
CSC – Tieteen tietotekniikan keskus Oy
CSC – IT Center for Science Ltd.

Python in High-Performance
Computing

Exercises

Python environment at
CSC

• Python is available on all computing
servers (hippu, murska, vuori, louhi)

• module load python

– default version 2.6

– Numpy

– Scipy

– Matplotlib

– Mpi4py

• Similar environment also in training class

General exercise instructions

• Simple exercises can be carried out directly in the
interactive interpreter

• For more complex ones it is recommended to write
the program into a .py file. Still, it is useful to keep
interactive interpreter open for testing!

• Some exercises contain references to
functions/modules which are not addressed in
actual lectures. In these cases Python's interactive
help (and google) are useful.

• It is not necessary to complete all the exercises, but
some may left for further studies

• Some Bonus exercises are provided in the end of
exercise sheet

Exercise 1: Playing with the
interactive interpreter

1) Start the interpreter by typing “python” on the
command prompt

2) Try to execute some simple statements and
expressions e.g.

– print “Hello! ”

– 1j**2

– 1 / 2

– my_tuple = (1, 2, 3)

– my_tuple[0] = 1

3) Many Python modules and functions provide
interactive help with a help command. Try to
execute the following commands

– import math

– help(math)

– help(math.sin)

4) Use the interpreter as calculator and with the help
of the math module evaluate cos(45°)

Exercise 2: Python syntax
and code structure:
1) Are the following valid statements?

 names = ['Antti', 'Jussi']
x2y = 22
3time = 33
my­name = “Jussi”
next = my­name
open = 13
in = “first”

2) Are the following pieces of code valid Python

 numbers = [4, 5, 6, 9, 11]
sum = 0
for n in numbers:
 sum += n
 print “Sum is now”, sum

x = 11
test(x)

def test(a):
 if a < 0:
 print “negative number”

Exercise 3: Working with lists
and dictionaries

1) Create a list with the following fruit names:
“pineapple”, “strawberry”, “banana”

Append “orange” to the list. List objects have a sort()
function, use that for sorting the list alphabetically
(e.g. fruits.sort()). What is now the first item of the
list?

Remove the first item from the list

2) Create a list of even integers up to 10

Create a list of the odd integers up to 10. Use the
range() function and slicing

Use slicing to extract the last three odd integers in the
list

Combine the even and odd integer lists to reproduce
list of all integers up to 10

3) Create a two dimensional list of (x,y) value pairs, i.e.
arbitrary long list whose elements are two element
lists.

4) Create a dictionary whose keys are the fruits
“pineapple”, “strawberry”, and “banana”. As values
use numbers representing e.g. prices.

Add “orange” to the dictionary

Remove “banana” from the dictionary

Exercise 4: Control
structures

1) Write a for loop which determines the squares of
the odd integers up to 10

Write a for loop which sums up to the prices of the
fruits of the Exercise 3.4

2) Fibonacci numbers are a sequence of integers
defined by the recurrence relation

F[n] = F[n-1] + F[n-2]

with the initial values F[0]=0, F[1]=1

Create a list of Fibonacci numbers F[N] < 100 using
a while loop

3) Write a control structure which checks whether an
integer is negative, zero, or belongs to the prime
numbers 3,5,7,11,17 and perform e.g.
corresponding print statement.

Keyword in can be used for checking whether a
value belongs to a list:

>>> 2 in [1,2,3,4]
True

4) Go back to the two dimensional list of (x,y) pairs of
Exercise 3.3. Sort the list according to y values.
(Hint: you may need to create temporary list)

Create a new list containing containing only the
sorted y values

Next, create a new list consisting of sums of the
(x,y) pairs

Finally, create a new list consisting of sums of the
(x,y) pairs where both x and y are positive.

Exercise 5: Obtaining input

1) Interactive input can be requested with the input()
function:

>>> x = input("Meaning of life: ")
Meaning of life: 42
>>> x
42

Write a small program that calculates the area of
circle based on the radius given by the user.

