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Regression diagnostics

Questions:
Does the model describe the dependence between the
response variable and the explanatory variables well

1 contextually?
2 statistically?

A good model describes the dependencies as well as
possible.
Assessment of the goodness of a regression model is
called regression diagnostics.
Regression diagnostics tools:

graphics
diagnostic statistics
diagnostic tests
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Regression model selection

In regression modeling, one has to select
1 the response variable(s) and the explanatory variables,
2 the functional form and the parameters of the model,
3 and the assumptions on the residuals.

Remark
The first two points are related to defining the model part and
the last point is related to the residuals. These points are not
independent of each other!
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Problems in defining the model part

(i) Linear model is applied even though the dependence
between the response variable and the explanatory
variables is non-linear.

(ii) Too many or too few explanatory variables are chosen.
(iii) It is assumed that the model parameters are constants

even though the assumption does not hold.

Remark
Fundamental errors in defining the model part can often be
detected from the fitted values of the response variables.
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Does a linear model fit to the observations (Data 1)?
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Problems in assumptions on the residuals

(i) Homoscedasticity and/or uncorrelatedness is assumed
even though the assumption does not hold.

(ii) Normality is assumed even though the residuals are not
normally distributed.

Remark
Fundamental errors in assumptions on the residuals can often
be detected from the estimated residuals.
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Linear regression: Diagnostic checks

Are there outlying observations?
Are the regression parameters constants?
Are the explanatory variables linearly independent?
Are the residuals homoscedastic and uncorrelated (and
normally distributed)?
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Graphics: Scatter plot

The scatter plot of the fits ŷ and the observed values y (Data
1). Possibly some non-linear dependence can be detected.
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Graphics: Scatter plot

An outlying observation can be detected (Data 2).
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Graphics: Scatter plot, (ŷ , y )

The model is the better the better the points follow a line
with slope 1.
Nonlinear shapes indicate that the functional form of the
model part is not well selected.
Outlying observations are typically far away from the line.
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Graphics: Residual plot
A residual plot is a scatter plot of the fits ŷ or of the explanatory
variables xj and the estimated residuals e. Nonlinear shape is clearly
detected (Data 1).
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Graphics: Residual plot

An outlying observation is clearly detected (Data 2).
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Graphics: Residual plot

If the model is good, the residuals are approximately
uniformly distributed on a rectangle. Outlying observations
lie far away from the horizontal axis.
If the shape of the scatter plot is for example quadratic (not
approximately a rectangular), the functional form of the
model part might be wrong.
If the height of the scatter plot is not approximately the
same everywhere, the residuals might be heteroscedastic
or the functional form of the model part might be wrong.
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Outlying observations

Outlying observations are observations that, in some
sense, differ significantly from the other observations.

In statistical analysis, an observation is outlying, if its effect
is abnormally significant in the analysis.

If removing an observation changes significantly the results
of an analysis, the observation is outlying.

Outlying observations may not be excluded from the
analysis just because they do not fit to the model!

In regression analysis, outlying observations may
complicate the model selection,
complicate estimation,
and lead to erroneous interpretations and inference.
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Outlying observations: Example
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GDP change and the change in private consumption (both compared
to the previous year) in 2015 in 24 European countries. (Ireland is an
outlying observation.) Source: OECD.com.
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Outlying observations: Example
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Detecting outlying observations: Cook’s distance

Cook’s distance that corresponds to an observation yi is given
by

Ci =

∑n
l=1
(
ŷl − ŷ i

l )2

(k + 1)s2 ,

where the
(ŷ1, ..., ŷn) are the fits obtained when the entire data is
used and
(ŷ i

1, ..., ŷ
i
n) are the fits obtained when all the data points

except the observation i are used.
If the cook’s distance Ci is significantly larger that the cook’s
distances of the other observations, then one should take a
closer look at the observation yi .
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Cook’s distances, Data 1
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Cook’s distances, Data 2
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How to deal with outlying observations?

If the outlying observations are clearly errors (for example,
height of a man is 17.8 meters) one can correct or exclude
the erroneous observation.
What if the outlying observations are not erroneous?

Options:
1 Ask a context expert if there is an explanation why the

observation behaves differently than the other data points
and should be analyzed separately.

2 Apply a model that enables to split the model into separate
parts.

3 Apply some robust estimation procedure that is not too
sensitive to outlying observations.

There are no general rules that would tell you what to do.
However, one may not simply remove the data points that
are unpleasant.

If it is well-justified to remove an observation, it still has to be
reported and analyzed in detail.
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Testing for parameter instability

If there is a reason to suspect that different linear models fit to
different subgroups, one should consider testing for parameter
instability. For example, it could be that the income level has a
linear effect on the consumption of a certain good, but if the
income level is high enough, the effect is smaller, or it could be
that the effect is different for people that are under 40 years old
and for people that are over 40 years old.
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Testing for parameter instability

The purpose of the testing is to find out whether or not the
parameters of the linear model are the same for two separate
subgroups.

