional wave is the magnetic field, not the plasma, since there

is negligible plasma pressure in the cold-plasma approximation.

Figure 4.1 shows the characteristic distortion of the magnetic field associated with a

shear-Alfvén wave propagating parallel to the equilibrium field. Clearly, this wave bends

magnetic field-lines without compressing them. Figure 4.2 shows the characteristic dis-

tortion of the magnetic field associated with a compressional-Alfvén wave propagating

perpendicular to the equilibrium field. Clearly, this wave compresses magnetic field-lines

without bending them.

It should be noted that the thermal velocity is not necessarily negligible compared to

the Alfvén velocity in conventional plasmas. Thus, we can expect the dispersion rela-

tions (4.82) and (4.83) to undergo considerable modification in a “warm” plasma (see

Sect. 5.4).
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Figure 4.2: Magnetic field perturbation associated with a compressional Alfvén-wave.

4.9 Parallel Wave Propagation

Let us now consider wave propagation, at arbitrary frequencies, parallel to the equilibrium

magnetic field. When θ = 0, the eigenmode equation (4.41) simplifies to







S− n2 −iD 0

iD S− n2 0

0 0 P













Ex
Ey
Ez





 = 0. (4.87)

One obvious way of solving this equation is to have

P ≃ 1− Π 2
e

ω2
= 0, (4.88)

with the eigenvector (0, 0, Ez). This is just the electrostatic plasma wave which we found

previously in an unmagnetized plasma. This mode is longitudinal in nature, and, therefore,

causes particles to oscillate parallel to B0. It follows that the particles experience zero

Lorentz force due to the presence of the equilibrium magnetic field, with the result that

this field has no effect on the mode dynamics.

The other two solutions to Eq. (4.87) are obtained by setting the 2 × 2 determinant

involving the x- and y- components of the electric field to zero. The first wave has the

dispersion relation

n2 = R ≃ 1− Π 2
e

(ω+Ωe)(ω+Ωi)
, (4.89)

and the eigenvector (Ex, iEx, 0). This is evidently a right-handed circularly polarized wave.

The second wave has the dispersion relation

n2 = L ≃ 1− Π 2
e

(ω−Ωe)(ω−Ωi)
, (4.90)
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and the eigenvector (Ex,−iEx, 0). This is evidently a left-handed circularly polarized wave.

At low frequencies (i.e., ω ≪ Ωi), both waves tend to the Alfvén wave found previously.

Note that the fast and slow Alfvén waves are indistinguishable for parallel propagation.

Let us now examine the high-frequency behaviour of the right- and left-handed waves.

For the right-handed wave, it is evident, sinceΩe is negative, that n2 → ∞ asω→ |Ωe|.

This resonance, which corresponds to R → ∞, is termed the electron cyclotron resonance.

At the electron cyclotron resonance the transverse electric field associated with a right-

handed wave rotates at the same velocity, and in the same direction, as electrons gyrating

around the equilibrium magnetic field. Thus, the electrons experience a continuous accel-

eration from the electric field, which tends to increase their perpendicular energy. It is,

therefore, not surprising that right-handed waves, propagating parallel to the equilibrium

magnetic field, and oscillating at the frequency Ωe, are absorbed by electrons.

When ω is just above |Ωe|, we find that n2 is negative, and so there is no wave prop-

agation in this frequency range. However, for frequencies much greater than the electron

cyclotron or plasma frequencies, the solution to Eq. (4.89) is approximately n2 = 1. In

other words,ω2 = k2c2: the dispersion relation of a right-handed vacuum electromagnetic

wave. Evidently, at some frequency above |Ωe| the solution for n2 must pass through zero,

and become positive again. Putting n2 = 0 in Eq. (4.89), we find that the equation reduces

to

ω2 +Ωeω− Π 2
e ≃ 0, (4.91)

assuming that VA ≪ c. The above equation has only one positive root, at ω = ω1, where

ω1 ≃ |Ωe|/2 +
√

Ω 2
e /4+ Π

2
e > |Ωe|. (4.92)

Above this frequency, the wave propagates once again.

The dispersion curve for a right-handed wave propagating parallel to the equilibrium

magnetic field is sketched in Fig. 4.3. The continuation of the Alfvén wave above the ion

cyclotron frequency is called the electron cyclotron wave, or sometimes the whistler wave.

The latter terminology is prevalent in ionospheric and space plasma physics contexts. The

wave which propagates above the cutoff frequency, ω1, is a standard right-handed circu-

larly polarized electromagnetic wave, somewhat modified by the presence of the plasma.

Note that the low-frequency branch of the dispersion curve differs fundamentally from the

high-frequency branch, because the former branch corresponds to a wave which can only

propagate through the plasma in the presence of an equilibrium magnetic field, whereas

the high-frequency branch corresponds to a wave which can propagate in the absence of

an equilibrium field.

The curious name “whistler wave” for the branch of the dispersion relation lying be-

tween the ion and electron cyclotron frequencies is originally derived from ionospheric

physics. Whistler waves are a very characteristic type of audio-frequency radio interfer-

ence, most commonly encountered at high latitudes, which take the form of brief, inter-

mittent pulses, starting at high frequencies, and rapidly descending in pitch. Figure 4.4

shows the power spectra of some typical whistler waves.
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k
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Figure 4.3: Dispersion relation for a right-handed wave propagating parallel to the magnetic

field in a magnetized plasma.
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Figure 4.4: Power spectrum of a typical whistler wave.

Whistlers were discovered in the early days of radio communication, but were not

explained until much later. Whistler waves start off as “instantaneous” radio pulses, gen-

erated by lightning flashes at high latitudes. The pulses are channeled along the Earth’s

dipolar magnetic field, and eventually return to ground level in the opposite hemisphere.

Fig. 4.5 illustrates the typical path of a whistler wave. Now, in the frequency range

Ωi ≪ ω≪ |Ωe|, the dispersion relation (4.89) reduces to

n2 =
k2 c2

ω2
≃ Π 2

e

ω |Ωe|
. (4.93)

As is well-known, pulses propagate at the group-velocity,

vg =
dω

dk
= 2c

√

ω |Ωe|

Πe
. (4.94)

Clearly, the low-frequency components of a pulse propagate more slowly than the high-

frequency components. It follows that by the time a pulse returns to ground level it has

been stretched out temporally, because the high-frequency components of the pulse arrive

slightly before the low-frequency components. This also accounts for the characteristic

whistling-down effect observed at ground level.

The shape of whistler pulses, and the way in which the pulse frequency varies in time,

can yield a considerable amount of information about the regions of the Earth’s mag-

netosphere through which they have passed. For this reason, many countries maintain
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Figure 4.5: Typical path of a whistler wave through the Earth’s magnetosphere.

observatories in polar regions, especially Antarctica, which monitor and collect whistler

data: e.g., the Halley research station, maintained by the British Antarctic Survey, which is

located on the edge of the Antarctic mainland.

For a left-handed circularly polarized wave, similar considerations to the above give

a dispersion curve of the form sketched in Fig. 4.6. In this case, n2 goes to infinity at

the ion cyclotron frequency, Ωi, corresponding to the so-called ion cyclotron resonance (at

L → ∞). At this resonance, the rotating electric field associated with a left-handed wave

resonates with the gyromotion of the ions, allowing wave energy to be converted into

perpendicular kinetic energy of the ions. There is a band of frequencies, lying above the

ion cyclotron frequency, in which the left-handed wave does not propagate. At very high

frequencies a propagating mode exists, which is basically a standard left-handed circularly

polarized electromagnetic wave, somewhat modified by the presence of the plasma. The

cutoff frequency for this wave is

ω2 ≃ −|Ωe|/2+
√

Ω 2
e /4+ Π

2
e . (4.95)

As before, the lower branch in Fig. 4.6 describes a wave that can only propagate in the

presence of an equilibrium magnetic field, whereas the upper branch describes a wave

that can propagate in the absence an equilibrium field. The continuation of the Alfvén

wave to just below the ion cyclotron frequency is generally called the ion cyclotron wave.
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Figure 4.6: Dispersion relation for a left-handed wave propagating parallel to the magnetic

field in a magnetized plasma.
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4.10 Perpendicular Wave Propagation

Let us now consider wave propagation, at arbitrary frequencies, perpendicular to the equi-

librium magnetic field. When θ = π/2, the eigenmode equation (4.41) simplifies to







S −iD 0

iD S− n2 0

0 0 P − n2













Ex
Ey
Ez





 = 0. (4.96)

One obvious way of solving this equation is to have P − n2 = 0, or

ω2 = Π 2
e + k2c2, (4.97)

with the eigenvector (0, 0, Ez). Since the wave-vector now points in the x-direction, this

is clearly a transverse wave polarized with its electric field parallel to the equilibrium

magnetic field. Particle motions are along the magnetic field, so the mode dynamics are

completely unaffected by this field. Thus, the wave is identical to the electromagnetic

plasma wave found previously in an unmagnetized plasma. This wave is known as the

ordinary, or O-, mode.

The other solution to Eq. (4.96) is obtained by setting the 2× 2 determinant involving

the x- and y- components of the electric field to zero. The dispersion relation reduces to

n2 =
RL

S
, (4.98)

with the associated eigenvector Ex (1,−i S/D, 0).

Let us, first of all, search for the cutoff frequencies, at which n2 goes to zero. According

to Eq. (4.98), these frequencies are the roots of R = 0 and L = 0. In fact, we have already

solved these equations (recall that cutoff frequencies do not depend on θ). There are two

cutoff frequencies, ω1 and ω2, which are specified by Eqs. (4.92) and (4.95), respectively.

Let us, next, search for the resonant frequencies, at which n2 goes to infinity. According

to Eq. (4.98), the resonant frequencies are solutions of

S = 1−
Π 2
e

ω2 −Ω 2
e

−
Π 2
i

ω2 −Ω 2
i

= 0. (4.99)

The roots of this equations can be obtained as follows. First, we note that if the first two

terms are equated to zero, we obtain ω = ωUH, where

ωUH =
√

Π 2
e +Ω 2

e . (4.100)

If this frequency is substituted into the third term, the result is far less than unity. We

conclude that ωUH is a good approximation to one of the roots of Eq. (4.99). To obtain the

second root, we make use of the fact that the product of the square of the roots is

Ω 2
e Ω

2
i + Π 2

e Ω
2
i + Π 2

i Ω
2
e ≃ Ω 2

e Ω
2
i + Π 2

i Ω
2
e . (4.101)
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We, thus, obtain ω = ωLH, where

ωLH =

√

√

√

√

Ω 2
e Ω

2
i + Π 2

i Ω
2
e

Π 2
e +Ω 2

e

. (4.102)

The first resonant frequency, ωUH, is greater than the electron cyclotron or plasma

frequencies, and is called the upper hybrid frequency. The second resonant frequency, ωLH,

lies between the electron and ion cyclotron frequencies, and is called the lower hybrid

frequency.

Unfortunately, there is no simple explanation of the origins of the two hybrid reso-

nances in terms of the motions of individual particles.

At low frequencies, the mode in question reverts to the compressional-Alfvén wave

discussed previously. Note that the shear-Alfvén wave does not propagate perpendicular

to the magnetic field.

Using the above information, and the easily demonstrated fact that

ωLH < ω2 < ωUH < ω1, (4.103)

we can deduce that the dispersion curve for the mode in question takes the form sketched

in Fig. 4.7. The lowest frequency branch corresponds to the compressional-Alfvén wave.

The other two branches constitute the extraordinary, or X-, wave. The upper branch is ba-

sically a linearly polarized (in the y-direction) electromagnetic wave, somewhat modified

by the presence of the plasma. This branch corresponds to a wave which propagates in

the absence of an equilibrium magnetic field. The lowest branch corresponds to a wave

which does not propagate in the absence of an equilibrium field. Finally, the middle branch

corresponds to a wave which converts into an electrostatic plasma wave in the absence of

an equilibrium magnetic field.

Wave propagation at oblique angles is generally more complicated than propagation

parallel or perpendicular to the equilibrium magnetic field, but does not involve any new

physical effects.

4.11 Wave Propagation Through Inhomogeneous Plasmas

Up to now, we have only analyzed wave propagation through homogeneous plasmas. Let

us now broaden our approach to take into account the far more realistic case of wave

propagation through inhomogeneous plasmas.

Let us start off by examining a very simple case. Consider a plane electromagnetic

wave, of frequency ω, propagating along the z-axis in an unmagnetized plasma whose

refractive index, n, is a function of z. We assume that the wave normal is initially aligned

along the z-axis, and, furthermore, that the wave starts off polarized in the y-direction.

It is easily demonstrated that the wave normal subsequently remains aligned along the

z-axis, and also that the polarization state of the wave does not change. Thus, the wave is

fully described by

Ey(z, t) ≡ Ey(z) exp(−iωt), (4.104)
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Figure 4.7: Dispersion relation for a wave propagating perpendicular to the magnetic field in

a magnetized plasma.
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and

Bx(z, t) ≡ Bx(z) exp(−iωt). (4.105)

It can easily be shown that Ey(z) and Bx(z) satisfy the differential equations

d2Ey

dz2
+ k 2

0 n
2 Ey = 0, (4.106)

and
d cBx

dz
= −i k0 n

2 Ey, (4.107)

respectively. Here, k0 = ω/c is the wave-number in free space. Of course, the actual

wave-number is k = k0 n.

The solution to Eq. (4.106) for the case of a homogeneous plasma, for which n is

constant, is straightforward:

Ey = A e iφ(z), (4.108)

where A is a constant, and

φ = ±k0 nz. (4.109)

The solution (4.108) represents a wave of constant amplitude, A, and phase, φ(z). Accord-

ing to Eq. (4.109), there are, in fact, two independent waves which can propagate through

the plasma. The upper sign corresponds to a wave which propagates in the +z-direction,

whereas the lower sign corresponds to a wave which propagates in the −z-direction. Both

waves propagate with the constant phase velocity c/n.

In general, if n = n(z) then the solution of Eq. (4.106) does not remotely resemble

the wave-like solution (4.108). However, in the limit in which n(z) is a “slowly varying”

function of z (exactly how slowly varying is something which will be established later on),

we expect to recover wave-like solutions. Let us suppose that n(z) is indeed a “slowly

varying” function, and let us try substituting the wave solution (4.108) into Eq. (4.106).

We obtain
(

dφ

dz

)2

= k 2
0 n

2 + i
d2φ

dz2
. (4.110)

This is a non-linear differential equation which, in general, is very difficult to solve. How-

ever, we note that if n is a constant then d2φ/dz2 = 0. It is, therefore, reasonable to

suppose that if n(z) is a “slowly varying” function then the last term on the right-hand

side of the above equation can be regarded as being small. Thus, to a first approximation

Eq. (4.91) yields
dφ

dz
≃ ±k0 n, (4.111)

and
d2φ

dz2
≃ ±k0

dn

dz
. (4.112)

It is clear from a comparison of Eqs. (4.110) and (4.112) that n(z) can be regarded as a

“slowly varying” function of z as long as its variation length-scale is far longer than the

wave-length of the wave. In other words, provided that (dn/dz)/(k0 n
2) ≪ 1.
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The second approximation to the solution is obtained by substituting Eq. (4.112) into

the right-hand side of Eq. (4.110):

dφ

dz
≃ ±

(

k 2
0 n

2 ± i k0
dn

dz

)1/2

. (4.113)

This gives

dφ

dz
≃ ±k0 n

(

1± i

k0 n2
dn

dz

)1/2

≃ ±k0 n +
i

2n

dn

dz
, (4.114)

where use has been made of the binomial expansion. The above expression can be inte-

grated to give

φ ∼ ±k0
∫ z
ndz+ i log(n1/2). (4.115)

Substitution of Eq. (4.115) into Eq. (4.108) yields the final result

Ey ≃ An−1/2 exp

(

±i k0

∫ z
ndz

)

. (4.116)

It follows from Eq. (4.107) that

cBx ≃ ∓An1/2 exp

(

±i k0

∫ z
ndz

)

−
iA

2k0 n3/2
dn

dz
exp

(

±i k0

∫ z
ndz

)

. (4.117)

Note that the second term is small compared to the first, and can usually be neglected.

Let us test to what extent the expression (4.116) is a good solution of Eq. (4.106) by

substituting this expression into the left-hand side of the equation. The result is

A

n1/2

{
3

4

(

1

n

dn

dz

)2

−
1

2n

d2n

dz2

}

exp

(

±i k0

∫ z
ndz

)

. (4.118)

This must be small compared with either term on the left-hand side of Eq. (4.106). Hence,

the condition for Eq. (4.116) to be a good solution of Eq. (4.106) becomes

1

k 2
0

∣

∣

∣

∣

∣

∣

3

4

(

1

n2
dn

dz

)2

−
1

2n3
d2n

dz2

∣

∣

∣

∣

∣

∣

≪ 1. (4.119)

The solutions

Ey ≃ An−1/2 exp

(

±i k0

∫ z
ndz

)

, (4.120)

cBx ≃ ∓An1/2 exp

(

±i k0

∫ z
ndz

)

, (4.121)
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to the non-uniform wave equations (4.106) and (4.107) are most commonly referred to as

the WKB solutions, in honour of G. Wentzel, H.A. Kramers, and L. Brillouin, who are cred-

ited with independently discovering these solutions (in a quantum mechanical context)

in 1926. Actually, H. Jeffries wrote a paper on the WKB solutions (in a wave propaga-

tion context) in 1923. Hence, some people call them the WKBJ solutions (or even the

JWKB solutions). To be strictly accurate, the WKB solutions were first discussed by Liou-

ville and Green in 1837, and again by Rayleigh in 1912. In the following, we refer to

Eqs. (4.120)–(4.121) as the WKB solutions, since this is what they are most commonly

known as. However, it should be understand that, in doing so, we are not making any

definitive statement as to the credit due to various scientists in discovering them.

Recall, that when a propagating wave is normally incident on an interface, where the

refractive index suddenly changes (for instance, when a light wave propagating through

air is normally incident on a glass slab), there is generally significant reflection of the wave.

However, according to the WKB solutions, (4.120)–(4.121), when a propagating wave is

normally incident on a medium in which the refractive index changes slowly along the

direction of propagation of the wave then the wave is not reflected at all. This is true even

if the refractive index varies very substantially along the path of propagation of the wave,

as long as it varies slowly. The WKB solutions imply that as the wave propagates through

the medium its wave-length gradually changes. In fact, the wave-length at position z is

approximately λ(z) = 2π/k0 n(z). Equations (4.120)–(4.121) also imply that the ampli-

tude of the wave gradually changes as it propagates. In fact, the amplitude of the electric

field component is inversely proportional to n1/2, whereas the amplitude of the magnetic

field component is directly proportional to n1/2. Note, however, that the energy flux in

the z-direction, given by the the Poynting vector −(EyB
∗
x +E ∗

y Bx)/(4µ0), remains constant

(assuming that n is predominately real).

Of course, the WKB solutions (4.120)–(4.121) are only approximations. In reality, a

wave propagating into a medium in which the refractive index is a slowly varying func-

tion of position is subject to a small amount of reflection. However, it is easily demon-

strated that the ratio of the reflected amplitude to the incident amplitude is of order

(dn/dz)/(k0 n
2). Thus, as long as the refractive index varies on a much longer length-

scale than the wave-length of the radiation, the reflected wave is negligibly small. This

conclusion remains valid as long as the inequality (4.119) is satisfied. This inequality ob-

viously breaks down in the vicinity of a point where n2 = 0. We would, therefore, expect

strong reflection of the incident wave from such a point. Furthermore, the WKB solutions

also break down at a point where n2 → ∞, since the amplitude of Bx becomes infinite.

4.12 Cutoffs

We have seen that electromagnetic wave propagation (in one dimension) through an in-

homogeneous plasma, in the physically relevant limit in which the variation length-scale

of the plasma is much greater than the wave-length of the wave, is well described by the

WKB solutions, (4.120)–(4.121). However, these solutions break down in the immediate
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vicinity of a cutoff, where n2 = 0, or a resonance, where n2 → ∞. Let us now examine what

happens to electromagnetic waves propagating through a plasma when they encounter a

cutoff or a resonance.

Suppose that a cutoff is located at z = 0, so that

n2 = a z+O(z2) (4.122)

in the immediate vicinity of this point, where a > 0. It is evident, from the WKB solutions,

(4.120)–(4.121), that the cutoff point lies at the boundary between a region (z > 0) in

which electromagnetic waves propagate, and a region (z < 0) in which the waves are

evanescent. In a physically realistic solution, we would expect the wave amplitude to

decay (as z decreases) in the evanescent region z < 0. Let us search for such a wave

solution.

In the immediate vicinity of the cutoff point, z = 0, Eqs. (4.106) and (4.122) yield

d2Ey

dẑ2
+ ẑ Ey = 0, (4.123)

where

ẑ = (k 2
0 a)

1/3 z. (4.124)

Equation (4.123) is a standard equation, known as Airy’s equation, and possesses two

independent solutions, denoted Ai(−ẑ) and Bi(−ẑ).1 The second solution, Bi(−ẑ), is un-

physical, since it blows up as ẑ → −∞. The physical solution, Ai(−ẑ), has the asymptotic

behaviour

Ai(−ẑ) ∼
1

2
√
π
|ẑ|−1/4 exp

(

−
2

3
|ẑ|3/2

)

(4.125)

in the limit ẑ→ −∞, and

Ai(−ẑ) ∼
1√
π
ẑ−1/4 sin

(

2

3
ẑ3/2 +

π

4

)

(4.126)

in the limit ẑ→ +∞.

Suppose that a unit amplitude plane electromagnetic wave, polarized in the y-direction,

is launched from an antenna, located at large positive z, towards the cutoff point at z = 0.

It is assumed that n = 1 at the launch point. In the non-evanescent region, z > 0, the wave

can be represented as a linear combination of propagating WKB solutions:

Ey(z) = n
−1/2 exp

(

−i k0

∫ z

0

ndz

)

+ Rn−1/2 exp

(

+i k0

∫ z

0

ndz

)

. (4.127)

The first term on the right-hand side of the above equation represents the incident wave,

whereas the second term represents the reflected wave. The complex constant R is the

1M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1964),
p. 446.
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coefficient of reflection. In the vicinity of the cutoff point (i.e., z small and positive, or ẑ

large and positive) the above expression reduces to

Ey(ẑ) = (k0/a)
1/6

[

ẑ−1/4 exp

(

−i
2

3
ẑ3/2

)

+ R ẑ−1/4 exp

(

+i
2

3
ẑ3/2

)]

. (4.128)

However, we have another expression for the wave in this region. Namely,

Ey(ẑ) = CAi(−ẑ) ≃ C√
π
ẑ−1/4 sin

(

2

3
ẑ3/2 +

π

4

)

, (4.129)

where C is an arbitrary constant. The above equation can be written

Ey(ẑ) =
C

2

√

i

π

[

ẑ−1/4 exp

(

−i
2

3
ẑ3/2

)

− i ẑ−1/4 exp

(

+i
2

3
ẑ3/2

)]

. (4.130)

A comparison of Eqs. (4.128) and (4.130) yields

R = −i. (4.131)

In other words, at a cutoff point there is total reflection, since |R| = 1, with a −π/2 phase-

shift.

4.13 Resonances

Suppose, now, that a resonance is located at z = 0, so that

n2 =
b

z+ i ǫ
+O(1) (4.132)

in the immediate vicinity of this point, where b > 0. Here, ǫ is a small real constant.

We introduce ǫ at this point principally as a mathematical artifice to ensure that Ey re-

mains single-valued and finite. However, as will become clear later on, ǫ has a physical

significance in terms of damping or spontaneous excitation.

In the immediate vicinity of the resonance point, z = 0, Eqs. (4.106) and (4.132) yield

d2Ey

dẑ2
+

Ey

ẑ + i ǫ̂
= 0, (4.133)

where

ẑ = (k 2
0 b) z, (4.134)

and ǫ̂ = (k 2
0 b) ǫ. This equation is singular at the point ẑ = −i ǫ̂. Thus, it is necessary

to introduce a branch-cut into the complex-ẑ plane in order to ensure that Ey(ẑ) is single-

valued. If ǫ > 0 then the branch-cut lies in the lower half-plane, whereas if ǫ < 0 then the

branch-cut lies in the upper half-plane—see Fig. 4.8. Suppose that the argument of ẑ is 0
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branch−cut

singularity
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Real z axis

Real z axis
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z
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ǫ < 0

ǫ > 0

Figure 4.8: Branch-cuts in the z-plane close to a wave resonance.

on the positive real ẑ-axis. It follows that the argument of ẑ on the negative real ẑ-axis is

+π when ǫ > 0 and −π when ǫ < 0.

Let

y = 2
√
ẑ, (4.135)

Ey = yψ(y). (4.136)

In the limit ǫ→ 0, Eq. (4.133) transforms into

d2ψ

dy2
+
1

y

dψ

dy
+

(

1−
1

y2

)

ψ = 0. (4.137)

This is a standard equation, known as Bessel’s equation of order one,2 and possesses two

independent solutions, denoted J1(y) and Y1(y), respectively. Thus, on the positive real

ẑ-axis we can write the most general solution to Eq. (4.133) in the form

Ey(ẑ) = A
√
ẑ J1(2

√
ẑ) + B

√
ẑ Y1(2

√
ẑ), (4.138)

where A and B are two arbitrary constants.

Let

y = 2
√
aẑ, (4.139)

Ey = yψ(y), (4.140)

2M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1964),
p. 358.
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where

a = e−i π sgn(ǫ). (4.141)

Note that the argument of aẑ is zero on the negative real ẑ-axis. In the limit ǫ → 0,

Eq. (4.133) transforms into

d2ψ

dy2
+
1

y

dψ

dy
−

(

1+
1

y2

)

ψ = 0. (4.142)

This is a standard equation, known as Bessel’s modified equation of order one,3 and pos-

sesses two independent solutions, denoted I1(y) and K1(y), respectively. Thus, on the

negative real ẑ-axis we can write the most general solution to Eq. (4.133) in the form

Ey(ẑ) = C
√
aẑ I1(2

√
aẑ) +D

√
aẑK1(2

√
aẑ), (4.143)

where C and D are two arbitrary constants.

Now, the Bessel functions J1, Y1, I1, and K1 are all perfectly well-defined for complex

arguments, so the two expressions (4.138) and (4.143) must, in fact, be identical. In

particular, the constants C and D must somehow be related to the constants A and B.

