Limit of a sequence A sequence (cm) converges to a limit a ER, if Definition $|a_n-a| \longrightarrow 0$. Formal: (E,S) - version For every $\varepsilon > 0$ there exists an index $n = n(\varepsilon)$, such that $|a_n-a| < \varepsilon$ for every $n \ge n(\varepsilon)$. We write: lim $a_n = a$. n-200 $\frac{\text{Example lim } \frac{1}{n^2} = 0}{n \rightarrow \infty}$ $\left|\frac{1}{n^2} - 0\right| = \frac{1}{n^2} < \varepsilon \quad \text{if } n > \frac{1}{\sqrt{\varepsilon}}$ We can choose the next integer! n(E)=[//E] We can take E>O and arbitrarily small!

$$\frac{\text{Definition}}{\text{A domain f is a mapping from }} f: A \longrightarrow B$$

Domain: A
Range: B
Often:
$$f_A = \{f(a) \mid a \in A\} \subset B$$

is the image.

Definition Continuity The function f is continuous at some point $a \in A$, if: Always when $a_n \in A$ and $\lim_{n \to \infty} a_n = a$,

$$\lim_{n \to \infty} f(a_n) = f(a),$$

Let $f: A \to \mathbb{R}$ and $x_{o} \in \mathbb{R}$ such that a sequence (a_{n}) exist where $a_{n} \in A \setminus \{x_{o}\}$ for all n and further $\lim_{n \to \infty} a_{n} = x_{o}$. Definition Limit The limit exists, if $\lim_{n \to \infty} f(\alpha_n) = L$ always when $\alpha_n \in A \setminus \{ x_o \}$ $n \to \infty$ and $\lim_{n \to \infty} \alpha_n = x_o$. $n \to \infty$ Notation: $\lim_{x \to x_o} f(x) = L$, where L is $x \to x_o$ the limit.