
import sys, os
try:

from Bio.PDB import PDBParser
__biopython_installed__ = True

except ImportError:
__biopython_installed__ = False

__default_bfactor__ = 0.0 # default B-factor
__default_occupancy__ = 1.0 # default occupancy level
__default_segid__ = '' # empty segment ID

class EOF(Exception):
def __init__(self): pass

class FileCrawler:
"""
Crawl through a file reading back and forth without loading
anything to memory.
"""
def __init__(self, filename):

try:
self.__fp__ = open(filename)

except IOError:
raise ValueError, "Couldn't open file '%s' for reading." % filename

self.tell = self.__fp__.tell
self.seek = self.__fp__.seek

def prevline(self):
try:

self.prev()

Python in High-performance Computing

Sebastian von Alfthan
Jussi Enkovaara

Martti Louhivuori

January 25-27, 2016
PRACE Advanced Training Centre
CSC – IT Center for Science Ltd, Finland

All material (C) 2016 by the authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License, http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

Tuesday
9:00-9:45 Introduction to Python

9:45-10:30 Exercises

10:30-10:45 Coffee Break

10:45-11:15 Control structures

11:15-12:15 Exercises

12:15-13:00 Lunch break

13:00-13:30 Functions and modules

13:30-14:30 Exercises

14:30-14:45 Coffee Break

14:45-15:15 File I/O and text processing

15:15-16:15 Exercises

Wednesday

Thursday
9:00-9:45 Visualization with Python

9:45-10:30 Exercises

10:30-10:45 Coffee Break

10:45-11:30 Scipy-package for scientific
computing

11:30-12:15 Exercises

12:15-13:00 Lunch break

13:00-13:30 C extensions – integrating
efficient C routines in Python

13:30-14:30 Exercises

14:30-14:45 Coffee break

14:45-15:45 MPI and Python – mpi4py

15:45-16:15 Exercises

9.00-9.45 Object oriented programming
with Python

9.45-10.30 Exercises

10.30-10.45 Coffee break

10:45-11:15 NumPy – fast array interface to
Python

11:15-12:15 Exercises

12.15-13.00 Lunch break

13.00-13:30 NumPy (continued)

13:30-14:30 Exercises

14.30-14.45 Coffee break

14.45-15.15 NumPy (continued)

15:15-16:15 Exercises

INTRODUCTION TO PYTHON

What is Python?

Modern, interpreted, object-oriented, full featured high
level programming language

Portable (Unix/Linux, Mac OS X, Windows)

Open source, intellectual property rights held by the
Python Software Foundation

Python versions: 2.x and 3.x

– 3.x is not backwards compatible with 2.x

– This course uses 2.x version

Why Python?

Fast program development

Simple syntax

Easy to write well readable code

Large standard library

Lots of third party libraries

– Numpy, Scipy, Biopython

– Matplotlib

– ...

Information about Python

www.python.org

H. P. Langtangen, “Python Scripting for Computational
Science”, Springer

www.scipy.org

matplotlib.sourceforge.net

mpi4py.scipy.org

FIRST GLIMPSE INTO THE PYTHON

Python basics

Syntax and code structure

Data types and data structures

Control structures

Functions and modules

Text processing and IO

Python program

Typically, a .py ending is used for Python scripts, e.g.
hello.py:

Scripts can be executed by the python executable:

print "Hello world!"

hello.py

$ python hello.py
Hello world!

Interactive python interpreter

The interactive interpreter can be started by executing
python without arguments:

Useful for testing and learning

$ python
Python 2.4.3 (#1, Jul 16 2009, 06:20:46)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print "Hello"
Hello
>>>

Python syntax

Variable and function
names start with a letter
and can contain also
numbers and underscores,
e.g “my_var”, “my_var2”

Python is case sensitive

Code blocks are defined by
indentation

Comments start by # sign

example
if x > 0:

x = x + 1 # increase x
print("increasing x")

else:
x = x – 1
print "decreasing x"

print("x is processed")

example.py

Data types

Python is dynamically typed
language

– no type declarations for
variables

Variable does have a type

– incompatible types cannot
be combined

print "Starting example"
x = 1.0
for i in range(10):

x += 1
y = 4 * x
s = "Result"
z = s + y # Error

example.py

Numeric types

Integers

Floats

Complex numbers

Basic operations

– + and -

– * , / and **

– implicit type conversions

– be careful with integer
division !

>>> x = 2
>>> x = 3.0
>>> x = 4.0 + 5.0j
>>>
>>> 2.0 + 5 – 3
4.0
>>> 4.0**2 / 2.0 * (1.0 - 3j)
(8-24j)
>>> 1/2
0
>>> 1./2
0.5

Strings

Strings are enclosed by " or '

Multiline strings can be defined with three double quotes

s1 = "very simple string"
s2 = 'same simple string'
s3 = "this isn't so simple string"
s4 = 'is this "complex" string?'
s5 = """This is a long string
expanding to multiple lines,
so it is enclosed by three "'s."""

strings.py

Strings

+ and * operators with strings:
>>> "Strings can be " + "combined"
'Strings can be combined'
>>>
>>> "Repeat! " * 3
'Repeat! Repeat! Repeat!