In order to establish this relationship, it is convenient to investigate the behaviour of the

expressions (4.138) and (4.143) in the limit of small ẑ: i.e., |ẑ| ≪ 1. In this limit,

√
ẑ J1(2

√
ẑ) = ẑ+O(ẑ2), (4.144)

√
aẑ I1(2

√
aẑ) = −ẑ +O(ẑ2), (4.145)

√
ẑ Y1(2

√
ẑ) = −

1

π
[1− {ln |ẑ|+ 2 γ− 1} ẑ ]

+O(ẑ2), (4.146)

√
aẑK1(2

√
aẑ) =

1

2
[1− {ln |ẑ|+ 2 γ− 1} ẑ− i arg(a) ẑ ]

+O(ẑ2), (4.147)

where γ is Euler’s constant, and ẑ is assumed to lie on the positive real ẑ-axis. It follows,

by a comparison of Eqs. (4.138), (4.143), and (4.144)–(4.147), that the choice

C = −A + i
π

2
sgn(ǫ)D = −A − i sgn(ǫ)B, (4.148)

D = −
2

π
B, (4.149)

ensures that the expressions (4.138) and (4.143) are indeed identical.

3M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1964),
p. 374.
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Now, in the limit |ẑ| ≫ 1,

√
aẑ I1(2

√
aẑ) ∼

|ẑ|1/4

2
√
π

e+2
√

|ẑ|, (4.150)

√
aẑK1(2

√
aẑ) ∼

√
π |ẑ|1/4

2
e−2

√
|ẑ|, (4.151)

where ẑ is assumed to lie on the negative real ẑ-axis. It is clear that the I1 solution is

unphysical, since it blows up in the evanescent region (ẑ < 0). Thus, the coefficient C

in expression (4.143) must be set to zero in order to prevent Ey(ẑ) from blowing up as

ẑ→ −∞. According to Eq. (4.148), this constraint implies that

A = −i sgn(ǫ)B. (4.152)

In the limit |ẑ| ≫ 1,

√
ẑ J1(2

√
ẑ) ∼

ẑ1/4√
π

cos

(

2
√
z−

3

4
π

)

, (4.153)

√
ẑ Y1(2

√
ẑ) ∼

ẑ1/4√
π

sin

(

2
√
z−

3

4
π

)

, (4.154)

where ẑ is assumed to lie on the positive real ẑ-axis. It follows from Eqs. (4.138), (4.152),

and (4.153)–(4.154) that in the non-evanescent region (ẑ > 0) the most general physical

solution takes the form

Ey(ẑ) = A ′ [sgn(ǫ) + 1] ẑ1/4 exp

[

+i 2
√
ẑ−

3

4
π

]

+A ′ [sgn(ǫ) − 1] ẑ1/4 exp

[

−i 2
√
ẑ+

3

4
π

]

, (4.155)

where A ′ is an arbitrary constant.

Suppose that a plane electromagnetic wave, polarized in the y-direction, is launched

from an antenna, located at large positive z, towards the resonance point at z = 0. It is

assumed that n = 1 at the launch point. In the non-evanescent region, z > 0, the wave

can be represented as a linear combination of propagating WKB solutions:

Ey(z) = En
−1/2 exp

(

−i k0

∫ z

0

ndz

)

+ Fn−1/2 exp

(

+i k0

∫ z

0

ndz

)

. (4.156)

The first term on the right-hand side of the above equation represents the incident wave,

whereas the second term represents the reflected wave. Here, E is the amplitude of the

incident wave, and F is the amplitude of the reflected wave. In the vicinity of the resonance

point (i.e., z small and positive, or ẑ large and positive) the above expression reduces to

Ey(ẑ) ≃ (k0b)
−1/2

[

E ẑ1/4 exp
(

−i 2
√
ẑ
)

+ F ẑ1/4 exp
(

+i 2
√
ẑ
)]

. (4.157)
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A comparison of Eqs. (4.155) and (4.157) shows that if ǫ > 0 then E = 0. In other words,

there is a reflected wave, but no incident wave. This corresponds to the spontaneous

excitation of waves in the vicinity of the resonance. On the other hand, if ǫ < 0 then

F = 0. In other words, there is an incident wave, but no reflected wave. This corresponds

to the total absorption of incident waves in the vicinity of the resonance. It is clear that if

ǫ > 0 then ǫ represents some sort of spontaneous wave excitation mechanism, whereas if

ǫ < 0 then ǫ represents a wave absorption, or damping, mechanism. We would normally

expect plasmas to absorb incident wave energy, rather than spontaneously emit waves, so

we conclude that, under most circumstances, ǫ < 0, and resonances absorb incident waves

without reflection.

4.14 Resonant Layers

Consider the situation under investigation in the preceding section, in which a plane wave,

polarized in the y-direction, is launched along the z-axis, from an antenna located at large

positive z, and absorbed at a resonance located at z = 0. In the vicinity of the resonant

point, the electric component of the wave satisfies

d2Ey

dz2
+

k20 b

z+ i ǫ
Ey = 0, (4.158)

where b > 0 and ǫ < 0.

The time-averaged Poynting flux in the z-direction is written

Pz = −
(Ey B

∗
x + E ∗

y Bx)

4µ0
. (4.159)

Now, the Faraday-Maxwell equation yields

iωBx = −
dEy

dz
. (4.160)

Thus, we have

Pz = −
i

4 µ0ω

(

dEy

dz
E ∗
y −

dE ∗
y

dz
Ey

)

. (4.161)

Let us ascribe any variation of Pz with z to the wave energy emitted by the plasma. We

then have
dPz

dz
=W, (4.162)

where W is the power emitted by the plasma per unit volume. It follows that

W = −
i

4 µ0ω

(

d2Ey

dz2
E ∗
y −

d2E ∗
y

dz2
Ey

)

. (4.163)
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Equations (4.158) and (4.163) yield

W =
k 2
0 b

2µ0ω

ǫ

z2 + ǫ2
|Ey|

2. (4.164)

Note thatW < 0, since ǫ < 0, so wave energy is absorbed by the plasma. It is clear from the

above formula that the absorption takes place in a narrow layer, of thickness |ǫ|, centred

on the resonance point, z = 0.

4.15 Collisional Damping

Let us now consider a real-life damping mechanism. Equation (4.15) specifies the lin-

earized Ohm’s law in the collisionless cold-plasma approximation. However, in the presence

of collisions this expression acquires an extra term (see Sect. 3), such that

E = −V × B0 +
j × B0

ne
− iω

me

ne2
j + ν

me

ne2
j, (4.165)

where ν ≡ τ−1e is the collision frequency. Here, we have neglected the small difference

between the parallel and perpendicular plasma electrical conductivities, for the sake of

simplicity. When Eq. (4.165) is used to calculate the dielectric permittivity for a right-

handed wave, in the limit ω≫ Ωi, we obtain

R ≃ 1− Π 2
e

ω (ω+ iν− |Ωe|)
. (4.166)

A right-handed circularly polarized wave, propagating parallel to the magnetic field, is

governed by the dispersion relation

n2 = R ≃ 1+ Π 2
e

ω (|Ωe|−ω− iν)
. (4.167)

Suppose that n = n(z). Furthermore, let

|Ωe| = ω+ |Ωe|
′ z, (4.168)

so that the electron cyclotron resonance is located at z = 0. We also assume that |Ωe|
′ > 0,

so that the evanescent region corresponds to z < 0. It follows that in the immediate vicinity

of the resonance

n2 ≃ b

z+ i ǫ
, (4.169)

where

b =
Π 2
e

ω |Ωe| ′
, (4.170)
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and

ǫ = −
ν

|Ωe| ′
. (4.171)

It can be seen that ǫ < 0, which is consistent with the absorption of incident wave energy

by the resonant layer. The approximate width of the resonant layer is

δ ∼ |ǫ| =
ν

|Ωe| ′
. (4.172)

Note that the damping mechanism, in this case collisions, controls the thickness of the

resonant layer, but does not control the amount of wave energy absorbed by the layer. In

fact, in the simple theory outlined above, all of the incident wave energy is absorbed by

the layer.

4.16 Pulse Propagation

Consider the situation under investigation in Sect. 4.12, in which a plane wave, polarized

in the y-direction, is launched along the z-axis, from an antenna located at large positive

z, and reflected from a cutoff located at z = 0. Up to now, we have only considered

infinite wave-trains, characterized by a discrete frequency, ω. Let us now consider the

more realistic case in which the antenna emits a finite pulse of radio waves.

The pulse structure is conveniently represented as

Ey(t) =

∫
∞

−∞

F(ω) e−iωt dω, (4.173)

where Ey(t) is the electric field produced by the antenna, which is assumed to lie at z = a.

Suppose that the pulse is a signal of roughly constant (angular) frequency ω0, which lasts

a time T , where T is long compared to 1/ω0. It follows that F(ω) possesses narrow maxima

aroundω = ±ω0. In other words, only those frequencies which lie very close to the central

frequency ω0 play a significant role in the propagation of the pulse.

Each component frequency of the pulse yields a wave which propagates independently

along the z-axis, in a manner specified by the appropriate WKB solution [see Eqs. (4.120)–

(4.121)]. Thus, if Eq. (4.173) specifies the signal at the antenna (i.e., at z = a), then the

signal at coordinate z (where z < a) is given by

Ey(z, t) =

∫
∞

−∞

F(ω)

n1/2(ω, z)
e iφ(ω,z,t) dω, (4.174)

where

φ(ω, z, t) =
ω

c

∫a

z

n(ω, z)dz−ωt. (4.175)

Here, we have used k0 = ω/c.

Equation (4.174) can be regarded as a contour integral inω-space. The quantity F/n1/2

is a relatively slowly varying function of ω, whereas the phase, φ, is a large and rapidly
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varying function of ω. The rapid oscillations of exp( iφ) over most of the path of in-

tegration ensure that the integrand averages almost to zero. However, this cancellation

argument does not apply to places on the integration path where the phase is stationary:

i.e., places where φ(ω) has an extremum. The integral can, therefore, be estimated by

finding those points where φ(ω) has a vanishing derivative, evaluating (approximately)

the integral in the neighbourhood of each of these points, and summing the contributions.

This procedure is called the method of stationary phase.

Suppose that φ(ω) has a vanishing first derivative at ω = ωs. In the neighbourhood of

this point, φ(ω) can be expanded as a Taylor series,

φ(ω) = φs +
1

2
φ ′′
s (ω−ωs)

2 + · · · . (4.176)

Here, the subscript s is used to indicate φ or its second derivative evaluated at ω = ωs.

Since F(ω)/n1/2(ω, z) is slowly varying, the contribution to the integral from this station-

ary phase point is approximately

Ey s ≃
F(ωs) e iφs

n1/2(ωs, z)

∫
∞

−∞

e (i/2)φ ′′

s (ω−ωs)
2

dω. (4.177)

The above expression can be written in the form

Ey s ≃
F(ωs) e iφs

n1/2(ωs, z)

√

4π

φ ′′
s

∫
∞

0

[

cos(π t2/2) + i sin(π t2/2)
]

dt, (4.178)

where
π

2
t2 =

1

2
φ ′′
s (ω−ωs)

2. (4.179)

The integrals in the above expression are Fresnel integrals,4 and can be shown to take the

values ∫
∞

0

cos(π t2/2)dt =

∫
∞

0

sin(π t2/2)dt =
1

2
. (4.180)

It follows that

Ey s ≃
√

2π i

φ ′′
s

F(ωs)

n1/2(ωs, z)
e iφs . (4.181)

If there is more than one point of stationary phase in the range of integration then the

integral is approximated as a sum of terms like the above.

Integrals of the form (4.174) can be calculated exactly using the method of steepest

decent.5 The stationary phase approximation (4.181) agrees with the leading term of the

method of steepest decent (which is far more difficult to implement than the method of

stationary phase) provided that φ(ω) is real (i.e., provided that the stationary point lies on

4M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions, (Dover, New York NY, 1965),

Sect. 7.3.
5Léon Brillouin, Wave Propagation and Group Velocity, (Academic press, New York NY, 1960).
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the real axis). If φ is complex, however, the stationary phase method can yield erroneous

results.

It follows, from the above discussion, that the right-hand side of Eq. (4.174) averages

to a very small value, expect for those special values of z and t at which one of the points

of stationary phase in ω-space coincides with one of the peaks of F(ω). The locus of these

special values of z and t can obviously be regarded as the equation of motion of the pulse

as it propagates along the z-axis. Thus, the equation of motion is specified by

(

∂φ

∂ω

)

ω=ω0

= 0, (4.182)

which yields

t =
1

c

∫a

z

[

∂(ωn)

∂ω

]

ω=ω0

dz. (4.183)

Suppose that the z-velocity of a pulse of central frequency ω0 at coordinate z is given

by −uz(ω0, z). The differential equation of motion of the pulse is then dt = −dz/uz. This

can be integrated, using the boundary condition z = a at t = 0, to give the full equation

of motion:

t =

∫a

z

dz

uz
. (4.184)

A comparison of Eqs. (4.183) and (4.184) yields

uz(ω0, z) = c

/{
∂[ωn(ω, z)]

∂ω

}

ω=ω0

. (4.185)

The velocity uz is usually called the group velocity. It is easily demonstrated that the above

expression for the group velocity is entirely consistent with that given previously [see

Eq. (4.71)].

The dispersion relation for an electromagnetic plasma wave propagating through an

unmagnetized plasma is

n(ω, z) =

(

1−
Π 2
e (z)

ω2

)1/2

. (4.186)

Here, we have assumed that equilibrium quantities are functions of z only, and that the

wave propagates along the z-axis. The phase velocity of waves of frequencyω propagating

along the z-axis is given by

vz(ω, z) =
c

n(ω, z)
= c

(

1−
Π 2
e (z)

ω2

)−1/2

. (4.187)

According to Eqs. (4.185) and (4.186), the corresponding group velocity is

uz(ω, z) = c

(

1−
Π 2
e (z)

ω2

)1/2

. (4.188)
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It follows that

vz uz = c
2. (4.189)

It is assumed that Πe(0) = ω, and Πe(z) < ω for z > 0, which implies that the reflection

point corresponds to z = 0. Note that the phase velocity is always greater than the velocity

of light in vacuum, whereas the group velocity is always less than this velocity. Note, also,

that as the reflection point, z = 0, is approached from positive z, the phase velocity tends

to infinity, whereas the group velocity tends to zero.

Although we have only analyzed the motion of the pulse as it travels from the antenna

to the reflection point, it is easily demonstrated that the speed of the reflected pulse at

position z is the same as that of the incident pulse. In other words, the group velocities of

pulses traveling in opposite directions are of equal magnitude.

4.17 Ray Tracing

Let us now generalize the preceding analysis so that we can deal with pulse propagation

though a three-dimensional magnetized plasma.

A general wave problem can be written as a set of n coupled, linear, homogeneous,

first-order, partial-differential equations, which take the form

M( i ∂/∂t,−i∇, r, t)ψ= 0. (4.190)

The vector-field ψ(r, t) has n components (e.g., ψ might consist of E, B, j, and V) charac-

terizing some small disturbance, and M is an n× n matrix characterizing the undisturbed

plasma.

The lowest order WKB approximation is premised on the assumption that M depends

so weakly on r and t that all of the spatial and temporal dependence of the components of

ψ(r, t) is specified by a common factor exp( iφ). Thus, Eq. (4.190) reduces to

M(ω, k, r, t)ψ = 0, (4.191)

where

k ≡ ∇φ, (4.192)

ω ≡ −
∂φ

∂t
. (4.193)

In general, Eq. (4.191) has many solutions, corresponding to the many different types and

polarizations of wave which can propagate through the plasma in question, all of which

satisfy the dispersion relation

M(ω, k, r, t) = 0, (4.194)

where M ≡ det(M). As is easily demonstrated (see Sect. 4.11), the WKB approximation is

valid provided that the characteristic variation length-scale and variation time-scale of the
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plasma are much longer than the wave-length, 2π/k, and the period, 2π/ω, respectively,

of the wave in question.

Let us concentrate on one particular solution of Eq. (4.191) (e.g., on one particular

type of plasma wave). For this solution, the dispersion relation (4.194) yields

ω = Ω(k, r, t) : (4.195)

i.e., the dispersion relation yields a unique frequency for a wave of a given wave-vector,

k, located at a given point, (r, t), in space and time. There is also a unique ψ associated

with this frequency, which is obtained from Eq. (4.191). To lowest order, we can neglect

the variation of ψ with r and t. A general pulse solution is written

ψ(r, t) =

∫

F(k)ψ e iφ d3k, (4.196)

where (locally)

φ = k·r −Ωt, (4.197)

and F is a function which specifies the initial structure of the pulse in k-space.

The integral (4.196) averages to zero, except at a point of stationary phase, where

∇kφ = 0 (see Sect. 4.16). Here, ∇k is the k-space gradient operator. It follows that the

(instantaneous) trajectory of the pulse matches that of a point of stationary phase: i.e.,

∇kφ = r − vg t = 0, (4.198)

where

vg =
∂Ω

∂k
(4.199)

is the group velocity. Thus, the instantaneous velocity of a pulse is always equal to the local

group velocity.

Let us now determine how the wave-vector, k, and frequency, ω, of a pulse evolve as

the pulse propagates through the plasma. We start from the cross-differentiation rules [see

Eqs. (4.192)–(4.193)]:

∂ki

∂t
+
∂ω

∂ri
= 0, (4.200)

∂kj

∂ri
−
∂ki

∂rj
= 0. (4.201)

Equations (4.195) and (4.200)–(4.201) yield (making use of the Einstein summation con-

vention)
∂ki

∂t
+
∂Ω

∂kj

∂kj

∂ri
+
∂Ω

∂ri
=
∂ki

∂t
+
∂Ω

∂kj

∂ki

∂rj
+
∂Ω

∂ri
= 0, (4.202)

or
dk

dt
≡ ∂k

∂t
+ (vg ·∇) k = −∇Ω. (4.203)
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In other words, the variation of k, as seen in a frame co-moving with the pulse, is deter-

mined by the spatial gradients in Ω.

Partial differentiation of Eq. (4.195) with respect to t gives

∂ω

∂t
=
∂Ω

∂kj

∂kj

∂t
+
∂Ω

∂t
= −

∂Ω

∂kj

∂ω

∂rj
+
∂Ω

∂t
, (4.204)

which can be written
dω

dt
≡ ∂ω

∂t
+ (vg ·∇)ω =

∂Ω

∂t
. (4.205)

In other words, the variation of ω, as seen in a frame co-moving with the pulse, is deter-

mined by the time variation of Ω.

According to the above analysis, the evolution of a pulse propagating though a spatially

and temporally non-uniform plasma can be determined by solving the ray equations:

dr

dt
=

∂Ω

∂k
, (4.206)

dk

dt
= −∇Ω, (4.207)

dω

dt
=

∂Ω

∂t
. (4.208)

The above equations are conveniently rewritten in terms of the dispersion relation (4.194):

dr

dt
= −

∂M/∂k

∂M/∂ω
, (4.209)

dk

dt
=

∂M/∂r

∂M/∂ω
, (4.210)

dω

dt
= −

∂M/∂t

∂M/∂ω
. (4.211)

Note, finally, that the variation in the amplitude of the pulse, as it propagates through

though the plasma, can only be determined by expanding the WKB solutions to higher

order (see Sect. 4.11).

4.18 Radio Wave Propagation Through the Ionosphere

To a first approximation, the Earth’s ionosphere consists of an unmagnetized, horizontally

stratified, partially ionized gas. The dispersion relation for the electromagnetic plasma

wave takes the form [see Eq. (4.97)]

M = ω2 − k2c2 − Π 2
e = 0, (4.212)
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where

Πe =

√

Ne2

ǫ0me

. (4.213)

Here, N = N(z) is the density of free electrons in the ionosphere, and z is a coordinate

which measures height above the surface of the Earth. (N.B., The curvature of the Earth is

neglected in the following analysis.)

Now,

∂M
∂ω

= 2ω, (4.214)

∂M
∂k

= −2 k c2, (4.215)

∂M
∂r

= −∇Π 2
e , (4.216)

∂M
∂t

= 0. (4.217)

Thus, the ray equations, (4.209)–(4.211), yield

dr

dt
=

k c2

ω
, (4.218)

dk

dt
= −

∇Π 2
e

2ω
, (4.219)

dω

dt
= 0. (4.220)

Note that the frequency of a radio pulse does not change as it propagates through the

ionosphere, provided that N(z) does not vary in time. It is clear, from Eqs. (4.218)–

(4.220), and the fact that Πe = Πe(z), that a radio pulse which starts off at ground level

propagating in the x-z plane, say, will continue to propagate in this plane.

For pulse propagation in the x-z plane, we have

dx

dt
=

kx c
2

ω
, (4.221)

dz

dt
=

kz c
2

ω
, (4.222)

dkx

dt
= 0. (4.223)

The dispersion relation (4.212) yields

n2 =
(k 2
x + k 2

z ) c
2

ω2
= 1−

Π 2
e

ω2
, (4.224)

where n(z) is the refractive index.
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We assume that n = 1 at z = 0, which is equivalent to the reasonable assumption that

the atmosphere is non-ionized at ground level. It follows from Eq. (4.223) that

kx = kx(z = 0) =
ω

c
S, (4.225)

where S is the sine of the angle of incidence of the pulse, with respect to the vertical axis,

at ground level. Equations (4.224) and (4.225) yield

kz = ±ω
c

√

n2 − S2. (4.226)

According to Eq. (4.222), the plus sign corresponds to the upward trajectory of the pulse,

whereas the minus sign corresponds to the downward trajectory. Finally, Eqs. (4.221),

(4.222), (4.225), and (4.226) yield the equations of motion of the pulse:

dx

dt
= c S, (4.227)

dz

dt
= ±c

√

n2 − S2. (4.228)

The pulse attains its maximum altitude, z = z0, when

n(z0) = |S|. (4.229)

The total distance traveled by the pulse (i.e., the distance from its launch point to the point

where it intersects the Earth’s surface again) is

x0 = 2 S

∫ z0(S)

0

dz
√

n2(z) − S2
. (4.230)

In the limit in which the radio pulse is launched vertically (i.e., S = 0) into the iono-

sphere, the turning point condition (4.229) reduces to that characteristic of a cutoff (i.e.,

n = 0). The WKB turning point described in Eq. (4.229) is a generalization of the conven-

tional turning point, which occurs when k2 changes sign. Here, k 2
z changes sign, whilst k 2

x

and k 2
y are constrained by symmetry (i.e., kx is constant, and ky is zero).

According to Eqs. (4.218)–(4.220) and (4.224), the equation of motion of the pulse

can also be written
d2r

dt2
=
c2

2
∇n2. (4.231)

It follows that the trajectory of the pulse is the same as that of a particle moving in the

gravitational potential −c2 n2/2. Thus, if n2 decreases linearly with increasing height above

the ground [which is the case if N(z) increases linearly with z] then the trajectory of the

pulse is a parabola.
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5 Magnetohydrodynamic Fluids

5.1 Introduction

As we have seen in Sect. 3, the MHD equations take the form

dρ

dt
+ ρ∇ · V = 0, (5.1)

ρ
dV

dt
+∇p− j × B = 0, (5.2)

E + V × B = 0, (5.3)

d

dt

(

p

ρΓ

)

= 0, (5.4)

where ρ ≃ mi n is the plasma mass density, and Γ = 5/3 is the ratio of specific heats.

It is often observed that the above set of equations are identical to the equations gov-

erning the motion of an inviscid, adiabatic, perfectly conducting, electrically neutral liquid.

Indeed, this observation is sometimes used as the sole justification for the MHD equations.

After all, a hot, tenuous, quasi-neutral plasma is highly conducting, and if the motion is

sufficiently fast then both viscosity and heat conduction can be plausibly neglected. How-

ever, we can appreciate, from Sect. 3, that this is a highly oversimplified and misleading

argument. The problem is, of course, that a weakly coupled plasma is a far more compli-

cated dynamical system than a conducting liquid.

According to the discussion in Sect. 3, the MHD equations are only valid when

δ−1 vt ≫ V ≫ δ vt. (5.5)

Here, V is the typical velocity associated with the plasma dynamics under investigation,

vt is the typical thermal velocity, and δ is the typical magnetization parameter (i.e., the

typical ratio of a particle gyro-radius to the scale-length of the motion). Clearly, the above

inequality is most likely to be satisfied in a highly magnetized (i.e., δ→ 0) plasma.

If the plasma dynamics becomes too fast (i.e., V ∼ δ−1 vt) then resonances occur with

the motions of individual particles (e.g., the cyclotron resonances) which invalidate the

MHD equations. Furthermore, effects, such as electron inertia and the Hall effect, which

are not taken into account in the MHD equations, become important.

MHD is essentially a single-fluid plasma theory. A single-fluid approach is justified

because the perpendicular motion is dominated by E × B drifts, which are the same for

both plasma species. Furthermore, the relative streaming velocity, U‖, of both species

parallel to the magnetic field is strongly constrained by the fundamental MHD ordering

(see Sect. 3.9)

U ∼ δV. (5.6)
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Note, however, that if the plasma dynamics becomes too slow (i.e., V ∼ δ vt) then the

motions of the electron and ion fluids become sufficiently different that a single-fluid ap-

proach is no longer tenable. This occurs whenever the diamagnetic velocities, which are

quite different for different plasma species, become comparable to the E × B velocity (see

Sect. 3.12). Furthermore, effects such as plasma resistivity, viscosity, and thermal conduc-

tivity, which are not taken into account in the MHD equations, become important in this

limit.

Broadly speaking, the MHD equations describe relatively violent, large-scale motions of

highly magnetized plasmas.

Strictly speaking, the MHD equations are only valid in collisional plasmas (i.e., plas-

mas in which the mean-free-path is much smaller than the typical variation scale-length).

However, as discussed in Sect. 3.13, the MHD equations also fairly well describe the per-

pendicular (but not the parallel !) motions of collisionless plasmas.

Assuming that the MHD equations are valid, let us now investigate their properties.

5.2 Magnetic Pressure

The MHD equations can be combined with Maxwell’s equations,

∇× B = µ0 j, (5.7)

∇× E = −
∂B

∂t
, (5.8)

to form a closed set. The displacement current is neglected in Eq. (5.7) on the reason-

able assumption that MHD motions are slow compared to the velocity of light. Note that

Eq. (5.8) guarantees that ∇ · B = 0, provided that this relation is presumed to hold ini-

tially. Similarly, the assumption of quasi-neutrality renders the Poisson-Maxwell equation,

∇·E = ρc/ǫ0, irrelevant.

