Quiz Review 1:
$\frac{2 n^{2}}{n^{2}+n+1} \underset{n \rightarrow \infty}{ } 2 \quad$ scale with $n^{2}: \frac{2}{1+1 / n+1 / n^{2}}$

$$
\uparrow \frac{x^{2}+3 x+21 \begin{array}{l}
x^{4}+3 x+9 \\
\frac{x^{4}-3 x^{3}+2 x^{2}}{3 x^{3}}-3 \\
\frac{3 x^{3}-9 x^{2}+6 x}{9 x^{2}-6 x-3} \\
\frac{9 x^{2}-27 x+18}{2} \\
\frac{21(x-1)}{x^{2}-3 x+2}
\end{array}=\frac{21(x-1)}{(x-1)(x-2)}=\frac{21}{x-2}}{}
$$

$$
\lim _{x \rightarrow 1} 1+3+9-21=-8
$$

 continuous

Return to 2: $D\left(x^{4}+2 x^{2}-3\right)=4 x^{3}+4 x$

$$
\begin{aligned}
& \quad D\left(x^{2}-3 x+2\right)=2 x-3 \\
& x \rightarrow 1: 8 /-1=-8
\end{aligned}
$$

Existence of e
Axiom of Real Numbers:
If a sequence is increasing and it is bounded above, then it converges.

If $a_{n+1} \geq a_{n}$ and $a_{n} \leq M$ (constant)

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

Euler's number, e: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=$?

$$
\begin{aligned}
&\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{n-k}\left(\frac{1}{n}\right)^{k} \\
&=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!n^{k}} \\
&=\sum_{k=0}^{n} \frac{n \cdot(n-1) \cdot \ldots \cdot(n-k+1)}{k!\underbrace{n \cdot n \cdot \ldots \cdot n}_{k+\operatorname{times}}} \\
&=\sum_{k=0}^{n} \frac{1}{k!} 1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots \\
&\left(1-\frac{k-1}{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u_{n}=\left(1+\frac{1}{n}\right)^{n} ; u_{n+1}=\left(1+\frac{1}{n+1}\right)^{n+1} \\
& \begin{aligned}
\frac{u_{n+1}}{u_{n}} & =\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}} \\
& =(\underbrace{\frac{1+\frac{1}{n+1}}{1+\frac{1}{n}}}_{(*)})^{n}\left(1+\frac{1}{n+1}\right) \\
(*) & =\frac{n(n+2)^{n}}{(n+1)^{2}}=1-\frac{1}{(n+1)^{2}}
\end{aligned}
\end{aligned}
$$

Bernoulli: For all $-1<x \in \mathbb{R}$.

$$
\begin{aligned}
& \frac{\eta_{n}}{}(1+x)^{n} \geq 1+n x \\
\geq & \left(1-\frac{n}{(n+1)^{2}}\right)\left(1+\frac{1}{n+1}\right)= \\
= & 1+\frac{1}{(n+1)^{3}} \geq 1
\end{aligned}
$$

Is it bounded from above?

$$
\begin{gathered}
\left(1+\frac{1}{n}\right)^{n}<\sum_{k=0}^{n} \frac{1}{k!}<1+1+\sum_{k=2}^{n} \frac{1}{k(k-1)} \\
=1+1+\left(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\right. \\
\left.\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)\right) \\
=3-\frac{1}{n}<3 \text { for all } n \in \mathbb{N} .
\end{gathered}
$$

Thenetome, the limit exists!

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Derivative

Newton's Quotient

Definition

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

if this limit exists $(\in \mathbb{R})$ we soy that f is differentiable at a and the limit is the derivative of f data.

$$
f^{\prime}(a)=D f(a)=\left.\frac{d f}{d x}\right|_{x=a}
$$

Example $\frac{d}{d x} \sin x=\cos x$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \sin x \overbrace{\lim _{h \rightarrow 0} \frac{\cosh -1}{h}}^{=0} \\
& +\lim _{h \rightarrow 0} \cos x \underbrace{=1}_{\lim _{h \rightarrow 0} \frac{\sin h}{h}} \\
& =\cos x
\end{aligned}
$$

Rules

$$
D(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

$$
D \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x)}{g(x)^{2}} \frac{g^{\prime}(x)}{}, g(x) \neq 0
$$

$D f(g(x))=g^{\prime}(x) f^{\prime}(g(x)$) (chain rale)
l'Haspital's Rule
Intermediate value theorem:
Theorem Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable on the open interval (a, b) ($=] a, b[$).

Thin there exists a point $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

or alturnatively $f(b)-f(a)=$

$$
f^{\prime}(\xi)(b-a)
$$

$$
y=f(x)
$$