Data structures

Lists and tuples

Dictionaries

List

Python lists are dynamic arrays

List items are indexed (index starts from 0)

List item can be any Python object, items can be of
different type

New items can be added to any place in the list

Items can be removed from any place of the list

Lists

Defining lists

Accessing list elements

Modifying list items

>>> my_list1 = [3, “egg”, 6.2, 7]
>>> my_list2 = [12, [4, 5], 13, 1]

>>> my_list1[0]
3
>>> my_list2[1]
[4, 5]
>>> my_list1[-1]
7

>>> my_list1[-2] = 4
>>> my_list1
[3, 'egg', 4, 7]

Lists

Adding items to list

Accessing list elements

+ and * operators with
lists

>>> my_list1 = [9, 8, 7, 6]
>>> my_list1.append(11)
>>> my_list1
[9, 8, 7, 6, 11]
>>> my_list1.insert(1,16)
>>> my_list1
[9, 16, 8, 7, 6, 11]
>>> my_list2 = [5, 4]
>>> my_list1.extend(my_list2)
>>> my_list1
[9, 16, 8, 7, 6, 11, 5, 4]

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> [1, 2, 3] * 2
[1, 2, 3, 1, 2, 3]

Lists

It is possible to access
slices of lists

Removing list items

>>> my_list1 = [0, 1, 2, 3, 4, 5]
>>> my_list1[0:2]
[0, 1]
>>> my_list1[:2]
[0, 1]
>>> my_list1[3:]
[3, 4, 5]
>>> my_list1[0:6:2]
[0, 2, 4]
>>> my_list1[::-1]
[5, 4, 3, 2, 1, 0]

>>> second = my_list1.pop(2)
>>> my_list1
[0, 1, 3, 4, 5]
>>> second
2

Tuples

Tuples are immutable lists

Tuples are indexed and
sliced like lists, but cannot
be modified

>>> t1 = (1, 2, 3)
>>> t1[1] = 4
Traceback (most recent call last):
File "<stdin>", line 1, in

<module>
TypeError: 'tuple' object does not
support item assignment

Dictionaries

Dictionaries are associative arrays

Unordered list of key - value pairs

Values are indexed by keys

Keys can be strings or numbers

Value can be any Python object

Dictionaries

Creating dictionaries

Accessing values

Adding items

>>> grades = {'Alice' : 5, 'John'
: 4, 'Carl' : 2}
>>> grades
{'John': 4, 'Alice': 5, 'Carl': 2}

>>> grades['John']
4

>>> grades['Linda'] = 3
>>> grades
{'John': 4, 'Alice': 5, 'Carl': 2,
'Linda': 3}
>>> elements = {}
>>> elements['Fe'] = 26
>>> elements
{'Fe': 26}

Variables

Python variables are
always references

my_list1 and my_list2 are
references to the same list

– Modifying my_list2
changes also my_list1!

Copy can be made by
slicing the whole list

>>> my_list1 = [1,2,3,4]
>>> my_list2 = my_list1

>>> my_list2[0] = 0
>>> my_list1
[0, 2, 3, 4]

>>> my_list3 = my_list1[:]
>>> my_list3[-1] = 66
>>> my_list1
[0, 2, 3, 4]
>>> my_list3
[0, 2, 3, 66]

What is object?

Object is a software bundle of data (=variables) and
related methods

Data can be accessed directly or only via the methods
(=functions) of the object

In Python, everything is object

Methods of object are called with the syntax:
obj.method

Methods can modify the data of object or return new
objects

Summary

Python syntax: code blocks defined by indentation

Numeric and string datatypes

Powerful basic data structures:

– Lists and dictionaries

Everything is object in Python

Python variables are always references to objects

CONTROL STRUCTURES

Control structures

if – else statements

while loops

for loops

Exceptions

if statement

if statement allows one to execute code block depending
on condition

code blocks are defined by indentation, standard practice
is to use four spaces for indentation

boolean operators:

==, !=, >, <, >=, <=

if x > 0:
x += 1
y = 4 * x

numbers[2] = x

example.py

if statement

there can be multiple branches of conditions

Python does not have switch statement

if x == 0:
print "x is zero"

elif x < 0:
print "x is negative"

elif x > 100000:
print "x is large"

else:
print "x is something completely different"

example.py

while loop

while loop executes a code block as long as an expression
is True

x = 0
cubes = {}
cube = 0
while cube < 100:

cubes[x] = cube
x += 1
cube = x**3

example.py

for loop

for statement iterates over the items of any sequence
(e.g. list)

In each pass, the loop variable car gets assigned next
value from the sequence

– Value of loop variable can be any Python object

cars = ['Audi', 'BMW', 'Jaguar', 'Lada']

for car in cars:
print "Car is ", car

example.py

for loop

Many sequence-like Python objects support iteration

– Dictionary: ”next” values are dictionary keys

– (later on: file as sequence of lines, ”next” value of file
object is the next line in the file)

prices = {'Audi' : 50, 'BMW' : 70, 'Lada' : 5}

for car in prices:
print "Car is ", car
print "Price is ", prices[car]

example.py

for loop

Items in the sequence can be lists themselves

Values can be assigned to multiple loop variables

Dictionary method items() returns list of key-value pairs

for x, y in coordinates:
print "X=", x, "Y=", y

example.py

coordinates = [[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]]
for coord in coordinates:

print "X=", coord[0], "Y=", coord[1]

example.py

prices = {'Audi': 50, 'BMW' : 70, 'Lada' : 5}
for car, price in prices.items():

print "Price of", car, "is", price

example.py

break & continue

break out of the loop

continue with the next iteration of loop

x = 0
while True:

x += 1
cube = x**3
if cube > 100:

break

example.py

sum = 0
for p in prices:

sum += p
if sum > 100:

print "too much"
break

example.py

x = -5
cube = 0
while cube < 100:

x += 1
if x < 0:

continue
cube = x**3

example.py

sum = 0
for p in prices:

if p > 100:
continue

sum += p

example.py

exceptions

Exceptions allow the program to handle errors and other
”unusual” situations in a flexible and clean way

Basic concepts:

– Raising an exception. Exception can be raised by user code
or by system

– Handling an exception. Defines what to do when an
exception is raised, typically in user code.