Equations (5.2) and (5.7) can be combined to give the MHD equation of motion:

ρ
dV

dt
= −∇p+∇·T, (5.9)

where

Tij =
Bi Bj − δij B

2/2

µ0
. (5.10)

Suppose that the magnetic field is approximately uniform, and directed along the z-

axis. In this case, the above equation of motion reduces to

ρ
dV

dt
= −∇·P, (5.11)

where

P =









p+ B2/2µ0 0

0 p+ B2/2µ0 0

0 0 p− B2/2µ0









. (5.12)
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Note that the magnetic field increases the plasma pressure, by an amount B2/2µ0, in direc-

tions perpendicular to the magnetic field, and decreases the plasma pressure, by the same

amount, in the parallel direction. Thus, the magnetic field gives rise to a magnetic pressure,

B2/2 µ0, acting perpendicular to field-lines, and a magnetic tension, B2/2 µ0, acting along

field-lines. Since, as we shall see presently, the plasma is tied to magnetic field-lines, it

follows that magnetic field-lines embedded in an MHD plasma act rather like mutually

repulsive elastic bands.

5.3 Flux Freezing

The MHD Ohm’s law,

E + V × B = 0, (5.13)

is sometimes referred to as the perfect conductivity equation, for obvious reasons, and

sometimes as the flux freezing equation. The latter nomenclature comes about because

Eq. (5.13) implies that the magnetic flux through any closed contour in the plasma, each

element of which moves with the local plasma velocity, is a conserved quantity.

In order to verify the above assertion, let us consider the magnetic flux, Ψ, through a

contour, C, which is co-moving with the plasma:

Ψ =

∫

S

B·dS. (5.14)

Here, S is some surface which spans C. The time rate of change of Ψ is made up of two

parts. Firstly, there is the part due to the time variation of B over the surface S. This can

be written
(

∂Ψ

∂t

)

1

=

∫

S

∂B

∂t
·dS. (5.15)

Using the Faraday-Maxwell equation, this reduces to

(

∂Ψ

∂t

)

1

= −

∫

S

∇× E·dS. (5.16)

Secondly, there is the part due to the motion of C. If dl is an element of C then V × dl is

the area swept out by dl per unit time. Hence, the flux crossing this area is B ·V × dl. It

follows that
(

∂Ψ

∂t

)

2

=

∫

C

B·V × dl =

∫

C

B × V·dl. (5.17)

Using Stokes’s theorem, we obtain

(

∂Ψ

∂t

)

2

=

∫

S

∇× (B × V)·dS. (5.18)
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Hence, the total time rate of change of Ψ is given by

dΨ

dt
= −

∫

S

∇× (E + V × B)·dS. (5.19)

The condition

E + V × B = 0 (5.20)

clearly implies that Ψ remains constant in time for any arbitrary contour. This, in turn,

implies that magnetic field-lines must move with the plasma. In other words, the field-

lines are frozen into the plasma.

A flux-tube is defined as a topologically cylindrical volume whose sides are defined by

magnetic field-lines. Suppose that, at some initial time, a flux-tube is embedded in the

plasma. According to the flux-freezing constraint,

dΨ

dt
= 0, (5.21)

the subsequent motion of the plasma and the magnetic field is always such as to maintain

the integrity of the flux-tube. Since magnetic field-lines can be regarded as infinitely thin

flux-tubes, we conclude that MHD plasma motion also maintains the integrity of field-

lines. In other words, magnetic field-lines embedded in an MHD plasma can never break

and reconnect: i.e., MHD forbids any change in topology of the field-lines. It turns out that

this is an extremely restrictive constraint. Later on, we shall discuss situations in which

this constraint is relaxed.

5.4 MHD Waves

Let us investigate the small amplitude waves which propagate through a spatially uniform

MHD plasma. We start by combining Eqs. (5.1)–(5.4) and (5.7)–(5.8) to form a closed set

of equations:

dρ

dt
+ ρ∇ · V = 0, (5.22)

ρ
dV

dt
+∇p− (∇× B)× B

µ0
= 0, (5.23)

−
∂B

∂t
+∇× (V × B) = 0, (5.24)

d

dt

(

p

ρΓ

)

= 0. (5.25)

Next, we linearize these equations (assuming, for the sake of simplicity, that the equilib-

rium flow velocity and equilibrium plasma current are both zero) to give

∂ρ

∂t
+ ρ0∇ · V = 0, (5.26)
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ρ0
∂V

∂t
+∇p− (∇× B)× B0

µ0
= 0, (5.27)

−
∂B

∂t
+∇× (V × B0) = 0, (5.28)

∂

∂t

(

p

p0
−
Γ ρ

ρ0

)

= 0. (5.29)

Here, the subscript 0 denotes an equilibrium quantity. Perturbed quantities are written

without subscripts. Of course, ρ0, p0, and B0 are constants in a spatially uniform plasma.

Let us search for wave-like solutions of Eqs. (5.26)–(5.29) in which perturbed quanti-

ties vary like exp[ i (k·r −ωt)]. It follows that

−ωρ+ ρ0 k·V = 0, (5.30)

−ωρ0 V + kp−
(k × B)× B0

µ0
= 0, (5.31)

ωB + k × (V × B0) = 0, (5.32)

−ω

(

p

p0
−
Γ ρ

ρ0

)

= 0. (5.33)

Assuming that ω 6= 0, the above equations yield

ρ = ρ0
k·V
ω
, (5.34)

p = Γ p0
k·V
ω
, (5.35)

B =
(k·V)B0 − (k·B0)V

ω
. (5.36)

Substitution of these expressions into the linearized equation of motion, Eq. (5.31), gives

[

ω2 −
(k·B0)2
µ0 ρ0

]

V =

{[
Γ p0

ρ0
+
B 2
0

µ0 ρ0

]

k −
(k·B0)
µ0 ρ0

B0

}

(k·V)

−
(k·B0) (V·B0)

µ0 ρ0
k. (5.37)

We can assume, without loss of generality, that the equilibrium magnetic field B0 is

directed along the z-axis, and that the wave-vector k lies in the x-z plane. Let θ be the

angle subtended between B0 and k. Equation (5.37) reduces to the eigenvalue equation









ω2−k2 V 2
A

−k2 V 2
S

sin2 θ 0 −k2 V 2
S

sin θ cos θ

0 ω2−k2 V 2
A

cos2 θ 0

−k2 V 2
S

sin θ cos θ 0 ω2−k2 V 2
S

cos2 θ

















Vx

Vy

Vz









= 0. (5.38)
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Here,

VA =

√

√

√

√

B 2
0

µ0 ρ0
(5.39)

is the Alfvén speed, and

VS =

√

Γ p0

ρ0
(5.40)

is the sound speed. The solubility condition for Eq. (5.38) is that the determinant of the

square matrix is zero. This yields the dispersion relation

(ω2 − k2 V 2
A cos2 θ)

[

ω4 −ω2 k2 (V 2
A + V 2

S ) + k
4 V 2

A V
2
S cos2 θ

]

= 0. (5.41)

There are three independent roots of the above dispersion relation, corresponding to

the three different types of wave that can propagate through an MHD plasma. The first,

and most obvious, root is

ω = kVA cos θ, (5.42)

which has the associated eigenvector (0, Vy, 0). This root is characterized by both k ·V = 0

and V · B0 = 0. It immediately follows from Eqs. (5.34) and (5.35) that there is zero

perturbation of the plasma density or pressure associated with this root. In fact, this root

can easily be identified as the shear-Alfvén wave, which was introduced in Sect. 4.8. Note

that the properties of the shear-Alfvén wave in a warm (i.e., non-zero pressure) plasma

are unchanged from those we found earlier in a cold plasma. Note, finally, that since the

shear-Alfvén wave only involves plasma motion perpendicular to the magnetic field, we can

expect the dispersion relation (5.42) to hold good in a collisionless, as well as a collisional,

plasma.

The remaining two roots of the dispersion relation (5.41) are written

ω = kV+, (5.43)

and

ω = kV−, (5.44)

respectively. Here,

V± =

{
1

2

[

V 2
A + V 2

S ±
√

(V 2
A + V 2

S )
2 − 4 V 2

A V
2
S cos2 θ

]

}1/2
. (5.45)

Note that V+ ≥ V−. The first root is generally termed the fast magnetosonic wave, or fast

wave, for short, whereas the second root is usually called the slow magnetosonic wave, or

slow wave. The eigenvectors for these waves are (Vx, 0, Vz). It follows that k · V 6= 0 and

V · B0 6= 0. Hence, these waves are associated with non-zero perturbations in the plasma

density and pressure, and also involve plasma motion parallel, as well as perpendicular, to

the magnetic field. The latter observation suggests that the dispersion relations (5.43) and

(5.44) are likely to undergo significant modification in collisionless plasmas.
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In order to better understand the nature of the fast and slow waves, let us consider the

cold-plasma limit, which is obtained by letting the sound speed VS tend to zero. In this

limit, the slow wave ceases to exist (in fact, its phase velocity tends to zero) whereas the

dispersion relation for the fast wave reduces to

ω = kVA. (5.46)

This can be identified as the dispersion relation for the compressional-Alfvén wave, which

was introduced in Sect. 4.8. Thus, we can identify the fast wave as the compressional-

Alfvén wave modified by a non-zero plasma pressure.

In the limit VA ≫ VS, which is appropriate to low-β plasmas (see Sect. 3.13), the

dispersion relation for the slow wave reduces to

ω ≃ kVS cos θ. (5.47)

This is actually the dispersion relation of a sound wave propagating along magnetic field-

lines. Thus, in low-β plasmas the slow wave is a sound wave modified by the presence of

the magnetic field.

The distinction between the fast and slow waves can be further understood by compar-

ing the signs of the wave induced fluctuations in the plasma and magnetic pressures: p

and B0 ·B/µ0, respectively. It follows from Eq. (5.36) that

B0 ·B
µ0

=
k·VB 2

0 − (k·B0) (B0·V)
µ0ω

. (5.48)

Now, the z- component of Eq. (5.31) yields

ωρ0 Vz = k cos θp. (5.49)

Combining Eqs. (5.35), (5.39), (5.40), (5.48), and (5.49), we obtain

B0 ·B
µ0

=
V 2
A

V 2
S

(

1−
k2 V 2

S cos2 θ

ω2

)

p. (5.50)

Hence, p and B0 ·B/µ0 have the same sign if V > VS cosθ, and the opposite sign if V <

VS cosθ. Here, V = ω/k is the phase velocity. It is straightforward to show that V+ >

VS cosθ, and V− < VS cos θ. Thus, we conclude that in the fast magnetosonic wave the

pressure and magnetic energy fluctuations reinforce one another, whereas the fluctuations

oppose one another in the slow magnetosonic wave.

Figure 5.1 shows the phase velocities of the three MHD waves plotted in the x-z plane

for a low-β plasma in which VS < VA. It can be seen that the slow wave always has a

smaller phase velocity than the shear-Alfvén wave, which, in turn, always has a smaller

phase velocity than the fast wave.
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x
→

shear-Alfvén wave

fast wave

slow wave

z →

Figure 5.1: Phase velocities of the three MHD waves in the x-z plane.

5.5 The Solar Wind

The solar wind is a high-speed particle stream continuously blown out from the Sun into

interplanetary space. It extends far beyond the orbit of the Earth, and terminates in a

shock front, called the heliopause, where it interfaces with the weakly ionized interstellar

medium. The heliopause is predicted to lie between 110 and 160 AU (1 Astronomical Unit

is 1.5 × 1011 m) from the centre of the Sun. Voyager 1 is expected to pass through the

heliopause sometime in the next decade: hopefully, it will still be functional at that time !

In the vicinity of the Earth, (i.e., at about 1 AU from the Sun) the solar wind veloc-

ity typically ranges between 300 and 1400 km s−1. The average value is approximately

500 km s−1, which corresponds to about a 4 day time of flight from the Sun. Note that the

solar wind is both super-sonic and super-Alfvénic.

The solar wind is predominately composed of protons and electrons.

Amazingly enough, the solar wind was predicted theoretically by Eugine Parker1 a

number of years before its existence was confirmed using satellite data.2 Parker’s prediction

of a super-sonic outflow of gas from the Sun is a fascinating scientific detective story, as

well as a wonderful application of plasma physics.

The solar wind originates from the solar corona. The solar corona is a hot, tenuous

plasma surrounding the Sun, with characteristic temperatures and particle densities of

about 106 K and 1014 m−3, respectively. Note that the corona is far hotter than the solar

atmosphere, or photosphere. In fact, the temperature of the photosphere is only about

6000K. It is thought that the corona is heated by Alfvén waves emanating from the pho-

1E.N. Parker, Astrophys. J. 128, 664 (1958).
2M. Neugebauer, C.W. Snyder, J. Geophys. Res. 71, 4469 (1966).
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tosphere. The solar corona is most easily observed during a total solar eclipse, when it is

visible as a white filamentary region immediately surrounding the Sun.

Let us start, following Chapman,3 by attempting to construct a model for a static solar

corona. The equation of hydrostatic equilibrium for the corona takes the form

dp

dr
= −ρ

GM⊙
r2

, (5.51)

where G = 6.67 × 10−11 m3 s−2 kg−1 is the gravitational constant, and M⊙ = 2 × 1030 kg is

the solar mass. The plasma density is written

ρ ≃ nmp, (5.52)

where n is the number density of protons. If both protons and electrons are assumed to

possess a common temperature, T(r), then the coronal pressure is given by

p = 2n T. (5.53)

The thermal conductivity of the corona is dominated by the electron thermal conduc-

tivity, and takes the form [see Eqs. (3.95) and (3.115)]

κ = κ0 T
5/2, (5.54)

where κ0 is a relatively weak function of density and temperature. For typical coronal

conditions this conductivity is extremely high: i.e., it is about twenty times the thermal

conductivity of copper at room temperature. The coronal heat flux density is written

q = −κ∇T. (5.55)

For a static corona, in the absence of energy sources or sinks, we require

∇·q = 0. (5.56)

Assuming spherical symmetry, this expression reduces to

1

r2
d

dr

(

r2 κ0 T
5/2 dT

dr

)

= 0. (5.57)

Adopting the sensible boundary condition that the coronal temperature must tend to zero

at large distances from the Sun, we obtain

T(r) = T(a)

(

a

r

)2/7

. (5.58)

The reference level r = a is conveniently taken to be the base of the corona, where a ∼

7× 105 km, n ∼ 2× 1014 m−3, and T ∼ 2× 106 K.

3S. Chapman, Smithsonian Contrib. Astrophys. 2, 1 (1957).



136 PLASMA PHYSICS

Equations (5.51), (5.52), (5.53), and (5.58) can be combined and integrated to give

p(r) = p(a) exp

{
7

5

GM⊙mp

2 T(a)a

[

(

a

r

)5/7

− 1

]}

. (5.59)

Note that as r→ ∞ the coronal pressure tends towards a finite constant value:

p(∞) = p(a) exp

{

−
7

5

GM⊙mp

2 T(a)a

}

. (5.60)

There is, of course, nothing at large distances from the Sun which could contain such a

pressure (the pressure of the interstellar medium is negligibly small). Thus, we conclude,

with Parker, that the static coronal model is unphysical.

Since we have just demonstrated that a static model of the solar corona is unsatisfac-

tory, let us now attempt to construct a dynamic model in which material flows outward

from the Sun.

5.6 Parker Model of Solar Wind

By symmetry, we expect a purely radial coronal outflow. The radial momentum conserva-

tion equation for the corona takes the form

ρu
du

dr
= −

dp

dr
− ρ

GM⊙
r2

, (5.61)

where u is the radial expansion speed. The continuity equation reduces to

1

r2
d(r2 ρu)

dr
= 0. (5.62)

In order to obtain a closed set of equations, we now need to adopt an equation of state for

the corona, relating the pressure, p, and the density, ρ. For the sake of simplicity, we adopt

the simplest conceivable equation of state, which corresponds to an isothermal corona.

Thus, we have

p =
2 ρ T

mp

, (5.63)

where T is a constant. Note that more realistic equations of state complicate the analysis,

but do not significantly modify any of the physics results.

Equation (5.62) can be integrated to give

r2 ρu = I, (5.64)

where I is a constant. The above expression simply states that the mass flux per unit solid

angle, which takes the value I, is independent of the radius, r. Equations (5.61), (5.63),

and (5.64) can be combined together to give

1

u

du

dr

(

u2 −
2 T

mp

)

=
4 T

mp r
−
GM⊙
r2

. (5.65)
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Let us restrict our attention to coronal temperatures which satisfy

T < Tc ≡
GM⊙mp

4 a
, (5.66)

where a is the radius of the base of the corona. For typical coronal parameters (see above),

Tc ≃ 5.8 × 106 K, which is certainly greater than the temperature of the corona at r = a.

For T < Tc, the right-hand side of Eq. (5.65) is negative for a < r < rc, where

rc

a
=
Tc

T
, (5.67)

and positive for rc < r <∞. The right-hand side of (5.65) is zero at r = rc, implying that

the left-hand side is also zero at this radius, which is usually termed the “critical radius.”

There are two ways in which the left-hand side of (5.65) can be zero at the critical radius.

Either

u2(rc) = u
2
c ≡ 2 T

mp

, (5.68)

or
du(rc)

dr
= 0. (5.69)

Note that uc is the coronal sound speed.

As is easily demonstrated, if Eq. (5.68) is satisfied then du/dr has the same sign for all

r, and u(r) is either a monotonically increasing, or a monotonically decreasing, function of

r. On the other hand, if Eq. (5.69) is satisfied then u2−u 2
c has the same sign for all r, and

u(r) has an extremum close to r = rc. The flow is either super-sonic for all r, or sub-sonic

for all r. These possibilities lead to the existence of four classes of solutions to Eq. (5.65),

with the following properties:

1. u(r) is sub-sonic throughout the domain a < r <∞. u(r) increases with r, attains a

maximum value around r = rc, and then decreases with r.

2. a unique solution for which u(r) increases monotonically with r, and u(rc) = uc.

3. a unique solution for which u(r) decreases monotonically with r, and u(rc) = uc.

4. u(r) is super-sonic throughout the domain a < r <∞. u(r) decreases with r, attains

a minimum value around r = rc, and then increases with r.

These four classes of solutions are illustrated in Fig. 5.2.

Each of the classes of solutions described above fits a different set of boundary condi-

tions at r = a and r → ∞. The physical acceptability of these solutions depends on these

boundary conditions. For example, both Class 3 and Class 4 solutions can be ruled out as

plausible models for the solar corona since they predict super-sonic flow at the base of the

corona, which is not observed, and is also not consistent with a static solar photosphere.

Class 1 and Class 2 solutions remain acceptable models for the solar corona on the basis
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Figure 5.2: The four classes of Parker outflow solutions for the solar wind.
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of their properties around r = a, since they both predict sub-sonic flow in this region.

However, the Class 1 and Class 2 solutions behave quite differently as r → ∞, and the

physical acceptability of these two classes hinges on this difference.

Equation (5.65) can be rearranged to give

du2

dr

(

1−
u 2
c

u2

)

=
4 u 2

c

r

(

1−
rc

r

)

, (5.70)

where use has been made of Eqs. (5.66) and (5.67). The above expression can be inte-

grated to give
(

u

uc

)2

− ln

(

u

uc

)2

= 4 ln r+ 4
rc

r
+ C, (5.71)

where C is a constant of integration.

Let us consider the behaviour of Class 1 solutions in the limit r → ∞. It is clear from

Fig. 5.2 that, for Class 1 solutions, u/uc is less than unity and monotonically decreasing as

r→ ∞. In the large-r limit, Eq. (5.71) reduces to

ln
u

uc
≃ −2 ln r, (5.72)

so that

u ∝ 1

r2
. (5.73)

It follows from Eq. (5.64) that the coronal density, ρ, approaches a finite, constant value,

ρ∞, as r→ ∞. Thus, the Class 1 solutions yield a finite pressure,

p∞ =
2 ρ∞ T

mp

, (5.74)

at large r, which cannot be matched to the much smaller pressure of the interstellar

medium. Clearly, Class 1 solutions are unphysical.

Let us consider the behaviour of the Class 2 solution in the limit r → ∞. It is clear

from Fig. 5.2 that, for the Class 2 solution, u/uc is greater than unity and monotonically

increasing as r→ ∞. In the large-r limit, Eq. (5.71) reduces to

(

u

uc

)2

≃ 4 ln r, (5.75)

so that

u ≃ 2 uc (ln r)1/2. (5.76)

It follows from Eq. (5.64) that ρ → 0 and r → ∞. Thus, the Class 2 solution yields p → 0

at large r, and can, therefore, be matched to the low pressure interstellar medium.

We conclude that the only solution to Eq. (5.65) which is consistent with physical

boundary conditions at r = a and r → ∞ is the Class 2 solution. This solution predicts

that the solar corona expands radially outward at relatively modest, sub-sonic velocities
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close to the Sun, and gradually accelerates to super-sonic velocities as it moves further

away from the Sun. Parker termed this continuous, super-sonic expansion of the corona

the solar wind.

Equation (5.71) can be rewritten

[

u2

u 2
c

− 1

]

− ln
u2

u 2
c

= 4 ln
r

rc
+ 4

[

rc

r
− 1

]

, (5.77)

where the constant C is determined by demanding that u = uc when r = rc. Note that

both uc and rc can be evaluated in terms of the coronal temperature T via Eqs. (5.67)

and (5.68). Figure 5.3 shows u(r) calculated from Eq. (5.77) for various values of the

coronal temperature. It can be seen that plausible values of T (i.e., T ∼ 1–2 × 106 K) yield

expansion speeds of several hundreds of kilometers per second at 1 AU, which accords

well with satellite observations. The critical surface at which the solar wind makes the

transition from sub-sonic to super-sonic flow is predicted to lie a few solar radii away from

the Sun (i.e., rc ∼ 5 R⊙). Unfortunately, the Parker model’s prediction for the density of

the solar wind at the Earth is significantly too high compared to satellite observations.

Consequently, there have been many further developments of this model. In particular,

the unrealistic assumption that the solar wind plasma is isothermal has been relaxed, and

two-fluid effects have been incorporated into the analysis.4

5.7 Interplanetary Magnetic Field

Let us now investigate how the solar wind and the interplanetary magnetic field affect one

another.

The hot coronal plasma making up the solar wind possesses an extremely high electrical

conductivity. In such a plasma, we expect the concept of “frozen-in” magnetic field-lines,

discussed in Sect. 5.3, to be applicable. The continuous flow of coronal material into

interplanetary space must, therefore, result in the transport of the solar magnetic field into

the interplanetary region. If the Sun did not rotate, the resulting magnetic configuration

would be very simple. The radial coronal expansion considered above (with the neglect of

any magnetic forces) would produce magnetic field-lines extending radially outward from

the Sun.

Of course, the Sun does rotate, with a (latitude dependent) period of about 25 days.5

Since the solar photosphere is an excellent electrical conductor, the magnetic field at the

base of the corona is frozen into the rotating frame of reference of the Sun. A magnetic

field-line starting from a given location on the surface of the Sun is drawn out along the

path followed by the element of the solar wind emanating from that location. As before, let

us suppose that the coronal expansion is purely radial in a stationary frame of reference.

Consider a spherical polar coordinate system (r, θ, φ) which co-rotates with the Sun. Of

4Solar Magnetohydrodynamics, E.R. Priest, (D. Reidel Publishing Co., Dordrecht, Netherlands, 1987).
5To an observer orbiting with the Earth, the rotation period appears to be about 27 days.
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Figure 5.3: Parker outflow solutions for the solar wind.
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course, the symmetry axis of the coordinate system is assumed to coincide with the axis of

the Sun’s rotation. In the rotating coordinate system, the velocity components of the solar

wind are written

ur = u, (5.78)

uθ = 0, (5.79)

uφ = −Ωr sinθ, (5.80)

where Ω = 2.7 × 10−6 rad sec−1 is the angular velocity of solar rotation. The azimuthal

velocity uφ is entirely due to the transformation to the rotating frame of reference. The

stream-lines of the flow satisfy the differential equation

1

r sinθ

dr

dφ
≃ ur

uφ
= −

u

Ωr sinθ
(5.81)

at constant θ. The stream-lines are also magnetic field-lines, so Eq. (5.81) can also be

regarded as the differential equation of a magnetic field-line. For radii r greater than

several times the critical radius, rc, the solar wind solution (5.77) predicts that u(r) is

almost constant (see Fig. 5.3). Thus, for r ≫ rc it is reasonable to write u(r) = us, where

us is a constant. Equation (5.81) can then be integrated to give the equation of a magnetic

field-line:

r − r0 = −
us

Ω
(φ−φ0), (5.82)

where the field-line is assumed to pass through the point (r0, θ, φ0). Maxwell’s equation

∇·B = 0, plus the assumption of a spherically symmetric magnetic field, easily yields the

following expressions for the components of the interplanetary magnetic field:

Br(r, θ, φ) = B(r0, θ, φ0)

(

r0

r

)2

, (5.83)

Bθ(r, θ, φ) = 0, (5.84)

Bφ(r, θ, φ) = −B(r0, θ, φ0)
Ωr0

us

r0

r
sinθ. (5.85)

Figure 5.4 illustrates the interplanetary magnetic field close to the ecliptic plane. The

magnetic field-lines of the Sun are drawn into spirals (Archemedian spirals, to be more

exact) by the solar rotation. Transformation to a stationary frame of reference give the

same magnetic field configuration, with the addition of an electric field

E = −u × B = −us Bφ θ̂. (5.86)

The latter field arises because the radial plasma flow is no longer parallel to magnetic

field-lines in the stationary frame.

The interplanetary magnetic field at 1 AU is observed to lie in the ecliptic plane, and is

directed at an angle of approximately 45◦ from the radial direction to the Sun. This is in

basic agreement with the spiral configuration predicted above.
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Figure 5.4: The interplanetary magnetic field.
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The analysis presented above is premised on the assumption that the interplanetary

magnetic field is too weak to affect the coronal outflow, and is, therefore, passively con-

vected by the solar wind. In fact, this is only likely to be the case if the interplanetary

magnetic energy density, B2/2 µ0, is much less that the kinetic energy density, ρu2/2, of

the solar wind. Rearrangement yields the condition

u > VA, (5.87)

where VA is the Alfvén speed. It turns out that u ∼ 10 VA at 1 AU. On the other hand,

u ≪ VA close to the base of the corona. In fact, the solar wind becomes super-Alfvénic at

a radius, denoted rA, which is typically 50 R⊙, or 1/4 of an astronomical unit. We conclude

that the previous analysis is only valid well outside the Alfvén radius: i.e., in the region

r≫ rA.

Well inside the Alfvén radius (i.e., in the region r ≪ rA), the solar wind is too weak to

modify the structure of the solar magnetic field. In fact, in this region we expect the solar

magnetic field to force the solar wind to co-rotate with the Sun. Note that flux-freezing is a

two-way-street: if the energy density of the flow greatly exceeds that of the magnetic field

then the magnetic field is passively convected by the flow, but if the energy density of the

magnetic field greatly exceeds that of the flow then the flow is forced to conform to the

magnetic field.