2) Standard Python module sys has list argv which
contains the command line arguments to he script.

Investigate the content of sys.argv with different
command line arguments

3) Modify the program of 1) so that radius is read from
the command line arguments.

Note that sys.argv contains the arguments as
strings, use explicit type conversion with float() in
order to obtain floating point numbers.

import sys

print sys.argv

Exercise 6: Modules and
functions

1) Write a function which calculates the arithmetic
mean from a list of numbers.

2) Write a function that converts a polar coordinate
representation (r, φ) into cartesian representation
(x,y). Write also a function which does the reverse
transformation. The important formulas are:

x = r cos(φ) y = r sin (φ) r2 = x2 + y2

Use the math module.

3) Implement the coordinate transformation functions
in their own module 'polar.py'. Import the functions
into a main script, which reads arbitrary number of
(x,y) value pairs from the terminal with the input
function. Transform the cartesian coordinates into a
polar representation and sort the polar coordinate
pairs accoring to r. Finally, print out the cartesian
coordinates corresponding to the sorted polar
coordinates.

Exercise 7: Working with files
1) The file “exercise7_1.dat” contains list of (x, y) value

pairs. Read the values into two lists x and y

2) The file “exercise7_2.txt” contains output from a
simulation run where the geometry of CO molecule is
optimized. One part of the output is the free energy
during geometry optimization. Free energies are in the
lines of type:

Free Energy: -16.47537

Read the free energies from the file and print out how
much each energy differs from the final value.

3) The file “CH4.pdb” contains the coordinates of
methane molecule in a PDB format. The file consists
of header followed by record lines which contain the
following fields: record name(=ATOM), atom serial
number, atom name, x-,y-,z-coordinates, occupancy
and temperature factor. Convert the file into XYZ
format: first line contains the number of atoms,
second line is title string, and the following lines
contain the atomic symbols and x-, y-, z-coordinates,
all separated by white space. Write the coordinates
with 6 decimals.

Exercise 8: Steering a
simulation with Python

1) Write a Python program which does loop over
different values of x (use e.g. a self-specified list).
At each iteration, write an “input file” of the form
(here x=4.5):

As a “simulation program” use csh and execute the
input file at each iteration with the help of os
module:

Read (x,y) pairs from the “output file” out and save
them for later processing.

os.system('csh inp > out')

#!/bin/csh
set x=4.500000
set res=`echo "$x^2" | bc`
echo "Power 2 of $x is $res"

Exercise 9: Object oriented
programming and classes

1) Define a class for storing information about an
element. Store the following information:

name, symbol, atomic number, atomic weight

Look www.weblements.com for data and construct
instances for few elements. Store the instances as
values of dictionary whose keys are the element
names

2) Define a class Circle. The data is the radius, define
methods for obtaining the area and circumference
of the circle.

3) Define a class Sphere, inheriting from Circle.
Define methods for obtaining the volume and area
of the sphere

Exercise 10: Simple numpy
usage

1) Investigate the behavior of the statements below
by looking the values of the arrays a and b after
assignments

2) Generate the 2D rotation matrix R and operate
with it on the vector s to apply a 135° counter-
clockwise rotation on s.

3) File “exercise10_3.dat” contains list of (x,y) value
pairs. Read the data and fit a second order
polynomial to it using numpy.polyfit()

a = np.arange(5)
b = a
b[2] = ­1
b = a[:]
b[1] = ­1
b = a.copy()
b[0] = ­1

R = cos −sin 
sin  cos  s = 1.0, 0.0  t = R⋅s

4) Generate a 10 x 10 array whose elements are
uniformly distributed random numbers using
numpy.random module

– extract every second element from the fifth
column

– extract every second element from the fifth row

– calculate the mean and standard deviation of
the above two vectors using numpy.mean and
numpy.std

5) Construct two symmetric 2 x 2 random matrices A
and B.
(hint: a symmetric matrix can be constructed easily from a
general matrix as A

sym
 = A + AT)

Calculate the matrix product of C = A * B using
numpy.dot()

Calculate the eigenvalues of matrix C with
numpy.linalg.eigvals()

Exercise 11: Numerical
computations with NumPy

1) Integral of function f(x) in the interval [a,b] can be
calculated with trapezoidal method as follows:

Write a function which takes as an argument the
function to be integrated, the end points a and b as
well as the number of points n.