There can be different exceptions and they can be
handled by different code

exceptions in Python

Exception is catched and handled by try - except
statements

User code can also raise an exception

my_list = [3, 4, 5]
try:

fourth = my_list[4]
except IndexError:

print "There is no fourth element"

example.py

if solver not in ['exact', 'jacobi', 'cg']:
raise RuntimeError(‘Unsupported solver’)

example.py

List comprehension

useful Python idiom for creating lists from existing ones
without explicit for loops

creates a new list by performing operations for the
elements of list:
newlist = [op(x) for x in oldlist]

a conditional statement can be included

>>> numbers = range(6)
>>> squares = [x**2 for x in numbers]
>>> squares
[0, 1, 4, 9, 16, 25]

>>> odd_squares = [x**2 for x in numbers if x % 2 == 1]
>>> odd_squares
[1, 9, 25]

FUNCTIONS AND MODULES

Functions and modules

defining functions

calling functions

importing modules

Functions

function is block of code that can be referenced from
other parts of the program

functions have arguments

functions can return values

Function definition

name of function is add

x and y are arguments

there can be any number of arguments and arguments
can be any Python objects

return value can be any Python object

def add(x, y):
result = x + y
return result

u = 3.0
v = 5.0
sum = add(u, v)

function.py

Keyword arguments

functions can also be called using keyword arguments

keyword arguments can improve readability of code

def sub(x, y):
result = x - y
return result

res1 = sub(3.0, 2.0)
res2 = sub(y=3.0, x=2.0)

function.py

Default arguments

it is possible to have default values for arguments

function can then be called with varying number of
arguments

def add(x, y=1.0):
result = x + y
return result

sum1 = add(0.0, 2.0)
sum2 = add(3.0)

function.py

Modifying function arguments

as Python variables are always references, function can
modify the objects that arguments refer to

side effects can be wanted or unwanted

>>> def switch(mylist):
... tmp = mylist[-1]
... mylist[-1] = mylist[0]
... mylist[0] = tmp
...
>>> l1 = [1,2,3,4,5]
>>> switch(l1)
>>> l1
[5, 2, 3, 4, 1]

Modules

modules are extensions that can be imported to Python
to provide additional functionality, e.g.

– new data structures and data types

– functions

Python standard library includes several modules

several third party modules

user defined modules

Importing modules

import statement

import math
x = math.exp(3.5)

import math as m
x = m.exp(3.5)

from math import exp, pi
x = exp(3.5) + pi

from math import *
x = exp(3.5) + sqrt(pi)

exp = 6.6
from math import *
x = exp + 3.2 # Won't work,

exp is now a function

example.py

Creating modules

it is possible to make imports from own modules

define a function in file mymodule.py

the function can now be imported in other .py files:

def incx(x):
return x+1

mymodule.py

import mymodule

y = mymodule.incx(1)

test.py

from mymodule import incx

y = incx(1)

test.py

Summary

functions help in reusing frequently used code blocks

functions can have default and keyword arguments

additional functionality can be imported from modules

FILE I/O AND TEXT PROCESSING

File I/O and text processing

working with files

reading and processing file contents

string formatting and writing to files

Opening and closing files

opening a file:
myfile = open(filename, mode)

– returns a handle to the file

>>> fp = open('example.txt', 'r')
>>>

Opening and closing files

file can opened for

– reading: mode='r'
(file has to exist)

– writing: mode='w'
(existing file is truncated)

– appending: mode='a'

closing a file

– myfile.close()

open file for reading
infile = open('input.dat', 'r')

open file for writing
outfile = open('output.dat', 'w')

open file for appending
appfile = open('output.dat', 'a')

close files
infile.close()

example.py

Reading from files

a single line can be read from a file with the readline() -
function

it is often convenient to iterate over all the lines in a file

>>> infile = open('inp', 'r')
>>> line = infile.readline()

>>> infile = open('inp', 'r')
>>> for line in infile:
... # process lines

Processing lines

generally, a line read from a file is just a string

a string can be split into a list of strings:

fields in a line can be assigned to variables and added to
e.g. lists or dictionaries

>>> infile = open('inp', 'r')
>>> for line in infile:
... line = line.split()

>>> for line in infile:
... line = line.split()
... x, y = float(line[1]), float(line[3])
... coords.append((x,y))

Processing lines

sometimes one wants to process only files containing
specific tags or substrings

other way to check for substrings:

– str.startswith(), str.endswith()

Python has also an extensive support for regular
expressions in re -module

>>> for line in infile:
... if “Force” in line:
... line = line.split()
... x, y, z = float(line[1]), float(line[2]), float(line[3])
... forces.append((x,y,z))

String formatting

Output is often wanted in certain format

The string object has .format method for placing
variables within string

Replacement fields surrounded by {} within the string

Possible to use also keywords:

>>> x, y = 1.6666, 2.33333
print "X is {0} and Y is {1}".format(x, y)
X is 1.6666 and Y is 2.3333
>>> print "Y is {1} and X is {0}".format(x, y)
Y is 2.3333 and X is 1.6666

>>> print "Y is {val_y} and X is {val_x}".format(val_x=x, val_y=y)
Y is 2.3333 and X is 1.6666

String formatting

Presentation of field can be specified with {i:[w][.p][t]}
w is optional minimum width
.p gives optional precision (=number of decimals)
t is the presentation type

some presentation types
s string (normally omitted)
d integer decimal
f floating point decimal
e floating point exponential

>>> print "X is {0:6.3f} and Y is {1:6.2f}".format(x, y)
X is 1.667 and Y is 2.33

Writing to a file

data can be written to a file with print statements

file objects have also a write() function

the write() does not automatically add a newline

file should be closed after writing is finished

outfile = open('out', 'w')
print >> outfile, "Header"
print >> outfile, "{0:6.3f} {0:6.3f}".format(x, y)

outfile = open('out', 'w')
outfile.write("Header\n")
outfile.write("{0:6.3f} {0:6.3f}".format(x, y))

output.py

Differences between Python 2.X and 3.X

print is a function in 3.X

in 3.X some dictionary methods return “views” instead of
lists.