The above discussion leads us to the following rather crude picture of the interaction

of the solar wind and the interplanetary magnetic field. We expect the interplanetary

magnetic field to be simply the undistorted continuation of the Sun’s magnetic field for

r < rA. On the other hand, we expect the interplanetary field to be dragged out into a

spiral pattern for r > rA. Furthermore, we expect the Sun’s magnetic field to impart a

non-zero azimuthal velocity uφ(r) to the solar wind. In the ecliptic plane, we expect

uφ = Ωr (5.88)

for r < rA, and

uφ = ΩrA

(

rA

r

)

(5.89)

for r > rA. This corresponds to co-rotation with the Sun inside the Alfvén radius, and

outflow at constant angular velocity outside the Alfvén radius. We, therefore, expect the

solar wind at 1 AU to possess a small azimuthal velocity component. This is indeed the

case. In fact, the direction of the solar wind at 1 AU deviates from purely radial outflow

by about 1.5◦.

5.8 Mass and Angular Momentum Loss

Since the Sun is the best observed of any star, it is interesting to ask what impact the solar

wind has as far as solar, and stellar, evolution are concerned. The most obvious question

is whether the mass loss due to the wind is significant, or not. Using typical measured
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values (i.e., a typical solar wind velocity and particle density at 1 AU of 500 km s−1 and

7× 106 m−3, respectively), the Sun is apparently losing mass at a rate of 3× 10−14M⊙ per

year, implying a time-scale for significant mass loss of 3 × 1013 years, or some 6, 000 times

longer than the estimated 5 × 109 year age of the Sun. Clearly, the mass carried off by the

solar wind has a negligible effect on the Sun’s evolution. Note, however, that many other

stars in the Galaxy exhibit significant mass loss via stellar winds. This is particularly the

case for late-type stars.

Let us now consider the angular momentum carried off by the solar wind. Angular

momentum loss is a crucially important topic in astrophysics, since only by losing angu-

lar momentum can large, diffuse objects, such as interstellar gas clouds, collapse under

the influence of gravity to produce small, compact objects, such as stars and proto-stars.

Magnetic fields generally play a crucial role in angular momentum loss. This is certainly

the case for the solar wind, where the solar magnetic field enforces co-rotation with the

Sun out to the Alfvén radius, rA. Thus, the angular momentum carried away by a parti-

cle of mass m is Ωr 2A m, rather than ΩR 2
⊙m. The angular momentum loss time-scale is,

therefore, shorter than the mass loss time-scale by a factor (R⊙/rA)
2 ≃ 1/2500, making

the angular momentum loss time-scale comparable to the solar lifetime. It is clear that

magnetized stellar winds represent a very important vehicle for angular momentum loss

in the Universe. Let us investigate angular momentum loss via stellar winds in more detail.

Under the assumption of spherical symmetry and steady flow, the azimuthal momen-

tum evolution equation for the solar wind, taking into account the influence of the inter-

planetary magnetic field, is written

ρ
ur

r

d(r uφ)

dr
= (j × B)φ =

Br

µ0 r

d(rBφ)

dr
. (5.90)

The constancy of the mass flux [see Eq. (5.64)] and the 1/r2 dependence of Br [see

Eq. (5.83)] permit the immediate integration of the above equation to give

r uφ −
r Br Bφ

µ0 ρur
= L, (5.91)

where L is the angular momentum per unit mass carried off by the solar wind. In the

presence of an azimuthal wind velocity, the magnetic field and velocity components are

related by an expression similar to Eq. (5.81):

Br

Bφ
=

ur

uφ −Ωr sinθ
. (5.92)

The fundamental physics assumption underlying the above expression is the absence of

an electric field in the frame of reference co-rotating with the Sun. Using Eq. (5.92) to

eliminate Bφ from Eq. (5.91), we obtain (in the ecliptic plane, where sinθ = 1)

r uφ =
LM 2

A −Ωr2

M 2
A − 1

, (5.93)
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where

MA =

√

√

√

√

u 2
r

B 2
r /µ0 ρ

(5.94)

is the radial Alfvén Mach number. The radial Alfvén Mach number is small near the base of

the corona, and about 10 at 1 AU: it passes through unity at the Alfvén radius, rA, which

is about 0.25AU from the Sun. The zero denominator on the right-hand side of Eq. (5.93)

at r = rA implies that uφ is finite and continuous only if the numerator is also zero at

the Alfvén radius. This condition then determines the angular momentum content of the

outflow via

L = Ωr 2A . (5.95)

Note that the angular momentum carried off by the solar wind is indeed equivalent to that

which would be carried off were coronal plasma to co-rotate with the Sun out to the Alfvén

radius, and subsequently outflow at constant angular velocity. Of course, the solar wind

does not actually rotate rigidly with the Sun in the region r < rA: much of the angular

momentum in this region is carried in the form of electromagnetic stresses.

It is easily demonstrated that the quantity M 2
A/ur r

2 is a constant, and can, therefore,

be evaluated at r = rA to give

M 2
A =

ur r
2

urA r
2
A

, (5.96)

where urA ≡ ur(rA). Equations (5.93), (5.95), and (5.96) can be combined to give

uφ =
Ωr

urA

urA − ur

1−M 2
A

. (5.97)

In the limit r→ ∞, we have MA ≫ 1, so the above expression yields

uφ → ΩrA

(

rA

r

)(

1−
urA

ur

)

(5.98)

at large distances from the Sun. Recall, from Sect. 5.7, that if the coronal plasma were to

simply co-rotate with the Sun out to r = rA, and experience no torque beyond this radius,

then we would expect

uφ → ΩrA

(

rA

r

)

(5.99)

at large distances from the Sun. The difference between the above two expressions is

the factor 1 − urA/ur, which is a correction for the angular momentum retained by the

magnetic field at large r.

The analysis presented above was first incorporated into a quantitative coronal expan-

sion model by Weber and Davis.6 The model of Weber and Davis is very complicated. For

instance, the solar wind is required to flow smoothly through no less than three critical

points. These are associated with the sound speed (as in Parker’s original model), the

6E.J. Weber, and L. Davis Jr., Astrophys. J. 148, 217 (1967).
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Figure 5.5: Comparison of asymptotic form for azimuthal flow velocity of solar wind with

Weber-Davis solution.

radial Alfvén speed, Br/
√
µ0 ρ, (as described above), and the total Alfvén speed, B/

√
µ0 ρ.

Nevertheless, the simplified analysis outlined above captures most of the essential features

of the outflow. For instance, Fig. 5.5 shows a comparison between the large-r asymptotic

form for the azimuthal flow velocity predicted above [see Eq. (5.98)] and that calculated

by Weber and Davis, showing the close agreement between the two.

5.9 MHD Dynamo Theory

Many stars, planets, and galaxies possess magnetic fields whose origins are not easily

explained. Even the “solid” planets could not possibly be sufficiently ferromagnetic to ac-

count for their magnetism, since the bulk of their interiors are above the Curie temperature

at which permanent magnetism disappears. It goes without saying that stars and galaxies

cannot be ferromagnetic at all. Magnetic fields cannot be dismissed as transient phenom-

ena which just happen to be present today. For instance, paleomagnetism, the study of

magnetic fields “fossilized” in rocks at the time of their formation in the remote geological

past, shows that the Earth’s magnetic field has existed at much its present strength for

at least the past 3 × 109 years. The problem is that, in the absence of an internal source

of electric currents, magnetic fields contained in a conducting body decay ohmically on a

time-scale

τohm = µ0 σL
2, (5.100)

where σ is the typical electrical conductivity, and L is the typical length-scale of the body,

and this decay time-scale is generally very small compared to the inferred lifetimes of

astronomical magnetic fields. For instance, the Earth contains a highly conducting region,
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namely, its molten core, of radius L ∼ 3.5 × 106 m, and conductivity σ ∼ 4 × 105 S m−1.

This yields an ohmic decay time for the terrestrial magnetic field of only τohm ∼ 2 × 105
years, which is obviously far shorter than the inferred lifetime of this field. Clearly, some

process inside the Earth must be actively maintaining the terrestrial magnetic field. Such

a process is conventionally termed a dynamo. Similar considerations lead us to postulate

the existence of dynamos acting inside stars and galaxies, in order to account for the

persistence of stellar and galactic magnetic fields over cosmological time-scales.

The basic premise of dynamo theory is that all astrophysical bodies which contain

anomalously long-lived magnetic fields also contain highly conducting fluids (e.g., the

Earth’s molten core, the ionized gas which makes up the Sun), and it is the electric cur-

rents associated with the motions of these fluids which maintain the observed magnetic

fields. At first sight, this proposal, first made by Larmor in 1919,7 sounds suspiciously like

pulling yourself up by your own shoelaces. However, there is really no conflict with the

demands of energy conservation. The magnetic energy irreversibly lost via ohmic heating

is replenished at the rate (per unit volume) V · (j×B): i.e., by the rate of work done against

the Lorentz force. The flow field, V, is assumed to be driven via thermal convention. If

the flow is sufficiently vigorous then it is, at least, plausible that the energy input to the

magnetic field can overcome the losses due to ohmic heating, thus permitting the field to

persist over time-scales far longer than the characteristic ohmic decay time.

Dynamo theory involves two vector fields, V and B, coupled by a rather complicated

force: i.e., the Lorentz force. It is not surprising, therefore, that dynamo theory tends to

be extremely complicated, and is, at present, far from completely understood. Fig. 5.6

shows paleomagnetic data illustrating the variation of the polarity of the Earth’s magnetic

field over the last few million years, as deduced from marine sediment cores. It can be

seen that the Earth’s magnetic field is quite variable, and actually reversed polarity about

700, 000 years ago. In fact, more extensive data shows that the Earth’s magnetic field

reverses polarity about once every ohmic decay time-scale (i.e., a few times every million

years). The Sun’s magnetic field exhibits similar behaviour, reversing polarity about once

every 11 years. It is clear from examining this type of data that dynamo magnetic fields

(and velocity fields) are essentially chaotic in nature, exhibiting strong random variability

superimposed on more regular quasi-periodic oscillations.

Obviously, we are not going to attempt to tackle full-blown dynamo theory in this

course: that would be far too difficult. Instead, we shall examine a far simpler theory,

known as kinematic dynamo theory, in which the velocity field, V, is prescribed. In order for

this approach to be self-consistent, the magnetic field must be assumed to be sufficiently

small that it does not affect the velocity field. Let us start from the MHD Ohm’s law,

modified by resistivity:

E + V × B = η j. (5.101)

Here, the resistivity η is assumed to be a constant, for the sake of simplicity. Taking the

7J. Larmor, Brit. Assoc. Reports, 159 (1919).
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Figure 5.6: Polarity of the Earth’s magnetic field as a function of time, as deduced from marine

sediment cores.
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curl of the above equation, and making use of Maxwell’s equations, we obtain

∂B

∂t
−∇× (V × B) =

η

µ0
∇2B. (5.102)

If the velocity field, V, is prescribed, and unaffected by the presence of the magnetic field,

then the above equation is essentially a linear eigenvalue equation for the magnetic field,

B. The question we wish to address is as follows: for what sort of velocity fields, if any,

does the above equation possess solutions where the magnetic field grows exponentially?

In trying to answer this question, we hope to learn what type of motion of an MHD fluid

is capable of self-generating a magnetic field.

5.10 Homopolar Generators

Some of the peculiarities of dynamo theory are well illustrated by the prototype example of

self-excited dynamo action, which is the homopolar disk dynamo. As illustrated in Fig. 5.7,

this device consists of a conducting disk which rotates at angular frequency Ω about its

axis under the action of an applied torque. A wire, twisted about the axis in the manner

shown, makes sliding contact with the disc at A, and with the axis at B, and carries a

current I(t). The magnetic field B associated with this current has a flux Φ = MI across

the disc, where M is the mutual inductance between the wire and the rim of the disc. The

rotation of the disc in the presence of this flux generates a radial electromotive force

Ω

2π
Φ =

Ω

2π
MI, (5.103)

since a radius of the disc cuts the magnetic flux Φ once every 2π/Ω seconds. According to

this simplistic description, the equation for I is written

L
dI

dt
+ R I =

M

2π
ΩI, (5.104)

where R is the total resistance of the circuit, and L is its self-inductance.

Suppose that the angular velocityΩ is maintained by suitable adjustment of the driving

torque. It follows that Eq. (5.104) possesses an exponential solution I(t) = I(0) exp(γ t),

where

γ = L−1
[

M

2π
Ω − R

]

. (5.105)

Clearly, we have exponential growth of I(t), and, hence, of the magnetic field to which it

gives rise (i.e., we have dynamo action), provided that

Ω >
2πR

M
: (5.106)

i.e., provided that the disk rotates rapidly enough. Note that the homopolar generator

depends for its success on its built-in axial asymmetry. If the disk rotates in the opposite
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Figure 5.7: The homopolar generator.

direction to that shown in Fig. 5.7 then Ω < 0, and the electromotive force generated by

the rotation of the disk always acts to reduce I. In this case, dynamo action is impossible

(i.e., γ is always negative). This is a troubling observation, since most astrophysical ob-

jects, such as stars and planets, possess very good axial symmetry. We conclude that if such

bodies are to act as dynamos then the asymmetry of their internal motions must somehow

compensate for their lack of built-in asymmetry. It is far from obvious how this is going to

happen.

Incidentally, although the above analysis of a homopolar generator (which is the stan-

dard analysis found in most textbooks) is very appealing in its simplicity, it cannot be

entirely correct. Consider the limiting situation of a perfectly conducting disk and wire, in

which R = 0. On the one hand, Eq. (5.105) yields γ = MΩ/2πL, so that we still have

dynamo action. But, on the other hand, the rim of the disk is a closed circuit embedded

in a perfectly conducting medium, so the flux freezing constraint requires that the flux,

Φ, through this circuit must remain a constant. There is an obvious contradiction. The

problem is that we have neglected the currents that flow azimuthally in the disc: i.e., the

very currents which control the diffusion of magnetic flux across the rim of the disk. These

currents become particularly important in the limit R→ ∞.

The above paradox can be resolved by supposing that the azimuthal current J(t) is

constrained to flow around the rim of the disk (e.g., by a suitable distribution of radial

insulating strips). In this case, the fluxes through the I and J circuits are

Φ1 = L I+MJ, (5.107)

Φ2 = MI+ L ′ J, (5.108)

and the equations governing the current flow are

dΦ1

dt
=

Ω

2π
Φ2 − R I, (5.109)
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dΦ2

dt
= −R ′ J, (5.110)

where R ′, and L ′ refer to the J circuit. Let us search for exponential solutions, (I, J) ∝
exp(γ t), of the above system of equations. It is easily demonstrated that

γ =
−[LR ′ + L ′ R]±

√

[LR ′ + L ′ R]2 + 4 R ′ [L L ′ −M2] [MΩ/2π− R]

2 [L L ′ −M2]
. (5.111)

Recall the standard result in electromagnetic theory that L L ′ > M2 for two non-coincident

circuits. It is clear, from the above expression, that the condition for dynamo action (i.e.,

γ > 0) is

Ω >
2πR

M
, (5.112)

as before. Note, however, that γ → 0 as R ′ → 0. In other words, if the rotating disk

is a perfect conductor then dynamo action is impossible. The above system of equations

can transformed into the well-known Lorenz system, which exhibits chaotic behaviour in

certain parameter regimes.8 It is noteworthy that this simplest prototype dynamo system

already contains the seeds of chaos (provided that the formulation is self-consistent).

It is clear from the above discussion that, whilst dynamo action requires the resistance

of the circuit, R, to be low, we lose dynamo action altogether if we go to the perfectly

conducting limit, R → 0, because magnetic fields are unable to diffuse into the region in

which magnetic induction is operating. Thus, an efficient dynamo requires a conductivity

that is large, but not too large.

5.11 Slow and Fast Dynamos

Let us search for solutions of the MHD kinematic dynamo equation,

∂B

∂t
= ∇× (V × B) +

η

µ0
∇2B, (5.113)

for a prescribed steady-state velocity field, V(r), subject to certain practical constraints.

Firstly, we require a self-contained solution: i.e., a solution in which the magnetic field

is maintained by the motion of the MHD fluid, rather than by currents at infinity. This

suggests that V, B→ 0 as r→ ∞. Secondly, we require an exponentially growing solution:

i.e., a solution for which B ∝ exp(γ t), where γ > 0.

In most MHD fluids occurring in astrophysics, the resistivity, η, is extremely small. Let

us consider the perfectly conducting limit, η → 0. In this limit, Vainshtein and Zel’dovich,

in 1978, introduced an important distinction between two fundamentally different classes

8E. Knobloch, Phys. Lett. 82A, 439 (1981).
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Figure 5.8: The stretch-twist-fold cycle of a fast dynamo.

of dynamo solutions.9 Suppose that we solve the eigenvalue equation (5.113) to obtain

the growth-rate, γ, of the magnetic field in the limit η→ 0. We expect that

lim
η→0

γ ∝ ηα, (5.114)

where 0 ≤ α ≤ 1. There are two possibilities. Either α > 0, in which case the growth-rate

depends on the resistivity, or α = 0, in which case the growth-rate is independent of the

resistivity. The former case is termed a slow dynamo, whereas the latter case is termed a

fast dynamo. By definition, slow dynamos are unable to operate in the perfectly conducting

limit, since γ → 0 as η → 0. On the other hand, fast dynamos can, in principle, operate

when η = 0.

It is clear, from the above discussion, that a homopolar disk generator is an example of

a slow dynamo. In fact, it is easily seen that any dynamo which depends on the motion of a

rigid conductor for its operation is bound to be a slow dynamo: in the perfectly conducting

limit, the magnetic flux linking the conductor could never change, so there would be no

magnetic induction. So, why do we believe that fast dynamo action is even a possibility

for an MHD fluid? The answer is, of course, that an MHD fluid is a non-rigid body, and,

thus, its motion possesses degrees of freedom not accessible to rigid conductors.

We know that in the perfectly conducting limit (η→ 0) magnetic field-lines are frozen

into an MHD fluid. If the motion is incompressible (i.e., ∇·V = 0) then the stretching of

field-lines implies a proportionate intensification of the field-strength. The simplest heuris-

tic fast dynamo, first described by Vainshtein and Zel’dovich, is based on this effect. As

illustrated in Fig. 5.8, a magnetic flux-tube can be doubled in intensity by taking it around

a stretch-twist-fold cycle. The doubling time for this process clearly does not depend on

the resistivity: in this sense, the dynamo is a fast dynamo. However, under repeated appli-

cation of this cycle the magnetic field develops increasingly fine-scale structure. In fact, in

the limit η → 0 both the V and B fields eventually become chaotic and non-differentiable.

A little resistivity is always required to smooth out the fields on small length-scales: even

in this case the fields remain chaotic.

9S. Vainshtein, and Ya. B. Zel’dovich, Sov. Phys. Usp. 15, 159 (1978).
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At present, the physical existence of fast dynamos has not been conclusively established,

since most of the literature on this subject is based on mathematical paradigms rather than

actual solutions of the dynamo equation. It should be noted, however, that the need for

fast dynamo solutions is fairly acute, especially in stellar dynamo theory. For instance,

consider the Sun. The ohmic decay time for the Sun is about 1012 years, whereas the

reversal time for the solar magnetic field is only 11 years. It is obviously a little difficult to

believe that resistivity is playing any significant role in the solar dynamo.

In the following, we shall restrict our analysis to slow dynamos, which undoubtably

exist in nature, and which are characterized by non-chaotic V and B fields.

5.12 Cowling Anti-Dynamo Theorem

One of the most important results in slow, kinematic dynamo theory is credited to Cowl-

ing.10 The so-called Cowling anti-dynamo theorem states that:

An axisymmetric magnetic field cannot be maintained via dynamo action.

Let us attempt to prove this proposition.

We adopt standard cylindrical polar coordinates: (̟, θ, z). The system is assumed to

possess axial symmetry, so that ∂/∂θ ≡ 0. For the sake of simplicity, the plasma flow is

assumed to be incompressible, which implies that ∇·V = 0.

It is convenient to split the magnetic and velocity fields into poloidal and toroidal com-

ponents:

B = Bp + Bt, (5.115)

V = Vp + Vt. (5.116)

Note that a poloidal vector only possesses non-zero ̟- and z-components, whereas a

toroidal vector only possesses a non-zero θ-component.

The poloidal components of the magnetic and velocity fields are written:

Bp = ∇×
(

ψ

̟
θ̂

)

≡ ∇ψ× θ̂
̟

, (5.117)

Vp = ∇×
(

φ

̟
θ̂

)

≡ ∇φ× θ̂
̟

, (5.118)

where ψ = ψ(̟, z, t) and φ = φ(̟, z, t). The toroidal components are given by

Bt = Bt(̟, z, t) θ̂, (5.119)

Vt = Vt(̟, z, t) θ̂. (5.120)

10T.G. Cowling, Mon. Not. Roy. Astr. Soc. 94, 39 (1934); T.G. Cowling, Quart. J. Mech. Appl. Math. 10,
129 (1957).
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Note that by writing the B and V fields in the above form we ensure that the constraints

∇·B = 0 and ∇·V = 0 are automatically satisfied. Note, further, that since B·∇ψ = 0 and

V·∇φ = 0, we can regard ψ and φ as stream-functions for the magnetic and velocity fields,

respectively.

The condition for the magnetic field to be maintained by dynamo currents, rather than

by currents at infinity, is

ψ→
1

r
as r→ ∞, (5.121)

where r =
√
̟2 + z2. We also require the flow stream-function, φ, to remain bounded as

r→ ∞.

Consider the MHD Ohm’s law for a resistive plasma:

E + V × B = η j. (5.122)

Taking the toroidal component of this equation, we obtain

Et + (Vp × Bp)· θ̂ = η jt. (5.123)

It is easily demonstrated that

Et = −
1

̟

∂ψ

∂t
. (5.124)

Furthermore,

(Vp × Bp)· θ̂ =
(∇φ×∇ψ)· θ̂

̟2
=
1

̟2

(

∂ψ

∂̟

∂φ

∂z
−
∂φ

∂̟

∂ψ

∂z

)

, (5.125)

and

µ0 jt = ∇× Bp · θ̂ = −

[

∇2

(

ψ

̟

)

−
ψ

̟3

]

= −
1

̟

(

∂2ψ

∂̟2
−
1

̟

∂ψ

∂̟
+
∂2ψ

∂z2

)

. (5.126)

Thus, Eq. (5.123) reduces to

∂ψ

∂t
−
1

̟

(

∂ψ

∂̟

∂φ

∂z
−
∂φ

∂̟

∂ψ

∂z

)

=
η

µ0

(

∂2ψ

∂̟2
−
1

̟

∂ψ

∂̟
+
∂2ψ

∂z2

)

. (5.127)

Multiplying the above equation by ψ and integrating over all space, we obtain

1

2

d

dt

∫

ψ2 dV −

∫∫

2πψ

(

∂ψ

∂̟

∂φ

∂z
−
∂φ

∂̟

∂ψ

∂z

)

d̟dz (5.128)

=
η

µ0

∫∫

2π̟ψ

(

∂2ψ

∂̟2
−
1

̟

∂ψ

∂̟
+
∂2ψ

∂z2

)

d̟dz.

The second term on the left-hand side of the above expression can be integrated by parts

to give

−

∫∫

2π

[

−φ
∂

∂z

(

ψ
∂ψ

∂̟

)

+ φ
∂

∂̟

(

ψ
∂ψ

∂z

)]

d̟dz = 0, (5.129)
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where surface terms have been neglected, in accordance with Eq. (5.121). Likewise, the

term on the right-hand side of Eq. (5.128) can be integrated by parts to give

η

µ0

∫∫

2π



−
∂(̟ψ)

∂̟

∂ψ

∂̟
−̟

(

∂ψ

∂z

)2


 d̟dz =

−
η

µ0

∫∫

2π̟





(

∂ψ

∂̟

)2

+

(

∂ψ

∂z

)2


 d̟dz. (5.130)

Thus, Eq. (5.128) reduces to

d

dt

∫

ψ2 dV = −2
η

µ0

∫

|∇ψ|2 dV. (5.131)

It is clear from the above expression that the poloidal stream-function, ψ, and, hence, the

poloidal magnetic field, Bp, decays to zero under the influence of resistivity. We conclude

that the poloidal magnetic field cannot be maintained via dynamo action.

Of course, we have not ruled out the possibility that the toroidal magnetic field can be

maintained via dynamo action. In the absence of a poloidal field, the curl of the poloidal

component of Eq. (5.122) yields

−
∂Bt

∂t
+∇× (Vp × Bt) = η∇× jp, (5.132)

which reduces to

−
∂Bt

∂t
+∇× (Vp × Bt) · θ̂ = −

η

µ0
∇2(Bt θ̂) · θ̂. (5.133)

Now

∇2(Bt θ̂) · θ̂ =
∂2Bt

∂̟2
+
1

̟

∂Bt

∂̟
+
∂2Bt

∂z2
−
Bt

̟2
, (5.134)

and

∇× (Vp × Bt) · θ̂ =
∂

∂̟

(

Bt

̟

)

∂φ

∂z
−
∂

∂z

(

Bt

̟

)

∂φ

∂̟
. (5.135)

Thus, Eq. (5.133) yields

∂χ

∂t
−
1

̟

(

∂χ

∂̟

∂φ

∂z
−
∂φ

∂̟

∂χ

∂z

)

=
η

µ0

(

∂2χ

∂̟2
+
3

̟

∂χ

∂̟
+
∂2χ

∂z2

)

, (5.136)

where

Bt = ̟χ. (5.137)

Multiply Eq. (5.136) by χ, integrating over all space, and then integrating by parts, we

obtain
d

dt

∫

χ2 dV = −2
η

µ0

∫

|∇χ|2 dV. (5.138)
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It is clear from this formula that χ, and, hence, the toroidal magnetic field, Bt, decay to

zero under the influence of resistivity. We conclude that no axisymmetric magnetic field,

either poloidal or toroidal, can be maintained by dynamo action, which proves Cowling’s

theorem.

Cowling’s theorem is the earliest and most significant of a number of anti-dynamo

theorems which severely restrict the types of magnetic fields which can be maintained via

dynamo action. For instance, it is possible to prove that a two-dimensional magnetic field

cannot be maintained by dynamo action. Here, “two-dimensional” implies that in some

Cartesian coordinate system, (x, y, z), the magnetic field is independent of z. The suite

of anti-dynamo theorems can be summed up by saying that successful dynamos possess a

rather low degree of symmetry.