As test functions use f(x) = 1 + x2 and f(x) = exp(-x2)

Test how the integral varies with the number of
integration points. Try to avoid for loops.

2) Integrals can be calculated also with the Monte-
Carlo method as

where x
k
 are uniformly distributed random numbers

between a and b. Evaluate the integrals of previous
Exercise with Monte-Carlo method using
numpy.random module

3) Poisson equation in one dimension is

where φ is the potential and ρ is the source. The
equation can be discretized on uniform grid, and
the second derivative can be approximated by the
finite differences as

where h is the spacing between grid points.

Using the finite difference representation, the
Poisson equation can be written as

The potential can be calculated iteratively by
making an initial guess and then solving the above
equation for φ(xi) repeatedly until the differences
between two successive iterations are small (this is
so called Jacobi -method).

Use

as a source together with boundary conditions
φ(0)=0 and φ(1)=0 and solve the Poisson
equation in the interval [0,1].

Compare the numerical solution to the analytic
solution

If you solved the Bonus exercise x.x (Solving
Poisson equation with pure Python), compare the
performances of NumPy and Python solutions

Exercise 12: Extending
Python with C

1) Create a C-extension for evaluating second
derivative with finite differences. Input is provided
by one dimensional NumPy array.

The core of the C-extension is provided in the file
fidi.c

Compare the performance of pure NumPy version
(fidi.py or your implementation in the solution of
Poisson equation).

Exercise 13: Parallel
computing with Python

1) Create a parallel Python program which prints out
the number of processes and rank of each process

2) Send a dictionary from one process to another and
print out part of the contents in the receiving
process

3) Send a NumPy array from one process to another
using the uppercase Send/Receive methods

Exercise 14: Using Scipy

1) Use the integrate module for evaluating the
integrals of Exercise 11.1

2) Choose some special function from Scipy and
investigate its behaviour in the chosen interval

3) Find the minimum of the Rosenbrock function

by utilizing also the gradient:

Exercise 15: Simple plotting

1) Plot to the same graph sin and cos functions in the
interval [-π/2, -π/2]. Use Θ as x-label and insert
also legends. Save the figure in .png format.

2) The file “csc_usage.dat” contains the usage of CSC
servers by different disciplines. Plot a pie chart
about the resource usage.

3) The file “contour_data.dat” contains cross section
of electron density of benzene molecule. Make a
contour plot of the data. Try both contour lines and
filled contours (matplotlib functions contour and
contourf). Use numpy.loadtxt for reading the data.

Bonus exercises

Exercise B1: Working with
lists and dictionaries

1) Create a new “fruits” dictionary where the values
are also dictionaries containing key-value pairs for
color and weight, e.g.

Change the color of “apple” from green to red

2) It is often useful idiom to create empty lists or
dictionaries and add contents little by little.

Create first an empty dictionary for a mid-term
grades of students. Then, add a key-value pairs
where the keys are student names and the values
are empty lists. Finally, add values to the lists and
investigate the contents of the dictionary.

>>> fruits['apple'] = {'color' : 'green', 'weight': 120}

Exercise B2: More on control
structures

1) List comprehension is useful Python idiom which
can be sometimes used instead of explicit for loops

– Familiarize yourself with list comprehensions
e.g. at
http://docs.python.org/tutorial/datastructures.html#list-
comprehensions

– Do Exercise 4.4 using list comprehension
instead of explicit for loops

Exercise B3: Solving Poisson
equation with Python

1) Poisson equation in one dimension is

where φ is the potential and ρ is the source. The
equation can be discretized on uniform grid, and
the second derivative can be approximated by the
finite differences as

where h is the spacing between grid points.