– e.g. k = d.keys(); k.sort() does not work,
use k = sorted(d) instead

for more details, see
http://docs.python.org/release/3.1/whatsnew/3.0.html

print "The answer is", 2*2 # 2.X
print("The answer is", 2*2) # 3.X

print >>sys.stderr, "fatal error" # 2.X
print("fatal error", file=sys.stderr) # 3.X

differences.py

Summary

files are opened and closed with open() and close()

lines can be read by iterating over the file object

lines can be split into lists and check for existence of
specific substrings

string formatting operators can be used for obtaining
specific output

file output can be done with print or write()

Useful modules in Python standard library

math : “non-basic” mathematical operations

os : operating system services

glob : Unix-style pathname expansion

random : generate pseudorandom numbers

pickle : dump/load Python objects to/from file

time : timing information and conversions

xml.dom / xml.sax : XML parsing

+ many more
http://docs.python.org/library/

Summary

Python is dynamic programming language

flexible basic data structures

standard control structures

modular programs with functions and modules

simple and powerful test processing and file I/O

rich standard library

OBJECT ORIENTED PROGRAMMING WITH PYTHON

Object oriented programming with Python

Basic concepts

Classes in Python

Inheritance

Special methods

OOP concepts

OOP is programming paradigm

– data and functionality are wrapped inside of an “object”

– Objects provide methods which operate
on (the data of) the object

Encapsulation

– User accesses objects only through methods

– Organization of data inside the object is hidden from the
user

Examples

String as an object

– Data is the contents of string

– Methods could be lower/uppercasing the string

Two dimensional vector

– Data is the x and y components

– Method could be the norm of vector

OOP in Python

In Python everything is a object

Example: open function returns a file object

– data includes e.g. the name of the file

– methods of the file object referred by f are f.read(),
f.readlines(), f.close(), ...

Also lists and dictionaries are objects (with some special
syntax)

>>> f = open('foo', 'w')
>>> f.name
'foo'

OOP concepts

class

– defines the object, i.e. the data and the methods
belonging to the object

– there is only single definition for given object type

instance

– there can be several instances of the object

– each instance can have different data, but the methods are
the same

Class definition in Python

When defining class methods in Python the first argument to
method is always self

self refers to the particular instance of the class

self is not included when calling the class method

Data of the particular instance is handled with self

class Student:
def set_name(self, name):

self.name = name

def say_hello(self):
print “Hello, my name is ”, self.name

students.py

Class definition in Python

class Student:
def set_name(self, name):

self.name = name
def say_hello(self):

print “Hello, my name is ”, self.name

creating an instance of student
stu = Student()
calling a method of class
stu.set_name(‘Jussi’)
creating another instance of student
stu2 = Student()
stu2.set_name(‘Martti’)
the two instances contain different data
stu.say_hello()
stu2.say_hello()

students.py

Passing data to object

Data can be passed to an object at the point of creation by
defining a special method __init__

__init__ is always called when creating the instance

In Python, one can also refer directly to data attributes
>>> from students import Student
>>> stu1 = Student(‘Jussi’)
>>> stu2 = Student(‘Martti’)
>>> print stu1.name, stu2.name
’Jussi’, ’Martti’

class Student:
def __init__(self, name):

self.name = name
...

students.py

Python classes as data containers

classes can be used for C-struct or Fortran-Type like data
structures

instances can be used as items in e.g. lists

class Student:
def __init__(self, name, age):

self.name = name
self.age = age

students.py

>>> stu1 = Student('Jussi', 27)
>>> stu2 = Student('Martti', 25)
>>> student_list = [stu1, stu2]
>>> print student_list[1].age

Encapsulation in Python

Generally, OOP favours separation of internal data
structures and implementation from the interface

In some programming languages attributes and methods
can be defined to be accessible only from other methods
of the object.

In Python, everything is public. Leading underscore in a
method name can be used to suggest “privacy” for the
user

Inheritance

New classes can be derived from existing ones by
inheritance

The derived class “inherits” the attributes and methods
of parent

The derived class can define new methods

The derived class can override existing methods

Inheriting classes in Python

class Student:
...

class PhDStudent(Student):
override __init__ but use __init__ of base class!
def __init__(self, name, age, thesis_project):

self.thesis = thesis_project
Student.__init__(self, name, age)

define a new method
def get_thesis_project(self):

return self.thesis

stu = PhDStudent(‘Pekka’, 20, ‘Theory of everything’)
use a method from the base class
stu.say_hello()
use a new method
proj = stu.get_thesis_project()

inherit.py

Special methods

class can define methods with special names to
implement operations by special syntax (operator
overloading)

Examples

– __add__, __sub__, __mul__, __div__

– for arithmetic operations (+, -, *, /)

– __cmp__ for comparisons, e.g. sorting

– __setitem__, __getitem__ for list/dictionary like syntax
using []

Special methods

class Vector:
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
new_x = self.x + other.x
new_y = self.y + other.y
return Vector(new_x, new_y)

v1 = Vector(2, 4)
v2 = vector(-3, 6)
v3 = v1 + v2

special.py

class Student:
...
def __cmp__(self, other):

return cmp(self.name,
other.name)

students = [Student('Jussi', 27),
Student('Aaron', 29)]

students.sort()

special.py

Summary

Objects contain both data and functionality

class is the definition of the object

instance is a particular realization of object

class can be inherited from other class

Python provides a comprehensive support for object
oriented programming (“Everything is an object”)