5.13 Ponomarenko Dynamos

The simplest known kinematic dynamo is that of Ponomarenko.11 Consider a conducting

fluid of resistivity η which fills all space. The motion of the fluid is confined to a cylinder

of radius a. Adopting cylindrical polar coordinates (r, θ, z) aligned with this cylinder, the

flow field is written

V =

{
(0, rΩ,U) for r ≤ a
0 for r > a

, (5.139)

where Ω and U are constants. Note that the flow is incompressible: i.e., ∇ · V = 0.

The dynamo equation can be written

∂B

∂t
= (B · ∇)V − (V · ∇)B +

η

µ0
∇2B. (5.140)

Let us search for solutions to this equation of the form

B(r, θ, z, t) = B(r) exp[ i (mθ− k z) + γ t]. (5.141)

The r- and θ- components of Eq. (5.140) are written

γBr = −i (mΩ− kU)Br (5.142)

+
η

µ0

[

d2Br

dr2
+
1

r

dBr

dr
−

(m2 + k2r2 + 1)Br

r2
−

i 2mBθ

r2

]

,

and

γBθ = r
dΩ

dr
Br − i (mΩ− kU)Bθ (5.143)

+
η

µ0

[

d2Bθ

dr2
+
1

r

dBθ

dr
−

(m2 + k2r2 + 1)Bθ

r2
+

i 2mBr

r2

]

,

11Yu. B. Ponomarenko, J. Appl. Mech. Tech. Phys. 14, 775 (1973).
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respectively. In general, the term involving dΩ/dr is zero. In fact, this term is only in-

cluded in the analysis to enable us to evaluate the correct matching conditions at r = a.

Note that we do not need to write the z-component of Eq. (5.140), since Bz can be obtained

more directly from Br and Bθ via the constraint ∇·B = 0.

Let

B± = Br ± iBθ, (5.144)

y =
r

a
, (5.145)

τR =
µ0 a

2

η
, (5.146)

q2 = k2a2 + γτR + i (mΩ− kU) τR, (5.147)

s2 = k2a2 + γτR. (5.148)

Here, τR is the typical time for magnetic flux to diffuse a distance a under the action of

resistivity. Equations (5.142)–(5.148) can be combined to give

y2
d2B±
dy2

+ y
dB±
dy

−
[

(m± 1)2 + q2 y2
]

B± = 0 (5.149)

for y ≤ 1, and

y2
d2B±
dy2

+ y
dB±
dy

−
[

(m± 1)2 + s2 y2
]

B± = 0 (5.150)

for y > 1. The above equations are immediately recognized as modified Bessel’s equations

of order m± 1.12 Thus, the physical solutions of Eqs. (5.149) and (5.150), which are well

behaved as y→ 0 and y→ ∞, can be written

B± = C±
Im±1(qy)

Im±1(q)
(5.151)

for y ≤ 1, and

B± = D±
Km±1(s y)

Km±1(s)
(5.152)

for y > 1. Here, C± and D± are arbitrary constants. Note that the arguments of q and s

are both constrained to lie in the range −π/2 to +π/2.

The first set of matching conditions at y = 1 are, obviously, that B± are continuous,

which yields

C± = D±. (5.153)

12M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1964),
p. 374.
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The second set of matching conditions are obtained by integrating Eq. (5.143) from r =

a− δ to r = a− δ, where δ is an infinitesimal quantity, and making use of the fact that the

angular velocity Ω jumps discontinuously to zero at r = a. It follows that

aΩBr =
η

µ0

[

dBθ

dr

]r=a+

r=a−

. (5.154)

Furthermore, integration of Eq. (5.142) tells us that dBr/dr is continuous at r = a. We

can combine this information to give the matching condition

[

dB±
dy

]y=1+

y=1−

= ±iΩτR
B+ + B−

2
. (5.155)

Equations (5.151)–(5.155) can be combined to give the dispersion relation

G+G− =
i

2
ΩτR (G+ −G−), (5.156)

where

G± = q
I ′m±1(q)

Im±1(q)
− s

K ′
m±1(s)

Km±1(s)
. (5.157)

Here, ′ denotes a derivative.

Unfortunately, despite the fact that we are investigating the simplest known dynamo,

the dispersion relation (5.156) is sufficiently complicated that it can only be solved numer-

ically. We can simplify matters considerably taking the limit |q|, |s| ≫ 1, which corresponds

either to that of small wave-length (i.e., ka≫ 1), or small resistivity (i.e., ΩτR ≫ 1). The

large argument asymptotic behaviour of the Bessel functions is specified by 13

√

2 z

π
Km(z) = e−z

(

1+
4m2 − 1

8 z
+ · · ·

)

, (5.158)

√
2 z π Im(z) = e+z

(

1−
4m2 − 1

8 z
+ · · ·

)

, (5.159)

where | arg(z)| < π/2. It follows that

G± = q+ s+ (m2/2±m+ 3/8)(q−1 + s−1) +O(q−2 + s−2). (5.160)

Thus, the dispersion relation (5.156) reduces to

(q+ s)q s = imΩτR, (5.161)

where | arg(q)|, | arg(s)| < π/2.

13M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1964),
p. 377.
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In the limit µ→ 0, where

µ = (mΩ− kU) τR, (5.162)

which corresponds to (V·∇)B → 0, the simplified dispersion relation (5.161) can be solved

to give

γ τR ≃ e iπ/3

(

mΩτR

2

)2/3

− k2 a2 − i
µ

2
. (5.163)

Dynamo behaviour [i.e., Re(γ) > 0] takes place when

ΩτR >
25/2 (ka)3

m
. (5.164)

Note that Im(γ) 6= 0, implying that the dynamo mode oscillates, or rotates, as well as grow-

ing exponentially in time. The dynamo generated magnetic field is both non-axisymmetric

[note that dynamo activity is impossible, according to Eq. (5.163), if m = 0] and three-

dimensional, and is, thus, not subject to either of the anti-dynamo theorems mentioned in

the preceding section.

It is clear from Eq. (5.164) that dynamo action occurs whenever the flow is made

sufficiently rapid. But, what is the minimum amount of flow which gives rise to dynamo

action? In order to answer this question we have to solve the full dispersion relation,

(5.156), for various values of m and k in order to find the dynamo mode which grows

exponentially in time for the smallest values ofΩ andU. It is conventional to parameterize

the flow in terms of the magnetic Reynolds number

S =
τR

τH
, (5.165)

where

τH =
L

V
(5.166)

is the typical time-scale for convective motion across the system. Here, V is a typical flow

velocity, and L is the scale-length of the system. Taking V = |V(a)| =
√
Ω2 a2 +U2, and

L = a, we have

S =
τR

√
Ω2 a2 +U2

a
(5.167)

for the Ponomarenko dynamo. The critical value of the Reynolds number above which

dynamo action occurs is found to be

Sc = 17.7. (5.168)

The most unstable dynamo mode is characterized by m = 1, U/Ωa = 1.3, ka = 0.39,

and Im(γ) τR = 0.41. As the magnetic Reynolds number, S, is increased above the critical

value, Sc, other dynamo modes are eventually destabilized.

Interestingly enough, an attempt was made in the late 1980’s to construct a Pono-

marenko dynamo by rapidly pumping liquid sodium through a cylindrical pipe equipped
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with a set of twisted vanes at one end to induce helical flow. Unfortunately, the experi-

ment failed due to mechanical vibrations, after achieving a Reynolds number which was

80% of the critical value required for self-excitation of the magnetic field, and was not

repaired due to budgetary problems.14 More recently, there has been renewed interest

worldwide in the idea of constructing a liquid metal dynamo, and two such experiments

(one in Riga, and one in Karlsruhe) have demonstrated self-excited dynamo action in a

controlled laboratory setting.

5.14 Magnetic Reconnection

Magnetic reconnection is a phenomenon which is of particular importance in solar system

plasmas. In the solar corona, it results in the rapid release to the plasma of energy stored

in the large-scale structure of the coronal magnetic field, an effect which is thought to give

rise to solar flares. Small-scale reconnection may play a role in heating the corona, and,

thereby, driving the outflow of the solar wind. In the Earth’s magnetosphere, magnetic

reconnection in the magnetotail is thought to be the precursor for auroral sub-storms.

The evolution of the magnetic field in a resistive-MHD plasma is governed by the fol-

lowing well-known equation:

∂B

∂t
= ∇× (V × B) +

η

µ0
∇2B. (5.169)

The first term on the right-hand side of this equation describes the convection of the mag-

netic field by the plasma flow. The second term describes the resistive diffusion of the

field through the plasma. If the first term dominates then magnetic flux is frozen into the

plasma, and the topology of the magnetic field cannot change. On the other hand, if the

second term dominates then there is little coupling between the field and the plasma flow,

and the topology of the magnetic field is free to change.

The relative magnitude of the two terms on the right-hand side of Eq. (5.169) is con-

ventionally measured in terms of magnetic Reynolds number, or Lundquist number:

S =
µ0 V L

η
≃ |∇× (V × B)|

|(η/µ0)∇2B|
, (5.170)

where V is the characteristic flow speed, and L the characteristic length-scale of the plasma.

If S is much larger than unity then convection dominates, and the frozen flux constraint

prevails, whilst if S is much less than unity then diffusion dominates, and the coupling

between the plasma flow and the magnetic field is relatively weak.

It turns out that in the solar system very large S-values are virtually guaranteed by the

the extremely large scale-lengths of solar system plasmas. For instance, S ∼ 108 for solar

flares, whilst S ∼ 1011 is appropriate for the solar wind and the Earth’s magnetosphere. Of

14A. Gailitis, Topological Fluid Dynamics, edited by H.K. Moffatt, and A. Tsinober (Cambridge University
Press, Cambridge UK, 1990), p. 147.
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course, in calculating these values we have identified the scale-length L with the overall

size of the plasma under investigation.

On the basis of the above discussion, it seems reasonable to neglect diffusive processes

altogether in solar system plasmas. Of course, this leads to very strong constraints on the

behaviour of such plasmas, since all cross-field mixing of plasma elements is suppressed

in this limit. Particles may freely mix along field-lines (within limitations imposed by

magnetic mirroring, etc.), but are completely ordered perpendicular to the field, since they

always remain tied to the same field-lines as they convect in the plasma flow.

Let us consider what happens when two initially separate plasma regions come into

contact with one another, as occurs, for example, in the interaction between the solar

wind and the Earth’s magnetic field. Assuming that each plasma is frozen to its own

magnetic field, and that cross-field diffusion is absent, we conclude that the two plasmas

will not mix, but, instead, that a thin boundary layer will form between them, separating

the two plasmas and their respective magnetic fields. In equilibrium, the location of the

boundary layer will be determined by pressure balance. Since, in general, the frozen fields

on either side of the boundary will have differing strengths, and orientations tangential to

the boundary, the layer must also constitute a current sheet. Thus, flux freezing leads in-

evitably to the prediction that in plasma systems space becomes divided into separate cells,

wholly containing the plasma and magnetic field from individual sources, and separated

from each other by thin current sheets.

The “separate cell” picture constitutes an excellent zeroth-order approximation to the

interaction of solar system plasmas, as witnessed, for example, by the well defined plane-

tary magnetospheres. It must be noted, however, that the large S-values upon which the

applicability of the frozen flux constraint was justified were derived using the large over-

all spatial scales of the systems involved. However, strict application of this constraint to

the problem of the interaction of separate plasma systems leads to the inevitable conclu-

sion that structures will form having small spatial scales, at least in one dimension: i.e., the

thin current sheets constituting the cell boundaries. It is certainly not guaranteed, from the

above discussion, that the effects of diffusion can be neglected in these boundary layers.

In fact, we shall demonstrate that the localized breakdown of the flux freezing constraint

in the boundary regions, due to diffusion, not only has an impact on the properties of

the boundary regions themselves, but can also have a decisive impact on the large length-

scale plasma regions where the flux freezing constraint remains valid. This observation

illustrates both the subtlety and the significance of the magnetic reconnection process.

5.15 Linear Tearing Mode Theory

Consider the interface between two plasmas containing magnetic fields of different orien-

tations. The simplest imaginable field configuration is that illustrated in Fig. 5.9. Here, the

field varies only in the x-direction, and points only in the y-direction. The field is directed

in the −y-direction for x < 0, and in the +y-direction for x > 0. The interface is situated

at x = 0. The sudden reversal of the field direction across the interface gives rise to a
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Figure 5.9: A reconnecting magnetic field configuration.

z-directed current sheet at x = 0.

With the neglect of plasma resistivity, the field configuration shown in Fig. 5.9 repre-

sents a stable equilibrium state, assuming, of course, that we have normal pressure balance

across the interface. But, does the field configuration remain stable when we take resistiv-

ity into account? If not, we expect an instability to develop which relaxes the configuration

to one possessing lower magnetic energy. As we shall see, this type of relaxation process

inevitably entails the breaking and reconnection of magnetic field lines, and is, therefore,

termed magnetic reconnection. The magnetic energy released during the reconnection pro-

cess eventually appears as plasma thermal energy. Thus, magnetic reconnection also in-

volves plasma heating.

In the following, we shall outline the standard method for determining the linear sta-

bility of the type of magnetic field configuration shown in Fig. 26, taking into account the

effect of plasma resistivity. We are particularly interested in plasma instabilities which are

stable in the absence of resistivity, and only grow when the resistivity is non-zero. Such

instabilities are conventionally termed tearing modes. Since magnetic reconnection is, in

fact, a nonlinear process, we shall then proceed to investigate the nonlinear development

of tearing modes.

The equilibrium magnetic field is written

B0 = B0 y(x) ŷ, (5.171)

where B0 y(−x) = −B0 y(x). There is assumed to be no equilibrium plasma flow. The

linearized equations of resistive-MHD, assuming incompressible flow, take the form

∂B

∂t
= ∇× (V × B0) +

η

µ0
∇2B, (5.172)
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ρ0
∂V

∂t
= −∇p+ (∇× B)× B0

µ0
+

(∇× B0)× B

µ0
(5.173)

∇ · B = 0, (5.174)

∇ · V = 0. (5.175)

Here, ρ0 is the equilibrium plasma density, B the perturbed magnetic field, V the perturbed

plasma velocity, and p the perturbed plasma pressure. The assumption of incompress-

ible plasma flow is valid provided that the plasma velocity associated with the instability

remains significantly smaller than both the Alfvén velocity and the sonic velocity.

Suppose that all perturbed quantities vary like

A(x, y, z, t) = A(x) e ik y+γ t, (5.176)

where γ is the instability growth-rate. The x-component of Eq. (5.172) and the z-component

of the curl of Eq. (5.173) reduce to

γBx = i kB0 y Vx +
η

µ0

(

d2

dx2
− k2

)

Bx, (5.177)

γ ρ0

(

d2

dx2
− k2

)

Vx =
i kB0 y

µ0

(

d2

dx2
− k2 −

B ′′
0 y

B0 y

)

Bx, (5.178)

respectively, where use has been made of Eqs. (5.174) and (5.175). Here, ′ denotes d/dx.

It is convenient to normalize Eqs. (5.177)–(5.178) using a typical magnetic field-strength,

B0, and a typical scale-length, a. Let us define the Alfvén time-scale

τA =
a

VA
, (5.179)

where VA = B0/
√
µ0 ρ0 is the Alfvén velocity, and the resistive diffusion time-scale

τR =
µ0 a

2

η
. (5.180)

The ratio of these two time-scales is the Lundquist number:

S =
τR

τA
. (5.181)

Let ψ = Bx/B0, φ = i kVy/γ, x̄ = x/a, F = B0 y/B0, F
′ ≡ dF/dx̄, γ̄ = γ τA, and k̄ = ka. It

follows that

γ̄ (ψ− Fφ) = S−1
(

d2

dx̄2
− k̄2

)

ψ, (5.182)

γ̄2
(

d2

dx̄2
− k̄2

)

φ = −k̄2 F

(

d2

dx̄2
− k̄2 −

F ′′

F

)

ψ. (5.183)
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The term on the right-hand side of Eq. (5.182) represents plasma resistivity, whilst the

term on the left-hand side of Eq. (5.183) represents plasma inertia.

It is assumed that the tearing instability grows on a hybrid time-scale which is much

less than τR but much greater than τA. It follows that

γ̄≪ 1≪ S γ̄. (5.184)

Thus, throughout most of the plasma we can neglect the right-hand side of Eq. (5.182) and

the left-hand side of Eq. (5.183), which is equivalent to the neglect of plasma resistivity

and inertia. In this case, Eqs. (5.182)–(5.183) reduce to

φ =
ψ

F
, (5.185)

d2ψ

dx̄2
− k̄2ψ−

F ′′

F
ψ = 0. (5.186)

Equation (5.185) is simply the flux freezing constraint, which requires the plasma to move

with the magnetic field. Equation (5.186) is the linearized, static force balance criterion:

∇×(j×B) = 0. Equations (5.185)–(5.186) are known collectively as the equations of ideal-

MHD, and are valid throughout virtually the whole plasma. However, it is clear that these

equations break down in the immediate vicinity of the interface, where F = 0 (i.e., where

the magnetic field reverses direction). Witness, for instance, the fact that the normalized

“radial” velocity, φ, becomes infinite as F→ 0, according to Eq. (5.185).

The ideal-MHD equations break down close to the interface because the neglect of

plasma resistivity and inertia becomes untenable as F → 0. Thus, there is a thin layer,

in the immediate vicinity of the interface, x̄ = 0, where the behaviour of the plasma is

governed by the full MHD equations, (5.182)–(5.183). We can simplify these equations,

making use of the fact that x̄ ≪ 1 and d/dx̄ ≫ 1 in a thin layer, to obtain the following

layer equations:

γ̄ (ψ− x̄ φ) = S−1
d2ψ

dx̄2
, (5.187)

γ̄2
d2φ

dx̄2
= −x̄

d2ψ

dx̄2
. (5.188)

Note that we have redefined the variables φ, γ̄, and S, such that φ → F ′(0)φ, γ̄ → γ τH,

and S→ τR/τH. Here,

τH =
τA

ka F ′(0)
(5.189)

is the hydromagnetic time-scale.

The tearing mode stability problem reduces to solving the non-ideal-MHD layer equa-

tions, (5.187)–(5.188), in the immediate vicinity of the interface, x̄ = 0, solving the ideal-

MHD equations, (5.185)–(5.186), everywhere else in the plasma, matching the two so-

lutions at the edge of the layer, and applying physical boundary conditions as |x̄| → ∞.
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This method of solution was first described in a classic paper by Furth, Killeen, and Rosen-

bluth.15

Let us consider the solution of the ideal-MHD equation (5.186) throughout the bulk

of the plasma. We could imagine launching a solution ψ(x̄) at large positive x̄, which

satisfies physical boundary conditions as x̄→ ∞, and integrating this solution to the right-

hand boundary of the non-ideal-MHD layer at x̄ = 0+. Likewise, we could also launch a

solution at large negative x̄, which satisfies physical boundary conditions as x̄→ −∞, and

integrate this solution to the left-hand boundary of the non-ideal-MHD layer at x̄ = 0−.

Maxwell’s equations demand that ψmust be continuous on either side of the layer. Hence,

we can multiply our two solutions by appropriate factors, so as to ensure that ψ matches

to the left and right of the layer. This leaves the function ψ(x̄) undetermined to an overall

arbitrary multiplicative constant, just as we would expect in a linear problem. In general,

dψ/dx̄ is not continuous to the left and right of the layer. Thus, the ideal solution can be

characterized by the real number

∆ ′ =

[

1

ψ

dψ

dx̄

]x̄=0+

x̄=0−

: (5.190)

i.e., by the jump in the logarithmic derivative of ψ to the left and right of the layer. This

parameter is known as the tearing stability index, and is solely a property of the plasma

equilibrium, the wave-number, k, and the boundary conditions imposed at infinity.

The layer equations (5.187)–(5.188) possess a trivial solution (φ = φ0, ψ = x̄ φ0,

where φ0 is independent of x̄), and a nontrivial solution for which ψ(−x̄) = ψ(x̄) and

φ(−x̄) = −φ(x̄). The asymptotic behaviour of the nontrivial solution at the edge of the

layer is

ψ(x) →

(

∆

2
|x̄|+ 1

)

Ψ, (5.191)

φ(x) →
ψ

x̄
, (5.192)

where the parameter ∆(γ̄, S) is determined by solving the layer equations, subject to the

above boundary conditions. Finally, the growth-rate, γ, of the tearing instability is deter-

mined by the matching criterion

∆(γ̄, S) = ∆ ′. (5.193)

The layer equations (5.187)–(5.188) can be solved in a fairly straightforward manner

in Fourier transform space. Let

φ(x̄) =

∫
∞

−∞

φ̂(t) e iS1/3 x̄ t dt, (5.194)

ψ(x̄) =

∫
∞

−∞

ψ̂(t) e iS1/3 x̄ t dt, (5.195)

15H.P. Furth, J. Killeen, and M.N. Rosenbluth, Phys. Fluids 6, 459 (1963).



Magnetohydrodynamic Fluids 167

where φ̂(−t) = −φ̂(t). Equations (5.187)–(5.188) can be Fourier transformed, and the

results combined, to give

d

dt

(

t2

Q+ t2
dφ̂

dt

)

−Qt2 φ̂ = 0, (5.196)

where

Q = γ τ
2/3
H τ

1/3
R . (5.197)

The most general small-t asymptotic solution of Eq. (5.196) is written

φ̂(t) →
a−1

t
+ a0 +O(t), (5.198)

where a−1 and a0 are independent of t, and it is assumed that t > 0. When inverse Fourier

transformed, the above expression leads to the following expression for the asymptotic

behaviour of φ at the edge of the non-ideal-MHD layer:

φ(x̄) → a−1

π

2
S1/3 sgn(x) +

a0

x̄
+O(|x̄|−2). (5.199)

It follows from a comparison with Eqs. (5.191)–(5.192) that

∆ = π
a−1

a0
S1/3. (5.200)

Thus, the matching parameter ∆ is determined from the small-t asymptotic behaviour of

the Fourier transformed layer solution.

Let us search for an unstable tearing mode, characterized by Q > 0. It is convenient to

assume that

Q≪ 1. (5.201)

This ordering, which is known as the constant-ψ approximation [since it implies that ψ(x̄)

is approximately constant across the layer] will be justified later on.

In the limit t≫ Q1/2, Eq. (5.196) reduces to

d2φ̂

dt2
−Qt2 φ̂ = 0. (5.202)

The solution to this equation which is well behaved in the limit t→ ∞ is writtenU(0,
√
2Q1/4 t),

where U(a, x) is a standard parabolic cylinder function.16 In the limit

Q1/2 ≪ t≪ Q−1/4 (5.203)

we can make use of the standard small argument asymptotic expansion of U(a, x) to write

the most general solution to Eq. (5.196) in the form

φ̂(t) = A

[

1− 2
Γ(3/4)

Γ(1/4)
Q1/4 t+O(t2)

]

. (5.204)

16M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York NY, 1964),
p. 686.
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Here, A is an arbitrary constant.

In the limit

t≪ Q−1/4, (5.205)

Eq. (5.196) reduces to

d

dt

(

t2

Q+ t2
dφ̂

dt

)

= 0. (5.206)

The most general solution to this equation is written

φ̂(t) = B

(

−
Q

t
+ t

)

+ C +O(t2), (5.207)

where B and C are arbitrary constants. Matching coefficients between Eqs. (5.204) and

(5.207) in the range of t satisfying the inequality (5.203) yields the following expression

for the most general solution to Eq. (5.196) in the limit t≪ Q1/2:

φ̂ = A

[

2
Γ(3/4)

Γ(1/4)

Q5/4

t
+ 1+O(t)

]

. (5.208)

Finally, a comparison of Eqs. (5.198), (5.200), and (5.208) yields the result

∆ = 2π
Γ(3/4)

Γ(1/4)
S1/3Q5/4. (5.209)

The asymptotic matching condition (5.193) can be combined with the above expression

for ∆ to give the tearing mode dispersion relation

γ =

[

Γ(1/4)

2π Γ(3/4)

]4/5
(∆ ′)4/5

τ
2/5
H τ

3/5
R

. (5.210)

Here, use has been made of the definitions of S and Q. According to the above dispersion

relation, the tearing mode is unstable whenever ∆ ′ > 0, and grows on the hybrid time-

scale τ
2/5
H τ

3/5
R . It is easily demonstrated that the tearing mode is stable whenever ∆ ′ <

0. According to Eqs. (5.193), (5.201), and (5.209), the constant-ψ approximation holds

provided that

∆ ′ ≪ S1/3 : (5.211)

i.e., provided that the tearing mode does not become too unstable.

From Eq. (5.202), the thickness of the non-ideal-MHD layer in t-space is

δt ∼
1

Q1/4
. (5.212)

It follows from Eqs. (5.194)–(5.195) that the thickness of the layer in x̄-space is

δ̄ ∼
1

S1/3 δt
∼

(

γ̄

S

)1/4

. (5.213)
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When ∆ ′ ∼ 0(1) then γ̄ ∼ S−3/5, according to Eq. (5.210), giving δ̄ ∼ S−2/5. It is clear,

therefore, that if the Lundquist number, S, is very large then the non-ideal-MHD layer

centred on the interface, x̄ = 0, is extremely narrow.

The time-scale for magnetic flux to diffuse across a layer of thickness δ̄ (in x̄-space) is

[cf., Eq. (5.180)]

τ ∼ τR δ̄
2. (5.214)

If

γ τ≪ 1, (5.215)

then the tearing mode grows on a time-scale which is far longer than the time-scale on

which magnetic flux diffuses across the non-ideal layer. In this case, we would expect the

normalized “radial” magnetic field, ψ, to be approximately constant across the layer, since

any non-uniformities in ψ would be smoothed out via resistive diffusion. It follows from

Eqs. (5.213) and (5.214) that the constant-ψ approximation holds provided that

γ̄≪ S−1/3 (5.216)

(i.e., Q≪ 1), which is in agreement with Eq. (5.201).

5.16 Nonlinear Tearing Mode Theory

We have seen that if ∆ ′ > 0 then a magnetic field configuration of the type shown in

Fig. 5.9 is unstable to a tearing mode. Let us now investigate how a tearing instability

affects the field configuration as it develops.

It is convenient to write the magnetic field in terms of a flux-function:

B = B0 a∇ψ× ẑ. (5.217)

Note that B·∇ψ = 0. It follows that magnetic field-lines run along contours of ψ(x, y).

