Notation summary on "Klassinen dynamiikka"

J.-P. Martikainen ${ }^{1}$
${ }^{1}$ Aalto
(Dated: April 15, 2021)

I. NOTATION THAT MIGHT CAUSE CONFUSION

I will update this when new sources of confusion appear...

- x^{\prime}, y^{\prime} etc. will in this course typically just indicate coordinates in some other coordinate system. f^{\prime} might mean spatial coordinate derivative i.e. $f^{\prime}(x)=d f / d x$, but I will do my best to avoid that during this course.
- \dot{x} and \ddot{x} imply 1 st and 2 nd time-derivative
- Sometimes cartesian coordinates are written as (x, y, z), but sometimes when sums. dot-products etc. are needed it will be easier to denote the same thing with $\left(x_{1}, x_{2}, x_{3}\right)$.
- sometimes Einstein summation convention might be used i.e. if there is a repeating index one sums over it for example

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{\partial^{2}}{\partial x_{i} \partial x_{i}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot \mathbf{f}=\frac{\partial}{\partial x} f_{x}+\frac{\partial}{\partial y} f_{y}+\frac{\partial}{\partial z} f_{z}=\frac{\partial}{\partial x_{i}} f_{i} \tag{2}
\end{equation*}
$$

This convention becomes more powerful especially when we have to deal with tensors/matrices