NUMPY

Numpy – fast array interface

Standard Python is not well suitable for numerical
computations

– lists are very flexible but also slow to process in numerical
computations

Numpy adds a new array data type

– static, multidimensional

– fast processing of arrays

– some linear algebra, random numbers

Numpy arrays

All elements of an array have the same type

Array can have multiple dimensions

The number of elements in the array is fixed, shape can
be changed

Python list vs. NumPy array

Python list NumPy array

Memory layout Memory layout

…

Creating numpy arrays

From a list:
>>> import numpy as np
>>> a = np.array((1, 2, 3, 4), float)
>>> a
array([1., 2., 3., 4.])
>>>
>>> list1 = [[1, 2, 3], [4,5,6]]
>>> mat = np.array(list1, complex)
>>> mat
array([[1.+0.j, 2.+0.j, 3.+0.j],

[4.+0.j, 5.+0.j, 6.+0.j]])
>>> mat.shape
(2, 3)
>>> mat.size
6

Creating numpy arrays

More ways for creating arrays:
>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>>
>>> b = np.linspace(-4.5, 4.5, 5)
>>> b
array([-4.5 , -2.25, 0. , 2.25, 4.5])
>>>
>>> c = np.zeros((4, 6), float)
>>> c.shape
(4, 6)
>>>
>>> d = np.ones((2, 4))
>>> d
array([[1., 1., 1., 1.],

[1., 1., 1., 1.]])

Indexing and slicing arrays

Simple indexing:

Slicing:

>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> mat[0,2]
3
>>> mat[1,-2]
>>> 5

>>> a = np.arange(5)
>>> a[2:]
array([2, 3, 4])
>>> a[:-1]
array([0, 1, 2, 3])
>>> a[1:3] = -1
>>> a
array([0, -1, -1, 3, 4])

Indexing and slicing arrays

Slicing is possible over all dimensions:
>>> a = np.arange(10)
>>> a[1:7:2]
array([1, 3, 5])
>>>
>>> a = np.zeros((4, 4))
>>> a[1:3, 1:3] = 2.0
>>> a
array([[0., 0., 0., 0.],

[0., 2., 2., 0.],
[0., 2., 2., 0.],
[0., 0., 0., 0.]])

Views and copies of arrays

Simple assignment creates references to arrays

Slicing creates “views” to the arrays

Use copy() for real copying of arrays

a = np.arange(10)
b = a # reference, changing values in b changes a
b = a.copy() # true copy

c = a[1:4] # view, changing c changes elements [1:4] of a
c = a[1:4].copy() # true copy of subarray

example.py

Array manipulation

reshape : change the shape of array

ravel : flatten array to 1-d

>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> mat
array([[1, 2, 3],

[4, 5, 6]])
>>> mat.reshape(3,2)
array([[1, 2],

[3, 4],
[5, 6]])

>>> mat.ravel()
array([1, 2, 3, 4, 5, 6])

Array manipulation

concatenate : join arrays together

split : split array to N pieces

>>> mat1 = np.array([[1, 2, 3], [4, 5, 6]])
>>> mat2 = np.array([[7, 8, 9], [10, 11, 12]])
>>> np.concatenate((mat1, mat2))
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9],
[10, 11, 12]])

>>> np.concatenate((mat1, mat2), axis=1)
array([[1, 2, 3, 7, 8, 9],

[4, 5, 6, 10, 11, 12]])

>>> np.split(mat1, 3, axis=1)
[array([[1],

[4]]), array([[2],
[5]]), array([[3],
[6]])]

Array operations

Most operations for numpy arrays are done element-
wise

– +, -, *, /, **

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])
>>> a + b
array([3., 4., 5.])
>>> a * a
array([1., 4., 9.])

Array operations

Numpy has special functions which can work with array
arguments

– sin, cos, exp, sqrt, log, ...
>>> import numpy, math
>>> a = numpy.linspace(-math.pi, math.pi, 8)
>>> a
array([-3.14159265, -2.24399475, -1.34639685, -0.44879895,

0.44879895, 1.34639685, 2.24399475, 3.14159265])
>>> numpy.sin(a)
array([-1.22464680e-16, -7.81831482e-01, -9.74927912e-01,

-4.33883739e-01, 4.33883739e-01, 9.74927912e-01,
7.81831482e-01, 1.22464680e-16])

>>>
>>> math.sin(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: only length-1 arrays can be converted to Python scalars

Vectorized operations

for loops in Python are slow

Use “vectorized” operations when possible

Example: difference

– for loop is ~80 times slower!

brute force using a for loop
arr = np.arange(1000)
dif = np.zeros(999, int)
for i in range(1, len(arr)):

dif[i-1] = arr[i] - arr[i-1]

vectorized operation
arr = np.arange(1000)
dif = arr[1:] - arr[:-1]

example.py

Broadcasting

If array shapes are different, the smaller array may be
broadcasted into a larger shape

>>> from numpy import array
>>> a = array([[1,2],[3,4],[5,6]], float)
>>> a
array([[1., 2.],

[3., 4.],
[5., 6.]])

>>> b = array([[7,11]], float)
>>> b
array([[7., 11.]])
>>>
>>> a * b
array([[7., 22.],

[21., 44.],
[35., 66.]])