We can write

ψ(x̄, ȳ) ≃ ψ0(x̄) + ψ1(x̄, ȳ), (5.218)

where ψ0 generates the equilibrium magnetic field, and ψ1 generates the perturbed mag-

netic field associated with the tearing mode. Here, ȳ = y/a. In the vicinity of the interface,

we have

ψ ≃ −
F ′(0)

2
x̄ 2 + Ψ cos k̄ ȳ, (5.219)

where Ψ is a constant. Here, we have made use of the fact that ψ1(x̄, ȳ) ≃ ψ1(ȳ) if the

constant-ψ approximation holds good (which is assumed to be the case).

Let χ = −ψ/Ψ and θ = k̄ ȳ. It follows that the normalized perturbed magnetic flux

function, χ, in the vicinity of the interface takes the form

χ = 8X2 − cos θ, (5.220)
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Figure 5.10: Magnetic field-lines in the vicinity of a magnetic island.

where X = x̄/W̄, and

W̄ = 4

√

Ψ

F ′(0)
. (5.221)

Figure 5.10 shows the contours of χ plotted in X-θ space. It can be seen that the tearing

mode gives rise to the formation of a magnetic island centred on the interface, X = 0.

Magnetic field-lines situated outside the separatrix are displaced by the tearing mode,

but still retain their original topology. By contrast, field-lines inside the separatrix have

been broken and reconnected, and now possess quite different topology. The reconnection

obviously takes place at the “X-points,” which are located at X = 0 and θ = j 2π, where

j is an integer. The maximum width of the reconnected region (in x̄-space) is given by

the island width, a W̄. Note that the island width is proportional to the square root of the

perturbed “radial” magnetic field at the interface (i.e., W̄ ∝
√
Ψ).

According to a result first established in a very elegant paper by Rutherford,17 the

nonlinear evolution of the island width is governed by

0.823 τR
dW̄

dt
= ∆ ′(W̄), (5.222)

where

∆ ′(W̄) =

[

1

ψ

dψ

dx̄

]+W̄/2

−W̄/2

(5.223)

is the jump in the logarithmic derivative of ψ taken across the island. It is clear that once

the tearing mode enters the nonlinear regime (i.e., once the normalized island width, W̄,

17P.H. Rutherford, Phys. Fluids 16, 1903 (1973).
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exceeds the normalized linear layer width, S−2/5), the growth-rate of the instability slows

down considerably, until the mode eventually ends up growing on the extremely slow

resistive time-scale, τR. The tearing mode stops growing when it has attained a saturated

island width W̄0, satisfying

∆ ′(W̄0) = 0. (5.224)

The saturated width is a function of the original plasma equilibrium, but is independent

of the resistivity. Note that there is no particular reason why W̄0 should be small: i.e., in

general, the saturated island width is comparable with the scale-length of the magnetic

field configuration. We conclude that, although ideal-MHD only breaks down in a narrow

region of width S−2/5, centered on the interface, x̄ = 0, the reconnection of magnetic

field-lines which takes place in this region is capable of significantly modifying the whole

magnetic field configuration.

5.17 Fast Magnetic Reconnection

Up to now, we have only considered spontaneous magnetic reconnection, which develops

from an instability of the plasma. As we have seen, such reconnection takes place at a

fairly leisurely pace. Let us now consider forced magnetic reconnection in which the recon-

nection takes place as a consequence of an externally imposed flow or magnetic perturba-

tion, rather than developing spontaneously. The principle difference between forced and

spontaneous reconnection is the development of extremely large, positive ∆ ′ values in the

former case. Generally speaking, we expect ∆ ′ to be O(1) for spontaneous reconnection.

By analogy with the previous analysis, we would expect forced reconnection to proceed

faster than spontaneous reconnection (since the reconnection rate increases with increas-

ing ∆ ′). The question is, how much faster? To be more exact, if we take the limit ∆ ′ → ∞,

which corresponds to the limit of extreme forced reconnection, just how fast can we make

the magnetic field reconnect? At present, this is a very controversial question, which is

far from being completely resolved. In the following, we shall content ourselves with a

discussion of the two “classic” fast reconnection models. These models form the starting

point of virtually all recent research on this subject.

Let us first consider the Sweet-Parker model, which was first proposed by Sweet18 and

Parker.19 The main features of the envisioned magnetic and plasma flow fields are illus-

trated in Fig. 5.11. The system is two dimensional and steady-state (i.e., ∂/∂z ≡ 0 and

∂/∂t ≡ 0). The reconnecting magnetic fields are anti-parallel, and of equal strength, B∗.
We imagine that these fields are being forcibly pushed together via the action of some ex-

ternal agency. We expect a strong current sheet to form at the boundary between the two

fields, where the direction of B suddenly changes. This current sheet is assumed to be of

thickness δ and length L.

18P.A. Sweet, Electromagnetic Phenomena in Cosmical Physics, (Cambridge University Press, Cambridge UK,
1958).

19E.N. Parker, J. Geophys. Res. 62, 509 (1957).
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Figure 5.11: The Sweet-Parker magnetic reconnection scenario.

Plasma is assumed to diffuse into the current layer, along its whole length, at some rel-

atively small inflow velocity, v0. The plasma is accelerated along the layer, and eventually

expelled from its two ends at some relatively large exit velocity, v∗. The inflow velocity is

simply an E × B velocity, so

v0 ∼
Ez

B∗
. (5.225)

The z-component of Ohm’s law yields

Ez ∼
ηB∗
µ0 δ

. (5.226)

Continuity of plasma flow inside the layer gives

L v0 ∼ δ v∗, (5.227)

assuming incompressible flow. Finally, pressure balance along the length of the layer yields

B 2
∗
µ0

∼ ρ v 2∗ . (5.228)

Here, we have balanced the magnetic pressure at the centre of the layer against the dy-

namic pressure of the outflowing plasma at the ends of the layer. Note that η and ρ are the

plasma resistivity and density, respectively.

We can measure the rate of reconnection via the inflow velocity, v0, since all of the

magnetic field-lines which are convected into the layer, with the plasma, are eventually

reconnected. The Alfvén velocity is written

VA =
B∗√
µ0 ρ

. (5.229)
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Likewise, we can write the Lundquist number of the plasma as

S =
µ0 LVA

η
, (5.230)

where we have assumed that the length of the reconnecting layer, L, is commensurate with

the macroscopic length-scale of the system. The reconnection rate is parameterized via the

Alfvénic Mach number of the inflowing plasma, which is defined

M0 =
v0

VA
. (5.231)

The above equations can be rearranged to give

v∗ ∼ VA : (5.232)

i.e., the plasma is squirted out of the ends of the reconnecting layer at the Alfvén velocity.

Furthermore,

δ ∼M0 L, (5.233)

and

M0 ∼ S
−1/2. (5.234)

We conclude that the reconnecting layer is extremely narrow, assuming that the Lundquist

number of the plasma is very large. The magnetic reconnection takes place on the hybrid

time-scale τ
1/2
A τ

1/2
R , where τA is the Alfvén transit time-scale across the plasma, and τR is

the resistive diffusion time-scale across the plasma.

The Sweet-Parker reconnection ansatz is undoubtedly correct. It has been simulated

numerically innumerable times, and was recently confirmed experimentally in the Mag-

netic Reconnection Experiment (MRX) operated by Princeton Plasma Physics Laboratory.20

The problem is that Sweet-Parker reconnection takes place far too slowly to account for

many reconnection processes which are thought to take place in the solar system. For

instance, in solar flares S ∼ 108, VA ∼ 100 km s−1, and L ∼ 104 km. According to the Sweet-

Parker model, magnetic energy is released to the plasma via reconnection on a typical

time-scale of a few tens of days. In reality, the energy is released in a few minutes to an

hour. Clearly, we can only hope to account for solar flares using a reconnection mechanism

which operates far faster than the Sweet-Parker mechanism.

One, admittedly rather controversial, resolution of this problem was suggested by

Petschek.21 He pointed out that magnetic energy can be converted into plasma thermal

energy as a result of shock waves being set up in the plasma, in addition to the conver-

sion due to the action of resistive diffusion. The configuration envisaged by Petschek is

sketched in Fig. 5.12. Two waves (slow mode shocks) stand in the flow on either side

of the interface, where the direction of B reverses, marking the boundaries of the plasma

20H. Ji, M. Yamada, S. Hsu, and R. Kulsrud, Phys. Rev. Lett. 80, 3256 (1998).
21H.E. Petschek, AAS-NASA Symposium on the Physics of Solar Flares (NASA Spec. Publ. Sp-50, 1964),

p. 425.
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Figure 5.12: The Petschek magnetic reconnection scenario.

outflow regions. A small diffusion region still exists on the interface, but now constitutes

a miniature (in length) Sweet-Parker system. The width of the reconnecting layer is given

by

δ =
L

M0 S
, (5.235)

just as in the Sweet-Parker model. However, we do not now assume that the length, L∗,
of the layer is comparable to the scale-size, L, of the system. Rather, the length may

be considerably smaller than L, and is determined self-consistently from the continuity

condition

L∗ =
δ

M0

, (5.236)

where we have assumed incompressible flow, and an outflow speed of order the Alfvén

speed, as before. Thus, if the inflow speed, v0, is much less than VA then the length of the

reconnecting layer is much larger than its width, as assumed by Sweet and Parker. On the

other hand, if we allow the inflow velocity to approach the Alfvén velocity then the layer

shrinks in length, so that L∗ becomes comparable with δ.

It follows that for reasonably large reconnection rates (i.e., M0 → 1) the length of the

diffusion region becomes much smaller than the scale-size of the system, L, so that most

of the plasma flowing into the boundary region does so across the standing waves, rather

than through the central diffusion region. The angle θ that the shock waves make with the

interface is given approximately by

tanθ ∼M0. (5.237)

Thus, for small inflow speeds the outflow is confined to a narrow wedge along the in-

terface, but as the inflow speed increases the angle of the outflow wedges increases to

accommodate the increased flow.
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It turns out that there is a maximum inflow speed beyond which Petschek-type solutions

cease to exist. The corresponding maximum Alfvénic Mach number,

(M0)max =
π

8 lnS
, (5.238)

can be regarded as specifying the maximum allowable rate of magnetic reconnection ac-

cording to the Petschek model. Clearly, since the maximum reconnection rate depends

inversely on the logarithm of the Lundquist number, rather than its square root, it is much

larger than that predicted by the Sweet-Parker model.

It must be pointed out that the Petschek model is very controversial. Many physicists

think that it is completely wrong, and that the maximum rate of magnetic reconnection al-

lowed by MHD is that predicted by the Sweet-Parker model. In particular, Biskamp22 wrote

an influential and widely quoted paper reporting the results of a numerical experiment

which appeared to disprove the Petschek model. When the plasma inflow exceeded that

allowed by the Sweet-Parker model, there was no acceleration of the reconnection rate.

Instead, magnetic flux “piled up” in front of the reconnecting layer, and the rate of recon-

nection never deviated significantly from that predicted by the Sweet-Parker model. Priest

and Forbes23 later argued that Biskamp imposed boundary conditions in his numerical ex-

periment which precluded Petschek reconnection. Probably the most powerful argument

against the validity of the Petschek model is the fact that, more than 30 years after it was

first proposed, nobody has ever managed to simulate Petschek reconnection numerically

(except by artificially increasing the resistivity in the reconnecting region—which is not a

legitimate approach).

5.18 MHD Shocks

Consider a subsonic disturbance moving through a conventional neutral fluid. As is well-

known, sound waves propagating ahead of the disturbance give advance warning of its ar-

rival, and, thereby, allow the response of the fluid to be both smooth and adiabatic. Now,

consider a supersonic distrurbance. In this case, sound waves are unable to propagate

ahead of the disturbance, and so there is no advance warning of its arrival, and, conse-

quently, the fluid response is sharp and non-adiabatic. This type of response is generally

known as a shock.

Let us investigate shocks in MHD fluids. Since information in such fluids is carried via

three different waves—namely, fast or compressional-Alfvén waves, intermediate or shear-

Alfvén waves, and slow or magnetosonic waves (see Sect. 5.4)—we might expect MHD

fluids to support three different types of shock, corresponding to disturbances traveling

faster than each of the aforementioned waves. This is indeed the case.

In general, a shock propagating through an MHD fluid produces a significant differ-

ence in plasma properties on either side of the shock front. The thickness of the front is

22D. Biskamp, Phys. Fluids 29, 1520 (1986).
23E.R. Priest, and T.G. Forbes, J. Geophys. Res. 97, 16757 (1992).
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determined by a balance between convective and dissipative effects. However, dissipative

effects in high temperature plasmas are only comparable to convective effects when the

spatial gradients in plasma variables become extremely large. Hence, MHD shocks in such

plasmas tend to be extremely narrow, and are well-approximated as discontinuous changes

in plasma parameters. The MHD equations, and Maxwell’s equations, can be integrated

across a shock to give a set of jump conditions which relate plasma properties on each side

of the shock front. If the shock is sufficiently narrow then these relations become inde-

pendent of its detailed structure. Let us derive the jump conditions for a narrow, planar,

steady-state, MHD shock.

Maxwell’s equations, and the MHD equations, (5.1)–(5.4), can be written in the fol-

lowing convenient form:

∇ · B = 0, (5.239)

∂B

∂t
−∇× (V × B) = 0, (5.240)

∂ρ

∂t
+∇ · (ρV) = 0, (5.241)

∂(ρV)

∂t
+∇ · T = 0, (5.242)

∂U

∂t
+∇ · u = 0, (5.243)

where

T = ρV V +

(

p+
B2

2µ0

)

I −
B B

µ0
(5.244)

is the total (i.e., including electromagnetic, as well as plasma, contributions) stress tensor,

I the identity tensor,

U =
1

2
ρV2 +

p

Γ − 1
+
B2

2µ0
(5.245)

the total energy density, and

u =

(

1

2
ρV2 +

Γ

Γ − 1
p

)

V +
B × (V × B)

µ0
(5.246)

the total energy flux density.

Let us move into the rest frame of the shock. Suppose that the shock front coincides

with the y-z plane. Furthermore, let the regions of the plasma upstream and downstream

of the shock, which are termed regions 1 and 2, respectively, be spatially uniform and non-

time-varying. It follows that ∂/∂t = ∂/∂y = ∂/∂z = 0. Moreover, ∂/∂x = 0, except in

the immediate vicinity of the shock. Finally, let the velocity and magnetic fields upstream

and downstream of the shock all lie in the x-y plane. The situation under discussion is

illustrated in Fig. 5.13. Here, ρ1, p1, V1, and B1 are the downstream mass density, pressure,
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Figure 5.13: A planar shock.

velocity, and magnetic field, respectively, whereas ρ2, p2, V2, and B2 are the corresponding

upstream quantities.

In the immediate vicinity of the shock, Eqs. (5.239)–(5.243) reduce to

dBx

dx
= 0, (5.247)

d

dx
(Vx By − Vy Bx) = 0, (5.248)

d(ρVx)

dx
= 0, (5.249)

dTxx

dx
= 0, (5.250)

dTxy

dx
= 0, (5.251)

dux

dx
= 0. (5.252)

Integration across the shock yields the desired jump conditions:

[Bx]
2
1 = 0, (5.253)

[Vx By − Vy Bx]
2
1 = 0, (5.254)

[ρVx]
2
1 = 0, (5.255)

[ρV 2
x + p+ B 2y/2µ0]

2
1 = 0, (5.256)

[ρVx Vy − Bx By/µ0]
2
1 = 0, (5.257)

[

1

2
ρV2 Vx +

Γ

Γ − 1
pVx +

By (Vx By − Vy Bx)

µ0

]2

1

= 0, (5.258)
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where [A]21 ≡ A2 − A1. These relations are often called the Rankine-Hugoniot relations

for MHD. Assuming that all of the upstream plasma parameters are known, there are six

unknown parameters in the problem—namely, Bx 2, By 2, Vx 2, Vy 2, ρ2, and p2. These six

unknowns are fully determined by the six jump conditions. Unfortunately, the general

case is very complicated. So, before tackling it, let us examine a couple of relatively simple

special cases.

5.19 Parallel Shocks

The first special case is the so-called parallel shock in which both the upstream and down-

stream plasma flows are parallel to the magnetic field, as well as perpendicular to the

shock front. In other words,

V1 = (V1, 0, 0), V2 = (V2, 0, 0), (5.259)

B1 = (B1, 0, 0), B2 = (B2, 0, 0). (5.260)

Substitution into the general jump conditions (5.253)–(5.258) yields

B2

B1
= 1, (5.261)

ρ2

ρ1
= r, (5.262)

V2

V1
= r−1, (5.263)

p2

p1
= R, (5.264)

with

r =
(Γ + 1)M 2

1

2+ (Γ − 1)M 2
1

, (5.265)

R = 1+ Γ M 2
1 (1− r

−1) =
(Γ + 1) r− (Γ − 1)

(Γ + 1) − (Γ − 1) r
. (5.266)

Here, M1 = V1/VS 1, where VS 1 = (Γ p1/ρ1)
1/2 is the upstream sound speed. Thus, the

upstream flow is supersonic if M1 > 1, and subsonic if M1 < 1. Incidentally, as is clear

from the above expressions, a parallel shock is unaffected by the presence of a magnetic

field. In fact, this type of shock is identical to that which occurs in neutral fluids, and is,

therefore, usually called a hydrodynamic shock.

It is easily seen from Eqs. (5.261)–(5.264) that there is no shock (i.e., no jump in

plasma parameters across the shock front) when the upstream flow is exactly sonic: i.e.,

when M1 = 1. In other words, r = R = 1 when M1 = 1. However, if M1 6= 1 then the
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upstream and downstream plasma parameters become different (i.e., r 6= 1, R 6= 1) and a

true shock develops. In fact, it is easily demonstrated that

Γ − 1

Γ + 1
≤ r ≤ Γ + 1

Γ − 1
, (5.267)

0 ≤ R ≤ ∞, (5.268)

Γ − 1

2 Γ
≤ M 2

1 ≤ ∞. (5.269)

Note that the upper and lower limits in the above inequalities are all attained simultane-

ously.

The previous discussion seems to imply that a parallel shock can be either compressive

(i.e., r > 1) or expansive (i.e., r < 1). However, there is one additional physics principle

which needs to be factored into our analysis—namely, the second law of thermodynamics.

This law states that the entropy of a closed system can spontaneously increase, but can

never spontaneously decrease. Now, in general, the entropy per particle is different on

either side of a hydrodynamic shock front. Accordingly, the second law of thermodynamics

mandates that the downstream entropy must exceed the upstream entropy, so as to ensure

that the shock generates a net increase, rather than a net decrease, in the overall entropy

of the system, as the plasma flows through it.

The (suitably normalized) entropy per particle of an ideal plasma takes the form [see

Eq. (3.59)]

S = ln(p/ρΓ). (5.270)

Hence, the difference between the upstream and downstream entropies is

[S]21 = lnR− Γ ln r. (5.271)

Now, using (5.265),

r
d[S]21
dr

=
r

R

dR

dr
− Γ =

Γ (Γ 2 − 1) (r− 1)2

[(Γ + 1) r− (Γ − 1)] [(Γ + 1) − (Γ − 1) r]
. (5.272)

Furthermore, it is easily seen from Eqs. (5.267)–(5.269) that d[S]21/dr ≥ 0 in all situa-

tions of physical interest. However, [S]21 = 0 when r = 1, since, in this case, there is no

discontinuity in plasma parameters across the shock front. We conclude that [S]21 < 0 for

r < 1, and [S]21 > 0 for r > 1. It follows that the second law of thermodynamics requires

hydrodynamic shocks to be compressive: i.e., r > 1. In other words, the plasma density

must always increase when a shock front is crossed in the direction of the relative plasma

flow. It turns out that this is a general rule which applies to all three types of MHD shock.

The upstream Mach number, M1, is a good measure of shock strength: i.e., if M1 = 1

then there is no shock, ifM1−1≪ 1 then the shock is weak, and ifM1 ≫ 1 then the shock

is strong. We can define an analogous downstream Mach number, M2 = V2/(Γ p2/ρ2)
1/2.

It is easily demonstrated from the jump conditions that if M1 > 1 then M2 < 1. In

other words, in the shock rest frame, the shock is associated with an irreversible (since
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the entropy suddenly increases) transition from supersonic to subsonic flow. Note that

r ≡ ρ2/ρ1 → (Γ + 1)/(Γ − 1), whereas R ≡ p2/p1 → ∞, in the limit M1 → ∞. In other

words, as the shock strength increases, the compression ratio, r, asymptotes to a finite

value, whereas the pressure ratio, P, increases without limit. For a conventional plasma

with Γ = 5/3, the limiting value of the compression ratio is 4: i.e., the downstream density

can never be more than four times the upstream density. We conclude that, in the strong

shock limit, M1 ≫ 1, the large jump in the plasma pressure across the shock front must be

predominately a consequence of a large jump in the plasma temperature, rather than the

plasma density. In fact, Eqs. (5.265)–(5.266) imply that

T2

T1
≡ R

r
→
2 Γ (Γ − 1)M 2

1

(Γ + 1)2
≫ 1 (5.273)

as M1 → ∞. Thus, a strong parallel, or hydrodynamic, shock is associated with intense

plasma heating.

As we have seen, the condition for the existence of a hydrodynamic shock is M1 > 1,

or V1 > VS 1. In other words, in the shock frame, the upstream plasma velocity, V1, must be

supersonic. However, by Galilean invariance, V1 can also be interpreted as the propagation

velocity of the shock through an initially stationary plasma. It follows that, in a stationary

plasma, a parallel, or hydrodynamic, shock propagates along the magnetic field with a

supersonic velocity.

5.20 Perpendicular Shocks

The second special case is the so-called perpendicular shock in which both the upstream

and downstream plasma flows are perpendicular to the magnetic field, as well as the shock

front. In other words,

V1 = (V1, 0, 0), V2 = (V2, 0, 0), (5.274)

B1 = (0, B1, 0), B2 = (0, B2, 0). (5.275)

Substitution into the general jump conditions (5.253)–(5.258) yields

B2

B1
= r, (5.276)

ρ2

ρ1
= r, (5.277)

V2

V1
= r−1, (5.278)

p2

p1
= R, (5.279)

where

R = 1+ Γ M 2
1 (1− r

−1) + β−1
1 (1− r2), (5.280)
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and r is a real positive root of the quadratic

F(r) = 2 (2− Γ) r2 + Γ [2 (1+ β1) + (Γ − 1)β1M
2
1 ] r− Γ (Γ + 1)β1M

2
1 = 0. (5.281)

Here, β1 = 2µ0 p1/B
2
1 .

Now, if r1 and r2 are the two roots of Eq. (5.281) then

r1 r2 = −
Γ (Γ + 1)β1M

2
1

2 (2− Γ)
. (5.282)

Assuming that Γ < 2, we conclude that one of the roots is negative, and, hence, that

Eq. (5.281) only possesses one physical solution: i.e., there is only one type of MHD shock

which is consistent with Eqs. (5.274) and (5.275). Now, it is easily demonstrated that

F(0) < 0 and F(Γ + 1/Γ − 1) > 0. Hence, the physical root lies between r = 0 and

r = (Γ + 1)/(Γ − 1).

Using similar analysis to that employed in the previous subsection, it is easily demon-

strated that the second law of thermodynamics requires a perpendicular shock to be com-

pressive: i.e., r > 1. It follows that a physical solution is only obtained when F(1) < 0,

which reduces to

M 2
1 > 1+

2

Γ β1
. (5.283)

This condition can also be written

V 2
1 > V

2
S 1 + V

2
A 1, (5.284)

where VA 1 = B1/(µ0 ρ1)
1/2 is the upstream Alfvén velocity. Now, V+ 1 = (V 2

S 1 + V
2
A 1)

1/2

can be recognized as the velocity of a fast wave propagating perpendicular to the magnetic

field—see Sect. 5.4. Thus, the condition for the existence of a perpendicular shock is

that the relative upstream plasma velocity must be greater than the upstream fast wave

velocity. Incidentally, it is easily demonstrated that if this is the case then the downstream

plasma velocity is less than the downstream fast wave velocity. We can also deduce that,

in a stationary plasma, a perpendicular shock propagates across the magnetic field with a

velocity which exceeds the fast wave velocity.

In the strong shock limit, M1 ≫ 1, Eqs. (5.280) and (5.281) become identical to

Eqs. (5.265) and (5.266). Hence, a strong perpendicular shock is very similar to a strong

hydrodynamic shock (except that the former shock propagates perpendicular, whereas the

latter shock propagates parallel, to the magnetic field). In particular, just like a hydrody-

namic shock, a perpendicular shock cannot compress the density by more than a factor

(Γ + 1)/(Γ − 1). However, according to Eq. (5.276), a perpendicular shock compresses the

magnetic field by the same factor that it compresses the plasma density. It follows that

there is also an upper limit to the factor by which a perpendicular shock can compress the

magnetic field.
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5.21 Oblique Shocks

Let us now consider the general case in which the plasma velocities and the magnetic fields

on each side of the shock are neither parallel nor perpendicular to the shock front. It is

convenient to transform into the so-called de Hoffmann-Teller frame in which |V1×B1| = 0,

or

Vx 1 By 1 − Vy 1 Bx 1 = 0. (5.285)

In other words, it is convenient to transform to a frame which moves at the local E × B

velocity of the plasma. It immediately follows from the jump condition (5.254) that

Vx 2 By 2 − Vy 2 Bx 2 = 0, (5.286)

or |V2 × B2| = 0. Thus, in the de Hoffmann-Teller frame, the upstream plasma flow is

parallel to the upstream magnetic field, and the downstream plasma flow is also parallel

to the downstream magnetic field. Furthermore, the magnetic contribution to the jump

condition (5.258) becomes identically zero, which is a considerable simplification.

Equations (5.285) and (5.286) can be combined with the general jump conditions

(5.253)–(5.258) to give

ρ2

ρ1
= r, (5.287)

Bx 2

Bx 1
= 1, (5.288)

By 2

By 1
= r

(

v 21 − cos2 θ1 V
2
A 1

v 21 − r cos2 θ1 V
2
A 1

)

, (5.289)

Vx 2

Vx 1
=

1

r
, (5.290)

Vy 2

Vy 1
=

v 21 − cos2 θ1 V
2
A 1

v 21 − r cos2 θ1 V
2
A 1

, (5.291)

p2

p1
= 1+

Γ v 21 (r− 1)

V 2
S 1 r

[

1−
r V 2

A 1 [(r+ 1) v
2
1 − 2 r V

2
A 1 cos2 θ1]

2 (v 21 − r V
2
A 1 cos2 θ1)2

]

. (5.292)

where v1 = Vx 1 = V1 cos θ1 is the component of the upstream velocity normal to the shock

front, and θ1 is the angle subtended between the upstream plasma flow and the shock

front normal. Finally, given the compression ratio, r, the square of the normal upstream

velocity, v 21 , is a real root of a cubic equation known as the shock adiabatic:

0 = (v 21 − r cos2 θ1 V
2
A 1)

2
{
[(Γ + 1) − (Γ − 1) r] v 21 − 2 r V

2
S 1

}
(5.293)

−r sin2 θ1 v
2
1 V

2
A 1

{
[Γ + (2− Γ) r] v 21 − [(Γ + 1) − (Γ − 1) r] r cos2 θ1 V

2
A 1

]

}.

