Taylor polynomial and limits
Example

$$
\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{2 e^{x}-2-2 x-x^{2}}
$$

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\theta\left(x^{7}\right) \\
& e^{x}=\sum_{k=0}^{n} \frac{x^{k}}{k!}+\theta\left(x^{n+1}\right) \\
& \lim _{x \rightarrow 0} \frac{2\left(x-\frac{x^{3}}{3!}\right)-\left(2 x-\frac{2^{3} x^{3}}{3!}\right)}{2\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right)-2-2 x-x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{x^{3}}{3}+\frac{4 x^{3}}{3}}{\frac{x^{3}}{3}}=3
\end{aligned}
$$

Blue: Upper sum
Red: Lower sum
$f(x)$ is continuous: sup is max
inf is min

Here: The integral is the area under the graph of the curve.