Advanced indexing

Numpy arrays can be indexed also with other arrays
(integer or boolean)

Boolean “mask” arrays

Advanced indexing creates copies of arrays

>>> x = np.arange(10,1,-1)
>>> x
array([10, 9, 8, 7, 6, 5, 4, 3, 2])
>>> x[np.array([3, 3, 1, 8])]
array([7, 7, 9, 2])

>>> m = x > 7
>>> m
array([True, True, True, False, False, ...
>>> x[m]
array([10, 9, 8])

Masked arrays

Sometimes datasets contain invalid data (faulty
measurement, problem in simulation)

Masked arrays provide a way to perform array operations
neglecting invalid data

Masked array support is provided by numpy.ma module

Masked arrays

Masked arrays can be created by combining a regular
numpy array and a boolean mask

>>> import numpy.ma as ma
>>> x = np.array([1, 2, 3, -1, 5])
>>>
>>> m = x < 0
>>> mx = ma.masked_array(x, mask=m)
>>> mx
masked_array(data = [1 2 3 -- 5],

mask = [False False False True False],
fill_value = 999999)

>>> x.mean()
2.0
>>> mx.mean()
2.75

I/O with Numpy

Numpy provides functions for reading data from file and
for writing data into the files

Simple text files

– numpy.loadtxt

– numpy.savetxt

– Data in regular column layout

– Can deal with comments and different column delimiters

Random numbers

The module numpy.random provides several functions
for constructing random arrays

– random: uniform random numbers

– normal: normal distribution

– poisson: Poisson distribution

– ...

>>> import numpy.random as rnd
>>> rnd.random((2,2))
array([[0.02909142, 0.90848],

[0.9471314 , 0.31424393]])
>>> rnd.poisson(size=(2,2))

Polynomials

Polynomial is defined by array of coefficients p

p(x, N) = p[0] xN-1 + p[1] xN-2 + ... + p[N-1]

Least square fitting: numpy.polyfit

Evaluating polynomials: numpy.polyval

Roots of polynomial: numpy.roots

...
>>> x = np.linspace(-4, 4, 7)
>>> y = x**2 + rnd.random(x.shape)
>>>
>>> p = np.polyfit(x, y, 2)
>>> p
array([0.96869003, -0.01157275, 0.69352514])

Linear algebra

Numpy can calculate matrix and vector products
efficiently: dot, vdot, ...

Eigenproblems: linalg.eig, linalg.eigvals, …

Linear systems and matrix inversion: linalg.solve,
linalg.inv

>>> A = np.array(((2, 1), (1, 3)))
>>> B = np.array(((-2, 4.2), (4.2, 6)))
>>> C = np.dot(A, B)
>>>
>>> b = np.array((1, 2))
>>> np.linalg.solve(C, b) # solve C x = b
array([0.04453441, 0.06882591])

Numpy performance

Matrix multiplication
C = A * B
matrix dimension 200

pure python: 5.30 s

naive C: 0.09 s

numpy.dot: 0.01 s

Summary

Numpy provides a static array data structure

Multidimensional arrays

Fast mathematical operations for arrays

Arrays can be broadcasted into same shapes

Tools for linear algebra and random numbers

VISUALIZATION WITH PYTHON

Matplotlib

2D plotting library for python

Can be used in scripts and in interactive shell

Publication quality in various hardcopy formats

“Easy things easy, hard things possible”

Some 3D functionality

Matplotlib interfaces

Simple command style functions similar to Matlab

Powerful object oriented API for full control of plotting

import pylab as pl
...
pl.plot(x, y)

plot.py

Basic concepts

Figure: the main container of a plot

Axes: the “plotting” area, a figure can contain multiple
Axes

graphical objects: lines, rectangles, text

Command style functions are used for creating and
manipulating figures, axes, lines, ...

The command style interface is stateful:

– track is kept about current figure and plotting area

Simple plot

plot : create a simple plot. Figure and axes are created if
needed

Interactive vs. batch mode

In many installations batch mode is default

– Figures do not show up without show() function

– Batch mode is useful e.g. for writing out files during
simulation and for heavy rendering

Mode can be controlled as:

– ion() : turn on interactive mode

– ioff() : turn on interactive mode

Multiple subplots

subplot : create multiple axes in the figure and switch
between subplots

Histograms

hist : create histogram

Latex can be used with matplotlib

Bar and pie charts

bar : bar charts

pie : pie charts

Summary of basic functions

Simple plot: plot

Interactive vs. batch mode: ion / ioff

Hardcopies: savefig

Multiple plots: subplot

Histograms: hist

Bar charts: bar

Pie charts: pie

Switch plotting on top of existing figure: hold

Contour plots: contour, contourf

Summary

Matplotlib provides a simple command style interface for
creating publication quality figures

Interactive plotting and different output formats (.png,
.pdf, .eps)

Simple plots, multiplot figures, decorations

Possible to use Latex in text

Mayavi

General purpose, cross-platform tool for 3-D scientific
data visualization

Visualization of scalar, vector and tensor data in 2 and 3
dimensions

Easy scriptability using Python

Convenient functionality for rapid scientific plotting via
mlab

Simple example

Surface described by three 2D arrays

>>> from mayavi import mlab
>>> from numpy import pi, sin, cos, mgrid
>>> dphi, dtheta = pi/250.0, pi/250.0
>>> [phi,theta] = mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]
>>> m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;
>>> r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 +
cos(m6*theta)**m7
>>> x = r*sin(phi)*cos(theta)
>>> y = r*cos(phi)
>>> z = r*sin(phi)*sin(theta)
>>> mlab.mesh(x,y,z)

Simple example 2

Iso-surfaces for a 3D volume

>>> from mayavi import mlab
>>> import numpy as np
>>> x, y, z = np.ogrid[-5:5:64j, -5:5:64j, -5:5:64j]
>>> scalars = x * x * 0.5 + y * y + z * z * 2.0
>>> mlab.contour3d(scalars, contours=4, transparent=True)

Additional basic functions

imshow : view a 2D array as an image

surf : view a 2D array as a carpet plot

quiver3d : plot arrows to represent vectors at data points

savefig : write out a hardcopy

Summary

Mayavi is easy-to-use tool for 3D visualization

Surfaces, iso-surfaces, vector fields

Hardcopies in various formats

Vast set of more advanced features

SCIPY

Scipy – Scientific tools for Python

Scipy is a Python package containing several tools for
scientific computing

Modules for:

– statistics, optimization, integration, interpolation

– linear algebra, Fourier transforms, signal and image
processing

– ODE solvers, special functions

– ...