As before, the second law of thermodynamics mandates that r > 1.
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Let us first consider the weak shock limit r → 1. In this case, it is easily seen that the

three roots of the shock adiabatic reduce to

v 21 = V 2
− 1 ≡

V 2
A 1 + V

2
S 1 − [(VA1 + VS 1)

2 − 4 cos2 θ1 V
2
S 1 V

2
A 1]

1/2

2
, (5.294)

v 21 = cos2 θ1 V
2
A 1, (5.295)

v 21 = V 2
+ 1 ≡

V 2
A 1 + V

2
S 1 + [(VA1 + VS 1)

2 − 4 cos2 θ1 V
2
S 1 V

2
A 1]

1/2

2
. (5.296)

However, from Sect. 5.4, we recognize these velocities as belonging to slow, intermediate

(or Shear-Alfvén), and fast waves, respectively, propagating in the normal direction to the

shock front. We conclude that slow, intermediate, and fast MHD shocks degenerate into

the associated MHD waves in the limit of small shock amplitude. Conversely, we can think

of the various MHD shocks as nonlinear versions of the associated MHD waves. Now it is

easily demonstrated that

V+ 1 > cos θ1 VA1 > V− 1. (5.297)

In other words, a fast wave travels faster than an intermediate wave, which travels faster

than a slow wave. It is reasonable to suppose that the same is true of the associated MHD

shocks, at least at relatively low shock strength. It follows from Eq. (5.289) that By 2 > By 1
for a fast shock, whereas By 2 < By 1 for a slow shock. For the case of an intermediate

shock, we can show, after a little algebra, that By 2 → −By 1 in the limit r → 1. We

conclude that (in the de Hoffmann-Teller frame) fast shocks refract the magnetic field and

plasma flow (recall that they are parallel in our adopted frame of the reference) away

from the normal to the shock front, whereas slow shocks refract these quantities toward

the normal. Moreover, the tangential magnetic field and plasma flow generally reverse

across an intermediate shock front. This is illustrated in Fig. 5.14.

When r is slightly larger than unity it is easily demonstrated that the conditions for

the existence of a slow, intermediate, and fast shock are v1 > V− 1, v1 > cos θ1 VA1, and

v1 > V+ 1, respectively.

Let us now consider the strong shock limit, v 21 ≫ 1. In this case, the shock adiabatic

yields r→ rm = (Γ + 1)/(Γ − 1), and

v 21 ≃ rm

Γ − 1

2 V 2
S 1 + sin2 θ1 [Γ + (2− Γ) rm]V

2
A 1

rm − r
. (5.298)

There are no other real roots. The above root is clearly a type of fast shock. The fact

that there is only one real root suggests that there exists a critical shock strength above

which the slow and intermediate shock solutions cease to exist. (In fact, they merge and

annihilate one another.) In other words, there is a limit to the strength of a slow or

an intermediate shock. On the other hand, there is no limit to the strength of a fast

shock. Note, however, that the plasma density and tangential magnetic field cannot be

compressed by more than a factor (Γ + 1)/(Γ − 1) by any type of MHD shock.
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shock−front

Figure 5.14: Characteristic plasma flow patterns across the three different types of MHD shock

in the shock rest frame.

Consider the special case θ1 = 0 in which both the plasma flow and the magnetic field

are normal to the shock front. In this case, the three roots of the shock adiabatic are

v 21 =
2 r V 2

S 1

(Γ + 1) − (Γ − 1) r
, (5.299)

v 21 = r V 2
A 1, (5.300)

v 21 = r V 2
A 1. (5.301)

We recognize the first of these roots as the hydrodynamic shock discussed in Sect. 5.19—

cf. Eq. (5.265). This shock is classified as a slow shock when VS 1 < VA1, and as a fast

shock when VS 1 > VA1. The other two roots are identical, and correspond to shocks which

propagate at the velocity v1 =
√
r VA1 and “switch-on” the tangential components of the

plasma flow and the magnetic field: i.e., it can be seen from Eqs. (5.289) and (5.291) that

Vy 1 = By 1 = 0 whilst Vy 2 6= 0 and By 2 6= 0 for these types of shock. Incidentally, it is also

possible to have a “switch-off” shock which eliminates the tangential components of the

plasma flow and the magnetic field. According to Eqs. (5.289) and (5.291), such a shock

propagates at the velocity v1 = cos θ1 VA1. Switch-on and switch-off shocks are illustrated

in Fig. 5.15.

Let us, finally, consider the special case θ = π/2. As is easily demonstrated, the three

roots of the shock adiabatic are

v 21 = r

(

2 V 2
S 1 + [Γ + (2− Γ) r]V 2

A1

(Γ + 1) − (Γ − 1) r

)

, (5.302)

v 21 = 0, (5.303)

v 21 = 0. (5.304)
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Figure 5.15: Characteristic plasma flow patterns across switch-on and switch-off shocks in

the shock rest frame.

The first of these roots is clearly a fast shock, and is identical to the perpendicular shock

discussed in Sect. 5.20, except that there is no plasma flow across the shock front in this

case. The fact that the two other roots are zero indicates that, like the corresponding

MHD waves, slow and intermediate MHD shocks do not propagate perpendicular to the

magnetic field.

MHD shocks have been observed in a large variety of situations. For instance, shocks

are known to be formed by supernova explosions, by strong stellar winds, by solar flares,

and by the solar wind upstream of planetary magnetospheres.24

24D.A. Gurnett, and A. Bhattacharjee, Introduction to Plasma Physics, Cambridge University Press, Cam-
bridge UK, 2005.
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6 Waves in Warm Plasmas

6.1 Introduction

In this section we shall investigate wave propagation in a warm collisionless plasma, ex-

tending the discussion given in Sect. 4 to take thermal effects into account. It turns out that

thermal modifications to wave propagation are not very well described by fluid equations.

We shall, therefore, adopt a kinetic description of the plasma. The appropriate kinetic

equation is, of course, the Vlasov equation, which is described in Sect. 3.1.

6.2 Landau Damping

Let us begin our study of the Vlasov equation by examining what appears, at first sight,

to be a fairly simple and straight-forward problem. Namely, the propagation of small

amplitude plasma waves through a uniform plasma with no equilibrium magnetic field. For

the sake of simplicity, we shall only consider electron motion, assuming that the ions form

an immobile, neutralizing background. The ions are also assumed to be singly-charged. We

shall look for electrostatic plasma waves of the type discussed in Sect. 4.7. Such waves are

longitudinal in nature, and possess a perturbed electric field, but no perturbed magnetic

field.

Our starting point is the Vlasov equation for an unmagnetized, collisionless plasma:

∂fe

∂t
+ v·∇fe −

e

me

E·∇vfe = 0, (6.1)

where fe(r, v, t) is the ensemble averaged electron distribution function. The electric field

satisfies

E = −∇φ. (6.2)

where

∇2φ = −
e

ǫ0

(

n−

∫

fe d
3v

)

. (6.3)

Here, n is the number density of ions (which is the same as the number density of elec-

trons).

Since we are dealing with small amplitude waves, it is appropriate to linearize the

Vlasov equation. Suppose that the electron distribution function is written

fe(r, v, t) = f0(v) + f1(r, v, t). (6.4)

Here, f0 represents the equilibrium electron distribution, whereas f1 represents the small

perturbation due to the wave. Note that
∫
f0 d

3v = n, otherwise the equilibrium state is
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not quasi-neutral. The electric field is assumed to be zero in the unperturbed state, so that

E can be regarded as a small quantity. Thus, linearization of Eqs. (6.1) and (6.3) yields

∂f1

∂t
+ v·∇f1 −

e

me

E·∇vf0 = 0, (6.5)

and

∇2φ =
e

ǫ0

∫

f1 d
3v, (6.6)

respectively.

Let us now follow the standard procedure for analyzing small amplitude waves, by

assuming that all perturbed quantities vary with r and t like exp[ i (k·r −ωt)]. Equations

(6.5) and (6.6) reduce to

−i (ω− k·v)f1 + i
e

me

φ k·∇vf0 = 0, (6.7)

and

−k2 φ =
e

ǫ0

∫

f1 d
3v, (6.8)

respectively. Solving the first of these equations for f1, and substituting into the integral in

the second, we conclude that if φ is non-zero then we must have

1+
e2

ǫ0me k2

∫
k·∇vf0

ω− k·v d
3v = 0. (6.9)

We can interpret Eq. (6.9) as the dispersion relation for electrostatic plasma waves,

relating the wave-vector, k, to the frequency,ω. However, in doing so, we run up against a

serious problem, since the integral has a singularity in velocity space, where ω = k·v, and

is, therefore, not properly defined.

The way around this problem was first pointed out by Landau1 in a very influential pa-

per which laid the basis of much subsequent research on plasma oscillations and instabili-

ties. Landau showed that, instead of simply assuming that f1 varies in time as exp(−iωt),

the problem must be regarded as an initial value problem in which f1 is given at t = 0 and

found at later times. We may still Fourier analyze with respect to r, so we write

f1(r, v, t) = f1(v, t) e ik·r. (6.10)

It is helpful to define u as the velocity component along k (i.e., u = k·v/k) and to define

F0(u) and F1(u, t) to be the integrals of f0(v) and f1(v, t) over the velocity components

perpendicular to k. Thus, we obtain

∂F1

∂t
+ i ku F1 −

e

me

E
∂F0

∂u
= 0, (6.11)

1L.D. Landau, Sov. Phys.–JETP 10, 25 (1946).
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and

i kE = −
e

ǫ0

∫
∞

−∞

F1(u)du. (6.12)

In order to solve Eqs. (6.11) and (6.12) as an initial value problem, we introduce the

Laplace transform of F1 with respect to t:

F̄1(u, p) =

∫
∞

0

F1(u, t) e−pt dt. (6.13)

If the growth of F1 with t is no faster than exponential then the above integral converges

and defines F̄1 as an analytic function of p, provided that the real part of p is sufficiently

large.

Noting that the Laplace transform of ∂F1/∂t is p F̄1 − F1(u, t = 0) (as is easily shown by

integration by parts), we can Laplace transform Eqs. (6.11) and (6.12) to obtain

p F̄1 + i ku F̄1 =
e

me

Ē
∂F0

∂u
+ F1(u, t = 0), (6.14)

and

i k Ē = −
e

ǫ0

∫
∞

−∞

F̄1(u)du, (6.15)

respectively. The above two equations can be combined to give

i k Ē = −
e

ǫ0

∫
∞

−∞

[

e

me

Ē
∂F0/∂u

p+ i ku
+
F1(u, t = 0)

p+ i ku

]

du, (6.16)

yielding

Ē = −
(e/ǫ0)

i k ǫ(k, p)

∫
∞

−∞

F1(u, t = 0)

p+ i ku
du, (6.17)

where

ǫ(k, p) = 1+
e2

ǫ0me k

∫
∞

−∞

∂F0/∂u

ip− ku
du. (6.18)

The function ǫ(k, p) is known as the plasma dielectric function. Note that if p is replaced

by −iω then the dielectric function becomes equivalent to the left-hand side of Eq. (6.9).

However, since p possesses a positive real part, the above integral is well defined.

The Laplace transform of the distribution function is written

F̄1 =
e

me

Ē
∂F0/∂u

p+ i ku
+
F1(u, t = 0)

p+ i ku
, (6.19)

or

F̄1 = −
e2

ǫ0me i k

∂F0/∂u

ǫ(k, p) (p+ i ku)

∫
∞

−∞

F1(u
′, t = 0)

p+ i ku ′ du ′ +
F1(u, t = 0)

p+ i ku
. (6.20)
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Re(p) ->
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Im
(p
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->

C

Figure 6.1: The Bromwich contour.

Having found the Laplace transforms of the electric field and the perturbed distribution

function, we must now invert them to obtain E and F1 as functions of time. The inverse

Laplace transform of the distribution function is given by

F1(u, t) =
1

2π i

∫

C

F̄1(u, p) e pt dp, (6.21)

where C, the so-called Bromwich contour, is a contour running parallel to the imaginary

axis, and lying to the right of all singularities of F̄1 in the complex-p plane (see Fig. 6.1).

There is an analogous expression for the parallel electric field, E(t).

Rather than trying to obtain a general expression for F1(u, t), from Eqs. (6.20) and

(6.21), we shall concentrate on the behaviour of the perturbed distribution function at

large times. Looking at Fig. 6.1, we note that if F̄1(u, p) has only a finite number of simple

poles in the region Re(p) > −σ, then we may deform the contour as shown in Fig. 6.2,

with a loop around each of the singularities. A pole at p0 gives a contribution going as

e p0 t, whilst the vertical part of the contour goes as e−σ t. For sufficiently long times this

latter contribution is negligible, and the behaviour is dominated by contributions from the

poles furthest to the right.

Equations (6.17)–(6.20) all involve integrals of the form

∫
∞

−∞

G(u)

u− ip/k
du, (6.22)

which become singular as p approaches the imaginary axis. In order to distort the contour

C, in the manner shown in Fig. 31, we need to continue these integrals smoothly across

the imaginary p-axis. By virtue of the way in which the Laplace transform was originally
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Im
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->

−σ

C

Figure 6.2: The distorted Bromwich contour.

defined, for Re(p) sufficiently large, the appropriate way to do this is to take the values of

these integrals when p is in the right-hand half-plane, and find the analytic continuation

into the left-hand half-plane.

If G(u) is sufficiently well-behaved that it can be continued off the real axis as an

analytic function of a complex variable u then the continuation of (6.22) as the singularity

crosses the real axis in the complex u-plane, from the upper to the lower half-plane, is

obtained by letting the singularity take the contour with it, as shown in Fig. 6.3.

Note that the ability to deform the contour C into that of Fig. 6.2, and find a dominant

contribution to E(t) and F1(u, t) from a few poles, depends on F0(u) and F1(u, t = 0)

having smooth enough velocity dependences that the integrals appearing in Eqs. (6.17)–

(6.20) can be continued sufficiently far into the left-hand half of the complex p-plane.

If we consider the electric field given by the inversion of Eq. (6.17), we see that its be-

haviour at large times is dominated by the zero of ǫ(k, p) which lies furthest to the right in

the complex p-plane. According to Eqs. (6.20) and (6.21), F1 has a similar contribution, as

well as a contribution going as e−i ku t. Thus, for sufficiently long times after the initiation

of the wave, the electric field depends only on the positions of the roots of ǫ(k, p) = 0 in

the complex p-plane. The distribution function has a corresponding contribution from the

poles, as well as a component going as e−i ku t. For large times, the latter component of the

distribution function is a rapidly oscillating function of velocity, and its contribution to the

charge density, obtained by integrating over u, is negligible.

As we have already noted, the function ǫ(k, p) is equivalent to the left-hand side of

Eq. (6.9), provided that p is replaced by −iω. Thus, the dispersion relation, (6.9), ob-

tained via Fourier transformation of the Vlasov equation, gives the correct behaviour at

large times as long as the singular integral is treated correctly. Adapting the procedure
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Figure 6.3: The Bromwich contour for Landau damping.

which we found using the variable p, we see that the integral is defined as it is written

for Im(ω) > 0, and analytically continued, by deforming the contour of integration in the

u-plane (as shown in Fig. 6.3), into the region Im(ω) < 0. The simplest way to remember

how to do the analytic continuation is to note that the integral is continued from the part

of the ω-plane corresponding to growing perturbations, to that corresponding to damped

perturbations. Once we know this rule, we can obtain kinetic dispersion relations in a

fairly direct manner via Fourier transformation of the Vlasov equation, and there is no

need to attempt the more complicated Laplace transform solution.

In Sect. 4, where we investigated the cold-plasma dispersion relation, we found that

for any given k there were a finite number of values of ω, say ω1, ω2, · · ·, and a general

solution was a linear superposition of functions varying in time as e−iω1 t, e−iω2 t, etc. This

set of values of ω is called the spectrum, and the cold-plasma equations yield a discrete

spectrum. On the other hand, in the kinetic problem we obtain contributions to the dis-

tribution function going as e−i k u t, with u taking any real value. All of the mathematical

difficulties of the kinetic problem arise from the existence of this continuous spectrum. At

short times, the behaviour is very complicated, and depends on the details of the initial

perturbation. It is only asymptotically that a mode varying as e−iωt is obtained, with ω

determined by a dispersion relation which is solely a function of the unperturbed state. As

we have seen, the emergence of such a mode depends on the initial velocity disturbance

being sufficiently smooth.

Suppose, for the sake of simplicity, that the background plasma state is a Maxwellian

distribution. Working in terms of ω, rather than p, the kinetic dispersion relation for

electrostatic waves takes the form

ǫ(k,ω) = 1+
e2

ǫ0me k

∫
∞

−∞

∂F0/∂u

ω− ku
du = 0, (6.23)
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Figure 6.4: Integration path about a pole.

where

F0(u) =
n

(2π Te/me)1/2
exp(−me u

2/2 Te). (6.24)

Suppose that, to a first approximation, ω is real. Letting ω tend to the real axis from the

domain Im(ω) > 0, we obtain
∫
∞

−∞

∂F0/∂u

ω− ku
du = P

∫
∞

−∞

∂F0/∂u

ω− ku
du −

iπ

k

(

∂F0

∂u

)

u=ω/k

, (6.25)

where P denotes the principal part of the integral. The origin of the two terms on the

right-hand side of the above equation is illustrated in Fig. 6.4. The first term—the principal

part—is obtained by removing an interval of length 2 ǫ, symmetrical about the pole, u =

ω/k, from the range of integration, and then letting ǫ → 0. The second term comes

from the small semi-circle linking the two halves of the principal part integral. Note that

the semi-circle deviates below the real u-axis, rather than above, because the integral is

calculated by letting the pole approach the axis from the upper half-plane in u-space.

Suppose that k is sufficiently small that ω ≫ ku over the range of u where ∂F0/∂u

is non-negligible. It follows that we can expand the denominator of the principal part

integral in a Taylor series:

1

ω− ku
≃ 1

ω

(

1+
ku

ω
+
k2 u2

ω2
+
k3u3

ω3
+ · · ·

)

. (6.26)

Integrating the result term by term, and remembering that ∂F0/∂u is an odd function,

Eq. (6.23) reduces to

1−
ω 2
p

ω2
− 3 k2

Teω
2
p

meω4
−

e2

ǫ0me

iπ

k2

(

∂F0

∂u

)

u=ω/k

≃ 0, (6.27)

where ωp =
√

ne2/ǫ0me is the electron plasma frequency. Equating the real part of the

above expression to zero yields

ω2 ≃ ω 2
p (1+ 3 k

2 λ2D), (6.28)
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where λD =
√

Te/meω 2
p is the Debye length, and it is assumed that k λD ≪ 1. We can

regard the imaginary part of ω as a small perturbation, and write ω = ω0+ δω, where ω0

is the root of Eq. (6.28). It follows that

2ω0 δω ≃ ω 2
0

e2

ǫ0me

iπ

k2

(

∂F0

∂u

)

u=ω/k

, (6.29)

and so

δω ≃ iπ

2

e2ωp

ǫ0me k2

(

∂F0

∂u

)

u=ω/k

, (6.30)

giving

δω ≃ −
i

2

√

π

2

ωp

(k λD)3
exp

[

−
1

2 (k λD)2

]

. (6.31)

If we compare the above results with those for a cold-plasma, where the dispersion

relation for an electrostatic plasma wave was found to be simply ω2 = ω 2
p , we see, firstly,

that ω now depends on k, according to Eq. (6.28), so that in a warm plasma the electro-

static plasma wave is a propagating mode, with a non-zero group velocity. Secondly, we

now have an imaginary part to ω, given by Eq. (6.31), corresponding, since it is negative,

to the damping of the wave in time. This damping is generally known as Landau damping.

If k λD ≪ 1 (i.e., if the wave-length is much larger than the Debye length) then the imag-

inary part of ω is small compared to the real part, and the wave is only lightly damped.

However, as the wave-length becomes comparable to the Debye length, the imaginary part

of ω becomes comparable to the real part, and the damping becomes strong. Admittedly,

the approximate solution given above is not very accurate in the short wave-length case,

but it is sufficient to indicate the existence of very strong damping.

There are no dissipative effects included in the collisionless Vlasov equation. Thus,

it can easily be verified that if the particle velocities are reversed at any time then the

solution up to that point is simply reversed in time. At first sight, this reversible behaviour

does not seem to be consistent with the fact that an initial perturbation dies out. However,

we should note that it is only the electric field which decays. The distribution function

contains an undamped term going as e−i k u t. Furthermore, the decay of the electric field

depends on there being a sufficiently smooth initial perturbation in velocity space. The

presence of the e−i k u t term means that as time advances the velocity space dependence

of the perturbation becomes more and more convoluted. It follows that if we reverse the

velocities after some time then we are not starting with a smooth distribution. Under these

circumstances, there is no contradiction in the fact that under time reversal the electric

field will grow initially, until the smooth initial state is recreated, and subsequently decay

away.

6.3 Physics of Landau Damping

We have explained Landau damping in terms of mathematics. Let us now consider the

physical explanation for this effect. The motion of a charged particle situated in a one-
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dimensional electric field varying as E0 exp[ i (k x−ωt)] is determined by

d2x

dt2
=
e

m
E0 e i (k x−ωt). (6.32)

Since we are dealing with a linearized theory in which the perturbation due to the wave

is small, it follows that if the particle starts with velocity u0 at position x0 then we may

substitute x0+u0 t for x in the electric field term. This is actually the position of the particle

on its unperturbed trajectory, starting at x = x0 at t = 0. Thus, we obtain

du

dt
=
e

m
E0 e i (k x0+k u0 t−ωt), (6.33)

which yields

u− u0 =
e

m
E0

[

e i (k x0+k u0 t−ωt) − e i k x0

i (ku0 −ω)

]

. (6.34)

As ku0 −ω→ 0, the above expression reduces to

u− u0 =
e

m
E0 t e ik x0, (6.35)

showing that particles with u0 close to ω/k, that is with velocity components along the

x-axis close to the phase velocity of the wave, have velocity perturbations which grow in

time. These so-called resonant particles gain energy from, or lose energy to, the wave, and

are responsible for the damping. This explains why the damping rate, given by Eq. (6.30),

depends on the slope of the distribution function calculated at u = ω/k. The remainder

of the particles are non-resonant, and have an oscillatory response to the wave field.

To understand why energy should be transferred from the electric field to the resonant

particles requires more detailed consideration. Whether the speed of a resonant particle

increases or decreases depends on the phase of the wave at its initial position, and it is

not the case that all particles moving slightly faster than the wave lose energy, whilst all

particles moving slightly slower than the wave gain energy. Furthermore, the density per-

turbation is out of phase with the wave electric field, so there is no initial wave generated

excess of particles gaining or losing energy. However, if we consider those particles which

start off with velocities slightly above the phase velocity of the wave then if they gain en-

ergy they move away from the resonant velocity whilst if they lose energy they approach

the resonant velocity. The result is that the particles which lose energy interact more ef-

fectively with the wave, and, on average, there is a transfer of energy from the particles

to the electric field. Exactly the opposite is true for particles with initial velocities lying

just below the phase velocity of the wave. In the case of a Maxwellian distribution there

are more particles in the latter class than in the former, so there is a net transfer of energy

from the electric field to the particles: i.e., the electric field is damped. In the limit as the

wave amplitude tends to zero, it is clear that the gradient of the distribution function at

the wave speed is what determines the damping rate.
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Figure 6.5: Wave-particle interaction.

It is of some interest to consider the limitations of the above result, in terms of the

magnitude of the initial electric field above which it is seriously in error and nonlinear

effects become important. The basic requirement for the validity of the linear result is that

a resonant particle should maintain its position relative to the phase of the electric field

over a sufficiently long time for the damping to take place. To obtain a condition that this

be the case, let us consider the problem in the frame of reference in which the wave is at

rest, and the potential −eφ seen by an electron is as sketched in Fig. 6.5.

If the electron starts at rest (i.e., in resonance with the wave) at x0 then it begins to

move towards the potential minimum, as shown. The time for the electron to shift its

position relative to the wave may be estimated as the period with which it bounces back

and forth in the potential well. Near the bottom of the well the equation of motion of the

electron is written
d2x

dt2
= −

e

me

k2 xφ0, (6.36)

where k is the wave-number, and so the bounce time is

τb ∼ 2π

√

me

e k2φ0
= 2π

√

me

e kE0
, (6.37)

where E0 is the amplitude of the electric field. We may expect the wave to damp according

to linear theory if the bounce time, τb, given above, is much greater than the damping

time. Since the former varies inversely with the square root of the electric field amplitude,

whereas the latter is amplitude independent, this criterion gives us an estimate of the

maximum allowable initial perturbation which is consistent with linear damping.

If the initial amplitude is large enough for the resonant electrons to bounce back and

forth in the potential well a number of times before the wave is damped, then it can be

demonstrated that the result to be expected is a non-monotonic decrease in the amplitude
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Figure 6.6: Nonlinear Landau damping.

of the electric field, as shown in Fig. 6.6. The period of the amplitude oscillations is similar

to the bounce time, τb.

6.4 Plasma Dispersion Function

If the unperturbed distribution function, F0, appearing in Eq. (6.23), is a Maxwellian then

it is readily seen that, with a suitable scaling of the variables, the dispersion relation for

electrostatic plasma waves can be expressed in terms of the function

Z(ζ) = π−1/2

∫
∞

−∞

e−t2

t− ζ
dt, (6.38)

which is defined as it is written for Im(ζ) > 0, and is analytically continued for Im(ζ) ≤ 0.
This function is known as the plasma dispersion function, and very often crops up in prob-

lems involving small-amplitude waves propagating through warm plasmas. Incidentally,

Z(ζ) is the Hilbert transform of a Gaussian.

In view of the importance of the plasma dispersion function, and its regular occurrence

in the literature of plasma physics, let us briefly examine its main properties. We first of

all note that if we differentiate Z(ζ) with respect to ζ we obtain

Z ′(ζ) = π−1/2

∫
∞

−∞

e−t2

(t− ζ)2
dt, (6.39)

which yields, on integration by parts,

Z ′(ζ) = −π−1/2

∫
∞

−∞

2 t

t− ζ
e−t2 dt = −2 [1+ ζZ]. (6.40)
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If we let ζ tend to zero from the upper half of the complex plane, we get

Z(0) = π−1/2 P

∫
∞

−∞

e−t2

t
dt+ iπ1/2 = iπ1/2. (6.41)

Note that the principle part integral is zero because its integrand is an odd function of t.

