MARGINAL MATTERS

Improper Integrals:
Two cases:
a) the internal is infinite
b) the function $f$ is not bounded over the whole interval

Example :

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\lim _{a \rightarrow-\infty} \int_{b \rightarrow \infty}^{b} \frac{d x}{1+x^{2}}
$$

$$
\begin{aligned}
& =\left.\left.\lim _{a \rightarrow-\infty}\right|_{b \rightarrow \infty}\right|^{b} \arctan x= \\
& =\lim _{b \rightarrow \infty} \arctan b-\lim _{a \rightarrow-\infty} \overline{\operatorname{arcctan}} a \\
& =\frac{\pi}{2}+\frac{\pi}{2}=\pi
\end{aligned}
$$

Similarly at jumps, set the proper limits and proceed!

Series

Definition 1 Infinite sum

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots
$$

Definition 2 A series converges to some value $s$ :
$\sum_{n=1}^{\infty} a_{n}=S$, if $\lim _{n \rightarrow \infty} s_{n}=s$, where $s_{n}$ is a partial sum.

If a series does not converge, it diverges.

Definition 3 Geometric series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a r^{n-1} ; \frac{a_{n+1}}{a_{n}}=r \\
& \sum_{n=1}^{\infty} a r^{n-1}= \begin{cases}0, & \text { if } a=0 \\
\frac{a}{1-r}, & \text { if }|r|<1 \\
\text { diverges, } & \text { otherwise }\end{cases}
\end{aligned}
$$

The radius of convergence : Here $|r|<1$.

In the general case if is not straight forward to determine convergence.
$\rightarrow$ One must apply some convergence test

Definition 4 Taylor series is a Taylor polynomial extended to a series.

Definition 5
A function $f$ is analytic at some point $c$ if its Taylor series converges at $c$.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { for all } x \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \text { for all } x \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},-1<x<1
\end{aligned}
$$

COMPLEX NUMBERS

$$
\left.\begin{array}{l}
\mathbb{C}=\{(x, y) \mid x, y \in \mathbb{R}\} \\
z_{1}=\left(x_{1}, y_{1}\right) \\
z_{2}=\left(x_{2}, y_{2}\right)
\end{array}\right\} \begin{aligned}
& z_{1}+z_{2}=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

For instance:

$$
\begin{aligned}
(0,1) \cdot(0,1) & =(0 \cdot 0-1 \cdot 1,0 \cdot 1+0 \cdot 1) \\
& =(-1,0)
\end{aligned}
$$

Notation: $\quad i=(0,1)$

$$
\begin{aligned}
z=(x, y) & =(x, 0)+(0, y) \\
& =(x, 0)+(0,1) \cdot(y, 0) \\
& =x+i y, x, y \in \mathbb{R}
\end{aligned}
$$

The is:

$$
i^{2}=-1
$$

Polar coordinates:


$$
\begin{aligned}
z & =|z|(\cos \varphi+i \sin \varphi) \\
& =|z| e^{i \varphi}=r e^{i \varphi} \quad(\text { Euler notation) }
\end{aligned}
$$

Multiplication:
Geometric interpretation: scaling \& rotation on the plane
Notice: $(0, y)=(0,1) \cdot(y, 0)$

$$
=i y
$$

In other words $i$ rotates by $\pi / 2$.


$$
\begin{aligned}
& z_{1}=x+i y ; \quad z_{2}=i \\
& z_{2} z_{1}=i(x+i y)=-y+i x
\end{aligned}
$$

Eulir notation:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(i \varphi)^{n}}{n!}=\underbrace{i+i \varphi \underbrace{\frac{\varphi^{2}}{2}-\frac{i \varphi^{3}}{3!}+\ldots}}_{\cos \varphi}
$$

EXAM:
$\rightarrow$ remote, open book, timed
$\longrightarrow$ no proctoring $\leftarrow$ no monitoring

Structure of the exam:
Normal exercises ( 5 problems)
$\rightarrow$ Learning objectives
Three Pillars:
$\rightarrow$ Taylor polynomial
$\rightarrow$ integration by ports
$\rightarrow 2^{\text {nd }}$ order linear with constant coefficients

Basic Principles:
$\rightarrow$ error estimates
$\rightarrow$ "Where do things come from?"

