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Why probabilities?

q Decisions are often made under uncertainty
q “How many metro drivers should be recruited = trained, when future traffic is

uncertain?”

q Probability theory dominates the modeling of uncertainty in
decision analysis

– Well established rules for computations
– Understandable
– Other models (e.g., evidence theory, fuzzy sets) are not covered here

q Learning objective: refresh memory about probability theory and
calculations
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The sample space

q Sample space S = set of all possible outcomes
q Examples:

– A coin toss: S = {H,T}
– Two coin tosses: S = {HH, TT, TH, HT}
– Number of rainy days in Helsinki in 2018: S={1,…,366}
– Grades from four courses: S=G × G × G × G=G4, where G={0,…,5}
– Average m2-price for apartments in Helsinki area next year S = [0,∞) euros
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Simple events and events
q Simple event: an individual outcome from S

– A coin toss: T
– Two coin tosses: TT
– Number of rainy days in Helsinki in 2018: 180
– Grades from four courses: (4, 5, 3, 4)
– Average m2-price for apartments in Helsinki in 2019: 4000 €

q Event: a collection of one or more outcomes (i.e., a subset of the
sample space: E⊆S)

– Two coin tosses: First toss tails, E={TT, TH}
– Number of rainy days in Helsinki in 2018: Less than 100, E={0,…,99}

– Grades from four courses: Average at least 4.0, = ∈ ∑ ≥ 4.0

– Average m2-price for apartments in Helsinki in 2019: Above 4000€, E=(4000, ∞)
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Events derived from events:
Complement, union, and intersection
q Complement Ac of A = all outcomes in S that are

not in A
q Union ∪ of two events A and B = all

outcomes that are in A or B (or both)
q Intersection ∩ = all outcomes that are in both

events
q A and B with no common outcomes are mutually

exclusive
q A and B are collectively exhaustive if ∪ =
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Events derived from events: Laws of
set algebra

Commutative laws: ∪ = ∪ , ∩ = ∩

Associative laws: ∪ ∪ = ∪ ∪ , ∩ ∩ = ∩ ∩ ,

Distributive laws: ∪ ∩ = ∩ ∪ ∩ , ∩ ∪ = ∪ ∩ ∪

DeMorgan’s laws: ∪ = ∩ , ∩ = ∪
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Probability measure

q Definition: Probability P is a function that maps all events A onto
real numbers and satisfies the following three axioms:

1. P(S)=1
2. 0 ≤ P(A) ≤ 1
3. If A and B are mutually exclusive (i.e., ∩ = ∅) then ∪ =

+ ( )
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Properties of probability (measures)

q From the three axioms it follows that
I. (∅)=0
II. If ⊆ , then ≤ ( )
III. ( ) = 1 − ( )
IV. ∪ = + − ( ∩ )

q In a given population, 30% of people are young, 15% are restless, and 7%
are both young and restless. A person is randomly selected from this
population. What is the chance that this person is

– Not young? 1. 30% 2. 55% 3. 70%
– Young but not restless? 1. 7% 2. 15% 3. 23%
– Young, restless or both? 1. 38% 2. 45% 3. 62%
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Independence

Definition: Two events A and B are independent if
∩ = ( )
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q A person is randomly selected
from the population on the right.

q Are events ”the person is
young” and ”the person is
restless” independent?

q No: 0.07 ≠ 0.3 × 0.15



Conditional probability

Definition: Conditional probability P(A|B) of A
given that B has occurred is

≜
∩

.

Note: If A and B are independent, the probability
of A does not depend on whether B has
occurred or not:

=
( ∩ )

( ) =
( )

( ) = .

15.1.2019
10

Source: Wikipedia



Joint probability vs. conditional
probability
Example:
q A farmer is trying to decide on a farming strategy for

next year. Experts have made the following forecasts
about the demand for the farmer’s products.

q Questions:
– What is the probability of high wheat demand?

1. 40% 2. 65% 3. 134%
– What is the probability of low rye demand?