Integrating the linear differential equation (6.40), which possesses an integrating factor

eζ
2

, and using the boundary condition (6.41), we obtain an alternative expression for the

plasma dispersion function:

Z(ζ) = e−ζ2

(

iπ1/2 − 2

∫ ζ

0

ex
2

dx

)

. (6.42)

Making the substitution t = i x in the integral, and noting that

∫ 0

−∞

e−t2 dt =
π1/2

2
, (6.43)

we finally arrive at the expression

Z(ζ) = 2 i e−ζ2
∫ i ζ

−∞

e−t2 dt. (6.44)

This formula, which relates the plasma dispersion function to an error function of imagi-

nary argument, is valid for all values of ζ.

For small ζ we have the expansion

Z(ζ) = iπ1/2 e−ζ2 − 2 ζ

[

1−
2 ζ2

3
+
4 ζ4

15
−
8 ζ6

105
+ · · ·

]

. (6.45)

For large ζ, where ζ = x+ iy, the asymptotic expansion for x > 0 is written

Z(ζ) ∼ iπ1/2 σ e−ζ2 − ζ−1
[

1+
1

2 ζ2
+

3

4 ζ4
+
15

8 ζ6
+ · · ·

]

. (6.46)

Here,

σ =






0 y > 1/|x|

1 |y| < 1/|x|

2 y < −1/|x|

. (6.47)

In deriving our expression for the Landau damping rate we have, in effect, used the first

few terms of the above asymptotic expansion.

The properties of the plasma dispersion function are specified in exhaustive detail in a

well-known book by Fried and Conte.2

2B.D. Fried, and S.D. Conte, The Plasma Dispersion Function (Academic Press, New York NY, 1961.)
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6.5 Ion Sound Waves

If we now take ion dynamics into account then the dispersion relation (6.23), for electro-

static plasma waves, generalizes to

1+
e2

ǫ0me k

∫
∞

−∞

∂F0 e/∂u

ω− ku
du+

e2

ǫ0mi k

∫
∞

−∞

∂F0 i/∂u

ω− ku
du = 0 : (6.48)

i.e., we simply add an extra term for the ions which has an analogous form to the electron

term. Let us search for a wave with a phase velocity, ω/k, which is much less than the

electron thermal velocity, but much greater than the ion thermal velocity. We may assume

thatω≫ ku for the ion term, as we did previously for the electron term. It follows that, to

lowest order, this term reduces to −ω 2
p i/ω

2. Conversely, we may assume that ω≪ ku for

the electron term. Thus, to lowest order we may neglect ω in the velocity space integral.

Assuming F0 e to be a Maxwellian with temperature Te, the electron term reduces to

ω 2
p e

k2
me

Te
=

1

(k λD)2
. (6.49)

Thus, to a first approximation, the dispersion relation can be written

1+
1

(k λD)2
−
ω 2
p i

ω2
= 0, (6.50)

giving

ω2 =
ω 2
p i k

2 λ 2
D

1 + k2 λ 2D
=
Te

mi

k2

1+ k2 λ 2D
. (6.51)

For k λD ≪ 1, we have ω = (Te/mi)
1/2 k, a dispersion relation which is like that of an

ordinary sound wave, with the pressure provided by the electrons, and the inertia by the

ions. As the wave-length is reduced towards the Debye length, the frequency levels off and

approaches the ion plasma frequency.

Let us check our original assumptions. In the long wave-length limit, we see that the

wave phase velocity (Te/mi)
1/2 is indeed much less than the electron thermal velocity [by

a factor (me/mi)
1/2], but that it is only much greater than the ion thermal velocity if the

ion temperature, Ti, is much less than the electron temperature, Te. In fact, if Ti ≪ Te then

the wave phase velocity can lie on almost flat portions of the ion and electron distribution

functions, as shown in Fig. 6.7, implying that the wave is subject to very little Landau

damping. Indeed, an ion sound wave can only propagate a distance of order its wave-

length without being strongly damped provided that Te is at least five to ten times greater

than Ti.

Of course, it is possible to obtain the ion sound wave dispersion relation, ω2/k2 =

Te/mi, using fluid theory. The kinetic treatment used here is an improvement on the fluid

theory to the extent that no equation of state is assumed, and it makes it clear to us that

ion sound waves are subject to strong Landau damping (i.e., they cannot be considered

normal modes of the plasma) unless Te ≫ Ti.
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velocity
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ω/k

Figure 6.7: Ion and electron distribution functions with Ti ≪ Te.

6.6 Waves in Magnetized Plasmas

Consider waves propagating through a plasma placed in a uniform magnetic field, B0. Let

us take the perturbed magnetic field into account in our calculations, in order to allow for

electromagnetic, as well as electrostatic, waves. The linearized Vlasov equation takes the

form
∂f1

∂t
+ v·∇f1 +

e

m
(v × B0)·∇vf1 = −

e

m
(E + v × B)·∇vf0 (6.52)

for both ions and electrons, where E and B are the perturbed electric and magnetic fields,

respectively. Likewise, f1 is the perturbed distribution function, and f0 the equilibrium

distribution function.

In order to have an equilibrium state at all, we require that

(v × B0)·∇vf0 = 0. (6.53)

Writing the velocity, v, in cylindrical polar coordinates, (v⊥, θ, vz), aligned with the equi-

librium magnetic field, the above expression can easily be shown to imply that ∂f0/∂θ = 0:

i.e., f0 is a function only of v⊥ and vz.

Let the trajectory of a particle be r(t), v(t). In the unperturbed state

dr

dt
= v, (6.54)

dv

dt
=

e

m
(v × B0). (6.55)

It follows that Eq. (6.52) can be written

Df1

Dt
= −

e

m
(E + v × B)·∇vf0, (6.56)
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where Df1/Dt is the total rate of change of f1, following the unperturbed trajectories.

Under the assumption that f1 vanishes as t → −∞, the solution to Eq. (6.56) can be

written

f1(r, v, t) = −
e

m

∫ t

−∞

[E(r ′, t ′) + v ′ × B(r ′, t ′)]·∇vf0(v
′)dt ′, (6.57)

where (r ′, v ′) is the unperturbed trajectory which passes through the point (r, v) when

t ′ = t.
It should be noted that the above method of solution is valid for any set of equilibrium

electromagnetic fields, not just a uniform magnetic field. However, in a uniform magnetic

field the unperturbed trajectories are merely helices, whilst in a general field configuration

it is difficult to find a closed form for the particle trajectories which is sufficiently simple

to allow further progress to be made.

Let us write the velocity in terms of its Cartesian components:

v = (v⊥ cos θ, v⊥ sinθ, vz). (6.58)

It follows that

v ′ = (v⊥ cos[Ω (t− t ′) + θ ] , v⊥ sin[Ω (t− t ′) + θ ] , vz) , (6.59)

where Ω = e B0/m is the cyclotron frequency. The above expression can be integrated to

give

x ′ − x = −
v⊥
Ω

( sin[Ω (t− t ′) + θ ] − sinθ) , (6.60)

y ′ − y =
v⊥
Ω

( cos[Ω (t− t ′) + θ ] − cosθ) , (6.61)

z ′ − z = vz (t
′ − t). (6.62)

Note that both v⊥ and vz are constants of the motion. This implies that f0(v
′) = f0(v),

because f0 is only a function of v⊥ and vz. Since v⊥ = (v ′ 2x + v ′ 2y )1/2, we can write

∂f0

∂v ′x
=

∂v⊥
∂v ′x

∂f0

∂v⊥
=
v ′x
v⊥

∂f0

∂v⊥
= cos [Ω (t ′ − t) + θ ]

∂f0

∂v⊥
, (6.63)

∂f0

∂v ′y
=

∂v⊥
∂v ′y

∂f0

∂v⊥
=
v ′y
v⊥

∂f0

∂v⊥
= sin [Ω (t ′ − t) + θ ]

∂f0

∂v⊥
, (6.64)

∂f0

∂v ′z
=

∂f0

∂vz
. (6.65)

Let us assume an exp[ i (k·r−ωt)] dependence of all perturbed quantities, with k lying

in the x-z plane. Equation (6.57) yields

f1 = −
e

m

∫ t

−∞

[

(Ex + v
′
y Bz − v

′
z By)

∂f0

∂v ′x
+ (Ey + v

′
z Bx − v

′
x Bz)

∂f0

∂v ′y



202 PLASMA PHYSICS

+(Ez + v
′
x By − v

′
y Bx)

∂f0

∂v ′z

]

exp [ i {k·(r ′ − r) −ω (t ′ − t)}] dt ′.

(6.66)

Making use of Eqs. (6.59)–(6.65), and the identity

e ia sin x ≡
∞∑

n=−∞

Jn(a) e in x, (6.67)

Eq. (6.66) gives

f1 = −
e

m

∫ t

−∞

[

(Ex − vz By) cosχ
∂f0

∂v⊥
+ (Ey + vz Bx) sinχ

∂f0

∂v⊥

+(Ez + v⊥ By cosχ − v⊥ Bx sinχ)
∂f0

∂vz

]

∞∑

n,m=−∞

Jn

(

k⊥ v⊥
Ω

)

Jm

(

k⊥ v⊥
Ω

)

× exp { i [(nΩ+ kz vz −ω) (t ′ − t) + (m− n) θ ] } dt ′, (6.68)

where

χ = Ω (t− t ′) + θ. (6.69)

Maxwell’s equations yield

k × E = ωB, (6.70)

k × B = −iµ0 j −
ω

c2
E = −

ω

c2
K·E, (6.71)

where j is the perturbed current, and K is the dielectric permittivity tensor introduced in

Sect. 4.2. It follows that

K·E = E +
i

ωǫ0
j = E +

i

ωǫ0

∑

s

es

∫

v f1 s d
3v, (6.72)

where f1 s is the species-s perturbed distribution function.

After a great deal of rather tedious analysis, Eqs. (6.68) and (6.72) reduce to the fol-

lowing expression for the dielectric permittivity tensor:

Kij = δij +
∑

s

e 2s
ω2 ǫ0ms

∞∑

n=−∞

∫
Sij

ω− kz vz − nΩs

d3v, (6.73)

where

Sij =









v⊥ (n Jn/as)
2U i v⊥ (n/as) Jn J

′
nU v⊥ (n/as) J

2
n U

−i v⊥ (n/as) Jn J
′
nU v⊥ J

′ 2
n U −i v⊥ Jn J

′
nW

vz (n/as) J
2
n U i vz Jn J

′
nU vz J

2
n W









, (6.74)
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and

U = (ω− kz vz)
∂f0 s

∂v⊥
+ kz v⊥

∂f0 s

∂vz
, (6.75)

W =
nΩs vz

v⊥

∂f0 s

∂v⊥
+ (ω− nΩs)

∂f0 s

∂vz
, (6.76)

as =
k⊥ v⊥
Ωs

. (6.77)

The argument of the Bessel functions is as. In the above, ′ denotes differentiation with

respect to argument.

The dielectric tensor (6.73) can be used to investigate the properties of waves in just

the same manner as the cold plasma dielectric tensor (4.36) was used in Sect. 4. Note that

our expression for the dielectric tensor involves singular integrals of a type similar to those

encountered in Sect. 6.2. In principle, this means that we ought to treat the problem as

an initial value problem. Fortunately, we can use the insights gained in our investigation

of the simpler unmagnetized electrostatic wave problem to recognize that the appropriate

way to treat the singular integrals is to evaluate them as written for Im(ω) > 0, and by

analytic continuation for Im(ω) ≤ 0.
For Maxwellian distribution functions, we can explicitly perform the velocity space

integral in Eq. (6.73), making use of the identity

∫
∞

0

x J 2n (s x) e−x2 dx =
e−s2/2

2
In(s

2/2), (6.78)

where In is a modified Bessel function. We obtain

Kij = δij +
∑

s

ω 2
p s

ω

(

ms

2 Ts

)1/2 e−λs

kz

∞∑

n=−∞

Tij, (6.79)

where

Tij =









n2 In Z/λs in (I ′n−In)Z −n In Z
′/(2 λs)

1/2

−in (I ′n−In)Z (n2 In/λs+2 λs In−2 λs I ′n)Z i λ
1/2
s (I ′n−In)Z

′/21/2

−n In Z ′/(2 λs)1/2 −i λ
1/2
s (I ′n−In)Z

′/21/2 −In Z ′ ξn









. (6.80)

Here, λs, which is the argument of the Bessel functions, is written

λs =
Ts k

2
⊥

msΩ 2
s

, (6.81)

whilst Z and Z ′ represent the plasma dispersion function and its derivative, both with

argument

ξn =
ω− nΩs

kz

(

ms

2 Ts

)1/2

. (6.82)
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Let us consider the cold plasma limit, Ts → 0. It follows from Eqs. (6.81) and (6.82)

that this limit corresponds to λs → 0 and ξn → ∞. From Eq. (6.46),

Z(ξn) → −
1

ξn
, (6.83)

Z ′(ξn) →
1

ξ 2
n

(6.84)

as ξn → ∞. Moreover,

In(λs) →

(

λs

2

)|n|

(6.85)

as λs → 0. It can be demonstrated that the only non-zero contributions to Kij, in this limit,

come from n = 0 and n = ±1. In fact,

K11 = K22 = 1−
1

2

∑

s

ω 2
p s

ω2

(

ω

ω−Ωs

+
ω

ω+Ωs

)

, (6.86)

K12 = −K21 = −
i

2

∑

s

ω 2
p s

ω2

(

ω

ω−Ωs

−
ω

ω+Ωs

)

, (6.87)

K33 = 1−
∑

s

ω 2
p s

ω2
, (6.88)

and K13 = K31 = K23 = K32 = 0. It is easily seen, from Sect. 4.3, that the above expressions

are identical to those we obtained using the cold-plasma fluid equations. Thus, in the zero

temperature limit, the kinetic dispersion relation obtained in this section reverts to the

fluid dispersion relation obtained in Sect. 4.

6.7 Parallel Wave Propagation

Let us consider wave propagation, though a warm plasma, parallel to the equilibrium

magnetic field. For parallel propagation, k⊥ → 0, and, hence, from Eq. (6.81), λs → 0.

Making use of the asymptotic expansion (6.85), the matrix Tij simplifies to

Tij =









[Z(ξ1) + Z(ξ−1)]/2 i [Z(ξ1) − Z(ξ−1)]/2 0

−i [Z(ξ1) − Z(ξ−1)]/2 [Z(ξ1) + Z(ξ−1)]/2 0

0 0 −Z ′(ξ0) ξ0









, (6.89)

where, again, the only non-zero contributions are from n = 0 and n = ±1. The dispersion

relation can be written [see Eq. (4.10)]

M·E = 0, (6.90)
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where

M11 = M22 = 1−
k 2
z c

2

ω2

+
1

2

∑

s

ω 2
p s

ω kzvs

[

Z

(

ω−Ωs

kz vs

)

+ Z

(

ω+Ωs

kz vs

)]

, (6.91)

M12 = −M21 =
i

2

∑

s

ω 2
p s

ωkzvs

[

Z

(

ω−Ωs

kz vs

)

− Z

(

ω+Ωs

kz vs

)]

, (6.92)

M33 = 1−
∑

s

ω 2
p s

(kz vs)2
Z ′
(

ω

kz vs

)

, (6.93)

and M13 =M31 =M23 =M32 = 0. Here, vs =
√

2 Ts/ms is the species-s thermal velocity.

The first root of Eq. (6.90) is

1+
∑

s

2ω 2
p s

(kz vs)2

[

1+
ω

kz vs
Z

(

ω

kz vs

)]

= 0, (6.94)

with the eigenvector (0, 0, Ez). Here, use has been made of Eq. (6.40). This root ev-

identially corresponds to a longitudinal, electrostatic plasma wave. In fact, it is easily

demonstrated that Eq. (6.94) is equivalent to the dispersion relation (6.50) that we found

earlier for electrostatic plasma waves, for the special case in which the distribution func-

tions are Maxwellians. Recall, from Sects. 6.3–6.5, that the electrostatic wave described

by the above expression is subject to significant damping whenever the argument of the

plasma dispersion function becomes less than or comparable with unity: i.e., whenever

ω <
∼ kz vs.

The second and third roots of Eq. (6.90) are

k 2
z c

2

ω2
= 1+

∑

s

ω 2
p s

ω kzvs
Z

(

ω+Ωs

kz vs

)

, (6.95)

with the eigenvector (Ex, iEx, 0), and

k 2
z c

2

ω2
= 1+

∑

s

ω 2
p s

ω kzvs
Z

(

ω−Ωs

kz vs

)

, (6.96)

with the eigenvector (Ex,−iEx, 0). The former root evidently corresponds to a right-

handed circularly polarized wave, whereas the latter root corresponds to a left-handed

circularly polarized wave. The above two dispersion relations are essentially the same as

the corresponding fluid dispersion relations, (4.89) and (4.90), except that they explicitly

contain collisionless damping at the cyclotron resonances. As before, the damping is signif-

icant whenever the arguments of the plasma dispersion functions are less than or of order

unity. This corresponds to

ω− |Ωe| <
∼ kz ve (6.97)
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for the right-handed wave, and

ω−Ωi
<
∼ kz vi (6.98)

for the left-handed wave.

The collisionless cyclotron damping mechanism is very similar to the Landau damping

mechanism for longitudinal waves discussed in Sect. 6.3. In this case, the resonant parti-

cles are those which gyrate about the magnetic field with approximately the same angular

frequency as the wave electric field. On average, particles which gyrate slightly faster than

the wave lose energy, whereas those which gyrate slightly slower than the wave gain en-

ergy. In a Maxwellian distribution there are less particles in the former class than the latter,

so there is a net transfer of energy from the wave to the resonant particles. Note that in

kinetic theory the cyclotron resonances possess a finite width in frequency space (i.e., the

incident wave does not have to oscillate at exactly the cyclotron frequency in order for

there to be an absorption of wave energy by the plasma), unlike in the cold plasma model,

where the resonances possess zero width.

6.8 Perpendicular Wave Propagation

Let us now consider wave propagation, through a warm plasma, perpendicular to the

equilibrium magnetic field. For perpendicular propagation, kz → 0, and, hence, from

Eq. (6.82), ξn → ∞. Making use of the asymptotic expansions (6.83)–(6.84), the matrix

Tij simplifies considerably. The dispersion relation can again be written in the form (6.90),

where

M11 = 1−
∑

s

ω 2
p s

ω

e−λs

λs

∞∑

n=−∞

n2 In(λs)

ω− nΩs

, (6.99)

M12 = −M21 = i
∑

s

ω 2
p s

ω
e−λs

∞∑

n=−∞

n [I ′n(λs) − In(λs)]

ω− nΩs

, (6.100)

M22 = 1−
k 2
⊥ c

2

ω2
(6.101)

−
∑

s

ω 2
p s

ω

e−λs

λs

∞∑

n=−∞

[

n2 In(λs) + 2 λ
2
s In(λs) − 2 λ

2
s I

′
n(λs)

]

ω− nΩs

,

M33 = 1−
k 2
⊥ c

2

ω2
−
∑

s

ω 2
p s

ω
e−λs

∞∑

n=−∞

In(λs)

ω− nΩs

, (6.102)

and M13 =M31 =M23 =M32 = 0. Here,

λs =
(k⊥ρs)

2

2
, (6.103)

where ρs = vs/|Ωs| is the species-s Larmor radius.
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The first root of the dispersion relation (6.90) is

n 2
⊥ =

k 2
⊥ c

2

ω2
= 1−

∑

s

ω 2
p s

ω
e−λs

∞∑

n=−∞

In(λs)

ω− nΩs

, (6.104)

with the eigenvector (0, 0, Ez). This dispersion relation obviously corresponds to the elec-

tromagnetic plasma wave, or ordinary mode, discussed in Sect. 4.10. Note, however, that

in a warm plasma the dispersion relation for the ordinary mode is strongly modified by

the introduction of resonances (where the refractive index, n⊥, becomes infinite) at all the

harmonics of the cyclotron frequencies:

ωn s = nΩs, (6.105)

where n is a non-zero integer. These resonances are a finite Larmor radius effect. In

fact, they originate from the variation of the wave phase across a Larmor orbit. Thus,

in the cold plasma limit, λs → 0, in which the Larmor radii shrink to zero, all of the

resonances disappear from the dispersion relation. In the limit in which the wave-length,

λ, of the wave is much larger than a typical Larmor radius, ρs, the relative amplitude of

the nth harmonic cyclotron resonance, as it appears in the dispersion relation (6.104), is

approximately (ρs/λ)
|n| [see Eqs. (6.85) and (6.103)]. It is clear, therefore, that in this limit

only low-order resonances [i.e., n ∼ O(1)] couple strongly into the dispersion relation, and

high-order resonances (i.e., |n| ≫ 1) can effectively be neglected. As λ → ρs, the high-

order resonances become increasigly important, until, when λ <
∼ ρs, all of the resonances

are of approximately equal strength. Since the ion Larmor radius is generally much larger

than the electron Larmor radius, it follows that the ion cyclotron harmonic resonances are

generally more important than the electron cyclotron harmonic resonances.

Note that the cyclotron harmonic resonances appearing in the dispersion relation (6.104)

are of zero width in frequency space: i.e., they are just like the resonances which appear

in the cold-plasma limit. Actually, this is just an artifact of the fact that the waves we are

studying propagate exactly perpendicular to the equilibrium magnetic field. It is clear from

an examination of Eqs. (6.80) and (6.82) that the cyclotron harmonic resonances originate

from the zeros of the plasma dispersion functions. Adopting the usual rule that substantial

damping takes place whenever the arguments of the dispersion functions are less than or of

order unity, it is clear that the cyclotron harmonic resonances lead to significant damping

whenever

ω−ωns
<
∼ kz vs. (6.106)

Thus, the cyclotron harmonic resonances possess a finite width in frequency space pro-

vided that the parallel wave-number, kz, is non-zero: i.e., provided that the wave does not

propagate exactly perpendicular to the magnetic field.

The appearance of the cyclotron harmonic resonances in a warm plasma is of great

practical importance in plasma physics, since it greatly increases the number of resonant

frequencies at which waves can transfer energy to the plasma. In magnetic fusion these

resonances are routinely exploited to heat plasmas via externally launched electromagnetic
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waves. Hence, in the fusion literature you will often come across references to “third

harmonic ion cyclotron heating” or “second harmonic electron cyclotron heating.”

The other roots of the dispersion relation (6.90) satisfy



1−
∑

s

ω 2
p s

ω

e−λs

λs

∞∑

n=−∞

n2 In(λs)

ω− nΩs





(

1−
k 2
⊥ c

2

ω2

−
∑

s

ω 2
p s

ω

e−λs

λs

∞∑

n=−∞

[

n2 In(λs) + 2 λ
2
s In(λs) − 2 λ

2
s I

′
n(λs)

]

ω− nΩs





=





∑

s

ω 2
p s

ω
e−λs

∞∑

n=−∞

n [I ′n(λs) − In(λs)]

ω− nΩs





2

, (6.107)

with the eigenvector (Ex, Ey, 0). In the cold plasma limit, λs → 0, this dispersion relation

reduces to that of the extraordinary mode discussed in Sect. 4.10. This mode, for which

λs ≪ 1, unless the plasma possesses a thermal velocity approaching the velocity of light,

is little affected by thermal effects, except close to the cyclotron harmonic resonances,

ω = ωn s, where small thermal corrections are important because of the smallness of the

denominators in the above dispersion relation.

However, another mode also exists. In fact, if we look for a mode with a phase velocity

much less than the velocity of light (i.e., c2 k2⊥/ω
2 ≫ 1) then it is clear from (6.99)–(6.102)

that the dispersion relation is approximately

1−
∑

s

ω 2
p s

ω

e−λs

λs

∞∑

n=−∞

n2 In(λs)

ω− nΩs

= 0, (6.108)

and the associated eigenvector is (Ex, 0, 0). The new waves, which are called Bernstein

waves (after I.B. Bernstein, who first discovered them), are clearly slowly propagating,

longitudinal, electrostatic waves.

Let us consider electron Bernstein waves, for the sake of definiteness. Neglecting the

contribution of the ions, which is reasonable provided that the wave frequencies are suffi-

ciently high, the dispersion relation (6.108) reduces to

1−
ω 2
p

ω

e−λ

λ

∞∑

n=−∞

n2 In(λ)

ω− nΩ
= 0, (6.109)

where the subscript s is dropped, since it is understood that all quantities relate to elec-

trons. In the limit λ → 0 (with ω 6= nΩ), only the n = ±1 terms survive in the above

expression. In fact, since I±1(λ)/λ→ 1/2 as λ→ 0, the dispersion relation yields

ω2 → ω 2
p +Ω2. (6.110)

It follows that there is a Bernstein wave whose frequency asymptotes to the upper hybrid

frequency [see Sect. 4.10] in the limit k⊥ → 0. For other non-zero values of n, we have
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Figure 6.8: Dispersion relation for electron Bernstein waves in a warm plasma.
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Figure 6.9: Dispersion relation for electron Bernstein waves in a warm plasma. The dashed

line indicates the cold plasma extraordinary mode.

In(λ)/λ → 0 as λ → 0. However, a solution to Eq. (6.108) can be obtained if ω → nΩ

at the same time. Similarly, as λ → ∞ we have e−λ In(λ) → 0. In this case, a solution

can only be obtained if ω → nΩ, for some n, at the same time. The complete solution

to Eq. (6.108) is sketched in Fig. 6.8, for the case where the upper hybrid frequency lies

between 2 |Ω| and 3 |Ω|. In fact, wherever the upper hybrid frequency lies, the Bernstein

modes above and below it behave like those in the diagram.

At small values of k⊥, the phase velocity becomes large, and it is no longer legitimate to

neglect the extraordinary mode. A more detailed examination of the complete dispersion

relation shows that the extraordinary mode and the Bernstein mode cross over near the

harmonics of the cyclotron frequency to give the pattern shown in Fig. 6.9. Here, the

dashed line shows the cold plasma extraordinary mode.

In a lower frequency range, a similar phenomena occurs at the harmonics of the ion

cyclotron frequency, producing ion Bernstein waves, with somewhat similar properties to

electron Bernstein waves. Note, however, that whilst the ion contribution to the dispersion

relation can be neglected for high-frequency waves, the electron contribution cannot be

neglected for low frequencies, so there is not a complete symmetry between the two types

of Bernstein waves.