Vast package, reference guide is currently 975 pages

Scipy is built on top of Numpy

Library overview

Clustering package (scipy.cluster)

Constants (scipy.constants)

Fourier transforms (scipy.fftpack)

Integration and ODEs (scipy.integrate)

Interpolation (scipy.interpolate)

Input and output (scipy.io)

Linear algebra (scipy.linalg)

Maximum entropy models
(scipy.maxentropy)

Miscellaneous routines (scipy.misc)

Multi-dimensional image processing
(scipy.ndimage)

Orthogonal distance regression
(scipy.odr)

Optimization and root finding
(scipy.optimize)

Signal processing (scipy.signal)

Sparse matrices (scipy.sparse)

Sparse linear algebra
(scipy.sparse.linalg)

Spatial algorithms and data
structures (scipy.spatial)

Special functions (scipy.special)

Statistical functions (scipy.stats)

Image Array Manipulation and
Convolution (scipy.stsci)

C/C++ integration (scipy.weave)

Integration

Routines for numerical integration

– single, double and triple integrals

Function to integrate can be given by function object or
by fixed samples

from scipy.integrate import simps, quad, inf

x = np.linspace(0, 1, 20)
y = np.exp(-x)
int1 = simps(y, x) # integrate function given by samples

def f(x):
return exp(-x)

int2 = quad(f, 0, 1) # integrate function object
int3 = quad(f, 0, inf) # integrate up to infinity

integrate.py

Optimization

Several classical optimization algorithms

– Quasi-Newton type optimizations

– Least squares fitting

– Simulated annealing

– General purpose root finding

– ...

>>> from scipy.optimize import fmin
>>>

Special functions

Scipy contains huge set of special functions

– Bessel functions

– Legendre functions

– Gamma functions

– ...

>>> from scipy.special import jv, gamma
>>>

Linear algebra

Wider set of linear algebra operations than in Numpy

– decompositions, matrix exponentials

Routines also for sparse matrices

– storage formats

– iterative algorithms

import numpy as np
from scipy.sparse.linalg import LinearOperator, cg

"Sparse" matrix-vector product
def mv(v):

return np.array([2*v[0], 3*v[1]])

A = LinearOperator((2,2), matvec=mv, dtype=float)
b = np.array((4.0, 1.0))
x = cg(A, b) # Solve linear equation Ax = b with conjugate gradient

sparse.py

Summary

Scipy is vast package of tools for scientific computing

Uses lots of NumPy in the background

Numerical integration, optimization, special functions,
linear algebra, ...

Look Scipy documentation for finding tools for your
needs!

C - EXTENSIONS

C - extensions

Some times there are time critical parts of code
which would benefit from compiled language

90/10 rule: 90 % of time is spent in 10 % of code

– only a small part of application benefits from
compiled code

It is relatively straightforward to create a Python
interface to C-functions

– data is passed from Python, routine is executed
without any Python overheads

C - extensions

C routines are build into a shared library

Routines are loaded dynamically with normal import
statements

A library hello.so is looked for

A function world (defined in hello.so) is called

>>> import hello
>>> hello.world()

Creating C-extension

1) Include Python headers

2) Define the C-function

– Type of function is always PyObject

– Function arguments are always the same
(args is used for passing data from Python to C)

– A macro Py_RETURN_NONE is used for returning "nothing"

#include <Python.h>

hello.c

...
PyObject* world_c(PyObject *self, PyObject *args)
{
printf("Hello world!\n");
Py_RETURN_NONE;

}

hello.c

Creating C-extension

3) Define the Python interfaces for functions

– world is the function name used in Python code, world_c
is the actual C-function to be called

– Single extension module can contain several functions
(world, honey, ...)

...
static PyMethodDef functions[] = {
{"world", world_c, METH_VARARGS, 0},
{"honey", honey_c, METH_VARARGS, 0},
{0, 0, 0, 0} /* "Sentinel" notifies the end of definitions */

};

hello.c

Creating C-extension

4) Define the module initialization function

– Extension module should be build into hello.so

– Extension is module is imported as import hello

– Functions/interfaces defined in functions are called as
hello.world(), hello.honey(), ...

...
PyMODINIT_FUNC inithello(void)
{

(void) Py_InitModule("hello", functions);
}

hello.c

Creating C-extension

5) Compile as shared library

– The location of Python headers (/usr/include/...) may vary
in different systems

– Use exercises/include_paths.py to find out yours!

$ gcc -shared -o hello.so -I/usr/include/python2.6 -fPIC hello.c
$
$ python
Python 2.4.3 (#1, Jul 16 2009, 06:20:46)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>> hello.world()
Hello world!