1. 11% 2. 35% 3. 45%
– What is the (conditional) probability of high wheat demand, if rye

demand is low?
1. 40% 2. 55% 3. 89%

– Are the demands independent?
1. Yes 2. No
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Wheat demand

Rye demand Low High Sum

Low 0.05 0.4 0.45

High 0.3 0.25 0.55

Sum 0.35 0.65 1

Wheat demand

Rye demand Low High Sum

Low 0.11 0.89 1

High 0.55 0.45 1

Sum 0.66 1.34

Joint probability

Conditional probability

http://presemo.aalto.fi/2134l0102



Law of total probability
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q If E1,…,En are mutually exclusive and A = ⋃ , then

P(A)=P(A|E1)P(E1)+…+P(A|En)P(En)

q Most frequent use of this law:
– Probabilities P(A|B), P(A|Bc), and P(B) are known
– These can be used to compute P(A)=P(A|B)P(B)+P(A|Bc)P(Bc)



Bayes’ rule

q Bayes’ rule: = ( | ) ( )
( )

q Follows from
1. The definition of conditional probabilty: = ( ∩ )

( )
, = ( ∩ )

( )
,

2. Commutative laws: ∩ = ∩ .
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Bayes’ rule
Example:
q The probability of a fire in a certain building is 1/10000 any given day.
q An alarm goes off whenever there is an actual fire, but also once in every 200 days for

no reason.
q Suppose the alarm goes off. What is the probability that there is a fire?

Solution:
q F=Fire, Fc=No fire, A=Alarm, Ac=No alarm
q P(F)=0.0001 P(Fc)=0.9999, P(A|F)=1, P(A|Fc)=0.005

Law of total probability: P(A)=P(A|F)P(F)+P(A|Fc) P(Fc)=0.0051

Bayes: = ( | ) ( )
( )

= .
.

≈ 2%
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Random variables

q A random variable is a mapping from sample space S to real
numbers (discrete or continuous scale)

q The probability measure P on the sample space defines a
probability distribution for these real numbers

q Probability distribution can be represented by
– Probability mass (discrete) / density (continuous) function
– Cumulative distribution function
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Probability mass/density function (PMF
& PDF)
q PMF of a discrete random variable is fX(t)

such that
– fX(t)=P({s ∈ S|X(s)=t}) = probability
– ∑ = ( ∈ ( , ]) 

∈( , ] = probability

q PDF of a continuous random variable is fX(t)
such that

– fX(t) is NOT a probability

– ∫ = ∈ , is a probability
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Cumulative distribution function (CDF)

q The CDF of random variable X is
= ∈ | ( ) ≤

(often = ( ≤ ))
q Properties

– FX is non-decreasing
– FX(t) approaches 0 (1) when t decreases

(increases)
– P(X>t)=1-FX(t)
– P(a<X≤b)= FX(b)- FX(a)
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Expected value
• The expected value of a random variable is the weighted average of all possible

values, where the weights represent probability mass / density at these values

• A function g(X) of random varibale X is itself a random variable, whereby

15.1.2019
18

Discrete X
= ( )

 
Continuous X

=

( ) = ( ) ( )
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Expected value: Properties

q If , … , and = ∑ are random variables, then

= [ ]

q If random variable Y=aX+b where a and b are constants, then
= +

q NB! In general, E[g(X)]=g(E[X]) does NOT hold:
– Let ∈ {0,1} with P(X=1)=0.7. Then,

= 0.3 0 + 0.7 1 = 0.7,
= 0.3 0 + 0.7 1 = 0.7 ≠ 0.49 = ( ) .
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Random variables vs. sample space

q Models are often built by directly defining distributions (PDF/PMF or CDF)
rather than starting with the sample space

– Cf. alternative models for coin toss:
1. Sample space is S={H,T} and its probability measure P(s)=0.5 for all ∈
2. PMF is given by fX(t)=0.5, t ∈{0,1} and fX(t)=0 elsewhere

q Computational rules that apply to event probabilities also apply when these
probabilities are represented by distributions

q Detailed descriptions about the properties and common uses of different
kinds of discrete and continuous distributions are widely documented

– Elementary statistics books
– Wikipedia
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Binomial distribution

q n independent  binary (0/1, no/yes) trials,
each with success probability p=P(X=1)

q The number X ~ Bin(n,p) of successful
trials is a random variable that follows the
binomial distribution with parameters n
and p

q PMF: = = = (1 − )

q Expected value E[X]=np
q Variance Var[X]=np(1-p)
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Other common discrete distributions
q Bernoulli distribution

– If X ∈{0,1} is the result of a single binary trial with
success probability p, then X~Bernoulli(p).