Using the finite difference representation, the
Poisson equation can be written as

The potential can be calculated iteratively by
making an initial guess and then solving the above
equation for φ(xi) repeatedly until the differences
between two successive iterations are small (this
is the so called Jacobi method).

Use

as a source together with boundary conditions
φ(0)=0 and φ(1)=0 and solve the Poisson
equation in the interval [0,1].

Compare the numerical solution to the analytic
solution:

Note! In reality, pure Python is not the best
solution for this kind of problems

Exercise B4: Working with
files

1) The file “exercise_b4_1.txt” contains a short piece
of text. Determine the frequency of words in the file,
i.e. how many times each word appears. Print out
the ten most frequent words

Read the file line by line and use the split() function
for separating a line into words.

The frequencies are stored most conveniently into a
dictionary. The dictionary method setdefault can be
useful here. For sorting, convert the dictionary into
a list of (key, value) pairs with the items() function:

>>> words = {“foo” : 1, “bar” : 2}
>>> words.items()
[('foo', 1), ('bar', 2)]

Exercise B5: Object-oriented
programming with Python

1) The file “solvents.dat” contains some information
about different solvents. Define a class for storing
the information. Define the following methods for
the class:

read - given a file object, reads a single line from
the file and parses the information for solvent

mass - given volume, return the mass of solvent

Construct a list of solvents, sort it according to
density and print out the names.

2) Define a class for three dimensional (x,y,z) vector.
use operator overloading for implementing
element-wise addition and multiplication with
+ and * operators.

Define functions calculating dot and cross products
of two vectors

Exercise B6: Numerical
computations with NumPy

1) The Poisson equation of Exercise 11.3 can be solved
more efficiently with the conjugate gradient method which
is a general method for the solution of linear systems of
type Ax = b.

Interpret the Poisson equation as a linear system and
write a function which evaluates the second order
derivative (i.e. the matrix – vector product Ax). You can
assume that the boundary values are zero.

Solve the Poisson equation with the conjugate gradient
method and compare its performance to the Jacobi
method. The pseudo-code for the conjugate gradient
method is

Exercise B7: Game of Life

1) Game of life is a cellular automaton devised by
John Conway in 70's,
http://en.wikipedia.org/wiki/Conway's_Game_of_Life.
Game consists of two dimensional orthogonal grid
of cells. Cells are in two possible states, live or
dead. Each cell interacts with its eight neighbours,
and at each time step the following transitions
occur.

– Any live cell with fewer than two live neighbours
dies, as if caused by underpopulation

– Any live cell with more than three live
neighbours dies, as if by overcrowding

– Any live cell with two or three live neighbours
lives on to the next generation

– Any dead cell with exactly three live neighbours
becomes a live cell

The initial pattern constitutes the seed of the
system, and the system is left to evolve according
to rules. Deads and births happen simultaneously.

Implement the Game of Life using Numpy, and
visualize the evolution with Matplotlib (e.g.
imshow). Try first 32x32 square grid and cross-
shaped initial pattern,

Try also other grids and initial patterns (e.g. random
pattern). Try to avoid for loops.

Exercise B8: Parallel
computing with Python

1) Try to parallelize Game of Life with mpi4py by
distributing the grid along one dimension to
different processors.

Exercise B9: Adcanced
SciPy and matplotlib

1) Solve the Poisson equation using Scipy. Define a
sparse linear operator which evaluates matrix–
vector product Ax and e.g. Scipy's conjugate
gradient solver.

2) The file “atomization_energies.dat” contains
atomization energies for a set of molecules,
calculated with different approximations. Make a
plot where the molecules are in x-axis and
different energies in the y-axis. Use the molecule
names as tick marks for the x-axis

3) Game of Life can be interpreted also as an
convolution problem. Look for the convolution
formulation (e.g. with Google) and use SciPy for
solving the Game of Life.

No solution provided!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