Full listing of hello.c

#include <Python.h>

PyObject* world_c(PyObject *self, PyObject *args)
{
printf("Hello world!\n");
Py_RETURN_NONE;

}

static PyMethodDef functions[] = {
{"world", world_c, METH_VARARGS, 0},
{0, 0, 0, 0}

};

PyMODINIT_FUNC inithello(void)
{

(void) Py_InitModule("hello", functions);
}

hello.c

Passing arguments to C-functions

PyArg_ParseTuple checks that function is called with
proper arguments
“ids” : integer, double, string
and does the conversion from Python to C types

...
PyObject* pass_c(PyObject *self, PyObject *args)
{
int a;
double b;
char* str;
if (!PyArg_ParseTuple(args, "ids", &a, &b, &str))
return NULL;

printf("int %i, double %f, string %s\n", a, b, str);
Py_RETURN_NONE;

}

hello2.c

Returning values

Create and return Python integer from C variable.
A “d” would create Python double etc.

Returning tuple:
Py_BuildValue("(ids)", a, b, str);

...
PyObject* square_c(PyObject *self, PyObject *args)
{
int a;
if (!PyArg_ParseTuple(args, "i", &a))
return NULL;

a = a*a;
return Py_BuildValue("i", a);

}

hello2.c

Operating with NumPy array

NumPy provides API also for determining the dimensions of
an array etc.

#include <Python.h>
#include <numpy/arrayobject.h>

PyObject* array(PyObject *self, PyObject *args)
{
PyArrayObject* a;
if (!PyArg_ParseTuple(args, "O", &a))
return NULL;

int size = PyArray_SIZE(a); /* Total size of array */
double *data = PyArray_DATA(a); /* Pointer to data */
for (int i=0; i < size; i++) {

data[i] = data[i] * data[i];
}
Py_RETURN_NONE;

}

hello3.c

Operating with NumPy array

Function import_array() should be called in the module
initialization function when using NumPy C-API

...

PyMODINIT_FUNC inithello(void)
{

import_array();
(void) Py_InitModule("hello", functions);

}

hello3.c

Tools for easier interfacing

Cython

SWIG

pyrex

f2py (for Fortran code)

Summary

Python can be extended with C-functions relatively easily

C-extension build as shared library

It is possible to pass data between Python and C code

Extending Python:
http://docs.python.org/extending/

NumPy C-API
http://docs.scipy.org/doc/numpy/reference/c-api.html

PARALLEL PROGRAMMING WITH PYTHON USING
MPI4PY

Outline

Brief introduction to message passing interface (MPI)

Python interface to MPI – mpi4py

Performance considerations

Message passing interface

MPI is an application programming interface (API) for communication
between separate processes

The most widely used approach for distributed parallel computing

MPI programs are portable and scalable

– the same program can run on different types of computers, from PC's
to supercomputers

MPI is flexible and comprehensive

– large (over 120 procedures)

– concise (often only 6 procedures are needed)

MPI standard defines C and Fortran interfaces

mpi4py provides (an unofficial) Python interface

Execution model in MPI

Parallel program is launched as set of independent, identical processes

All the processes contain the same program code and instructions

Processes can reside in different nodes or even in different computers

The way to launch parallel program is implementation dependent

– mpirun, mpiexec, aprun, poe, ...

When using Python, one launches N Python interpreters

– mpirun -np 32 python parallel_script.py

Parallel program

Process 1

...

Process 2

Process N

MPI Concepts

rank: id number given to process

– it is possible to query for rank

– processes can perform different tasks
based on their rank

if (rank == 0):
do something

elif (rank == 1):
do something else

else:
all other processes do something different

mpi.py

MPI Concepts

Communicator: group containing process

– in mpi4py the basic object whose
methods are called

– MPI_COMM_WORLD contains all the
process (MPI.COMM_WORLD in mpi4py)

Data model

All variables and data structures are local to the process

Processes can exchange data by sending and receiving
messages

Process 1 (rank 0)

a = 1.0

b = 2.0

Process N (rank N-1)

a = 6.0

b = 5.0

Process 2 (rank 1)

a = -1.0

b = -2.0

MPI messages

...

Using mpi4py

Basic methods of communicator object

– Get_size()
Number of processes in communicator

– Get_rank()
rank of this process

from mpi4py import MPI

comm = MPI.COMM_WORLD # communicator object containing all processes
size = comm.Get_size()
rank = comm.Get_rank()

print "I am rank %d in group of %d processes" % (rank, size)

mpi.py

Sending and receiving data

Sending and receiving a dictionary

from mpi4py import MPI

comm = MPI.COMM_WORLD # communicator object containing all processes
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

mpi.py

Sending and receiving data

Arbitrary Python objects can be communicated with
the send and receive methods of communicator

send(data, dest, tag)

– data Python object to send

– dest destination rank

– tag id given to the message

recv(source, tag)

– source source rank

– tag id given to the message

– data is provided as return value

Destination and source ranks as well as tags have to match

Communicating NumPy arrays

Arbitrary Python objects are converted to byte streams when
sending

Byte stream is converted back to Python object when receiving

Conversions give overhead to communication

(Contiguous) NumPy arrays can be communicated with very little
overhead with upper case methods:

Send(data, dest, tag)

Recv(data, source, tag)

– Note the difference in receiving: the data array has to exist in
the time of call

Communicating NumPy arrays

Sending and receiving a NumPy array

Note the difference between upper/lower case!

– send/recv: general Python objects, slow

– Send/Recv: continuous arrays, fast

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = numpy.arange(100, dtype=numpy.float)
comm.Send(data, dest=1, tag=13)

elif rank == 1:
data = numpy.empty(100, dtype=numpy.float)
comm.Recv(data, source=0, tag=13)

mpi.py

mpi4py performance

Ping-pong test

Summary

mpi4py provides Python interface to MPI

MPI calls via communicator object

Possible to communicate arbitrary Python objects

NumPy arrays can be communicated with nearly same
speed as from C/Fortran