– = (1 − )

q Geometric distribution
– If X ∈{1,2,3,…} is the number of Bernoulli trials needed to

get the first success, then X~Geom(p).
– = (1 − )

q Poisson distribution
– Let X ∈{1,2,3,…} be the number of times that an event

occurs during a fixed time interval such that (i) the
average occurence rate is known and (ii) events occur
independently of the last event time. Then, X~Poisson( ).

– =
!
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Uniform distribution

q Let X ∈[a,b] such that each real value
within the interval has equal probability.
Then, X~Uni(a,b)

q = ,  for ≤ ≤
0,  otherwise

q =

q = ( − )
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Normal distribution N( , )
q =  

( )

q = , =
q The most common distribution for

continuous random variables

q Central limit theorem: Let X1,…,Xn be
independent and identically distributed
random variables with E[Xi]= and
Var[Xi]= . Then,

∑
~ , .
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Other common continuous
distributions
q Log-normal distribution: if X~N( , ), then

eX~LogN( , )

q Exponential distribution Exp( ): describes
the time between events in a Poisson
process with event occurrence rate

q Beta distribution Beta(α,β): distribution for
X∈[0,1] that can take various forms
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Why Monte Carlo simulation?

q When probabilitistic models are used to support decision making, alternative
decisions often need to be described by ̒̒performance indices ̕ such as

– Expected values – e.g., expected revenue from launching a new product to the
market

– Probabilities of events – e.g., the probability that the revenue is below 100k€

q It may be difficult, time-consuming or impossible to calculate such measures
analytically

q Monte Carlo simulation:
– Use of a computer program to generate samples from the probability model
– Estimation of expected values and event probabilites from these samples
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Monte Carlo simulation of a probability
model
• Random variable X~fX

( < ≤ )
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• Sample (x1,…,xn) from fX

∑

∑ ( )

∈ {1, … , }| ∈ ( , )

Probability model Monte Carlo simulation



Uni(0,1) distribution in MC – discrete
random variables
q Some softwares only generate random numbers from Uni(0,1)-distribution
q Samples from Uni(0,1) can, however, be transformed into samples from many

other distributions
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q Discrete distribution:
• Let ∈ , … , such that =

= = .
• Divide interval [0,1] into n segments

of lengths , … , .
• Sample values from Uni(0,1).
• Transform the sample: If ∈

[∑ , ∑ ) where = 0,
then = .

Demand x
/ week

Prob. fX of
demand

0 0.3

1 0.4

2 0.2

3 0.1

1
0.9

0.3

0.7

U~Uni(0,1) X~fX

= 0.4565
= 0.8910
= 0.3254

⋮

= 1
= 2
= 1
⋮

X=3

X=2

X=1

X=0



Uni(0,1) distribution in MC – continuous
random variables
q Assume that the CDF of random variable X has an inverse function . Then,

the random variable = ( ) where U~Uni(0,1) follows the same distribution
as X:

= ≤ = ( ) ≤ = ≤ =
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q Continuous distribution:
• Let ~ (CDF)
• Sample values from Uni(0,1).
• Transform the sample: = ( )
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u

F-1 X
(u

)

fX=N(1000,5002)= 0.4565
= 0.8910
= 0.3254

⋮

U~Uni(0,1) X~fX
= 945.4

= 1615.9
= 773.7

⋮



Monte Carlo simulation in Excel
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RAND() generates a random
number from Uni(0,1)

VLOOKUP looks for the cell
value in the 1st column of the
table. The value in the 3rd
column of the table is
returned to the current cell. AVERAGE(H7:H206)

STDEV.S(E8:E207)



Monte Carlo simulation in Matlab
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Monte Carlo simulation in Matlab

q Statistics and Machine Learning Toolbox makes it easy to
generate numbers from various distributions

q E.g.,
– Y=normrnd(mu,sigma,m,n): m×n-array of X~N(mu,sigma)
– Y=betarnd(A,B,m,n) : m×n-array of X~Beta(A,B)
– Y=lognrnd(mu,sigma,m,n) : m×n-array of X~LogN(mu,sigma)
– Y=binornd(N,P,m,n) : m×n-array of X~Bin(N,P)
– …
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Summary

q Probability is the dominant way of capturing uncertainty in decision models

q Well-established computational rules provide means to derive probabilities of
events from those of other events

– Conditional probability, law of total probability, Bayes’ rule

q To support decision making, probabilistic models are often used to compute
performance indices (expected values, probabilities of events, etc.)

q Such indices can easily be computed through Monte Carlo simulation
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