The null hypothesis H0: the model parameters are the
same for both subgroups.
The alternative hypothesis H1: the model parameters for
the two subgroups are not the same.

Testing can be based on considering the error sum of squares
after fitting a linear model to the entire data and after fitting a
linear model to the subgroups of the data.
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Testing for parameter instability

Assume that the observations (x1, y1), ...(xn, yn) have been
divided into to two separate subgroups based on some criteria
(for example under and over 40 year olds). Assume that the
sample sizes of the subgroups are h ≥ k + 1 and n− h ≥ k + 1.
(The k here is the number of the explanatory variables in the
linear model.) Reorder the pairs such that the observations
(x1, y1), ...(xh, yh) form the first subgroup and the observations
(xh+1, yh+1), ...(xn, yn) form the second subgroup.
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Testing for parameter instability

The null hypothesis H0: the model parameters are the same for
both subgroups, can be tested by applying the following
permutation test:

1 Assume that the observations (xi , yi)i=1,...,n are split in to
two subgroups:

1 Subgroup 1: (xi , yi )i=1,...,h (sample size h)
2 Subgroup 2: (xi , yi )i=h+1,...,n (sample size n − h)

2 Estimate the parameters of the linear model using the
entire data and calculate the corresponding SSE .

3 Estimate the parameters of the linear model separately for
the subgroup 1 and for the subgroup 2, and calculate the
corresponding SSE1 and SSE2.

4 Calculate the statistic

Ch =

(
n − 2(k + 1)

)
k + 1

SSE − (SSE1 + SSE2)

(SSE1 + SSE2)
,

where k is the number of the explanatory variables.
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Testing for parameter instability

5 Divide now the original entire sample randomly into two
separate subgroups p1 and p2 that have sample sizes h
and n − h.

6 Estimate the parameters of the linear model separately for
the subgroup p1 and for the subgroup p2, and calculate
the corresponding SSEp1 and SSEp2.

7 Calculate the value

Chp =
n − 2(k + 1)

k + 1
SSE − (SSEp1 + SSEp2)

(SSEp1 + SSEp2)
.

8 Repeat the steps 5, 6 and 7 m times.
9 Order the values Chp from the smallest to the largest and

calculate the empirical (1− α) · 100th percentile from the
ordered sample. If the original statistic Ch is larger than the
calculated percentile, then the null hypothesis is rejected
(on significance level α).
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Testing for parameter instability

Remark
In statistical testing one usually chooses the significance level α
to be equal to 0.05 or 0.01 or 0.001.

Remark
If one wishes to divide n observations into two separate
subgroups that have sample sizes h and n − h, there are

(n
k

)
such possible divisions. Usually it is impossible to consider all
the possible divisions, but m should be chosen to be large
enough (10000 or 20000).
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Testing for parameter instability, ε ∼ N
(
0, σ2

)
:

Chow-test

If the residual are normally distributed, then one does not have
to apply the permutation test in testing for parameter instability.
Under the assumption of normally distributed residuals, the
statistic

Ch =

(
n − 2(k + 1)

)
k + 1

SSE − (SSE1 + SSE2)

(SSE1 + SSE2)

follows, under the null hypothesis, the F (k + 1,n − 2(k + 1))
distribution.
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Non-constant regression parameters

What should one do, if the regression parameters are not
constants?

One can divide the data into two groups and analyze them
separately.
One can apply a (non-linear) model that allows
non-constant parameters.
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Multicollinearity

Multicollinearity is a phenomenon in which one explanatory
variable in a regression model can be linearly predicted from
the other explanatory variables with a substantial degree of
accuracy. That is, it is a phenomenon in which the explanatory
variables are linearly dependent. High degree of
multicollinearity is harmful. Multicollinearity may complicate
estimation, since it can make the matrix X to be singular. Even
if the matrix X is of full rank, multicollinearity complicates
examining the effect of one single explanatory variable and
consequently it complicates prediction.
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Multicollinearity: Variance inflation factor

The variance inflation factor of an explanatory variable xj is
given as

VIFj =
1

1− R2
j
, j = 1,2, ..., k

where R2
j is the coefficient of determination of the linear

regression model where
the variable xj is the response variable, and
the explanatory variables are all the other original
explanatory variables xl , l 6= j .

MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection



Multicollinearity: Variance inflation factor

If R2
j = 0 and consequently VIFj = 1 for all j = 1, ..., k , then

the explanatory variables x1, x2, ..., xk are orthogonal. (This
is ideal.)

If R2
j = 1 for some j = 1, ..., k , then
the explanatory variable xj can be given as a linear
combination of the other explanatory variables.

If VIFj > 10 for some j = 1, ..., k ,
it indicates high degree multicollinearity.
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Multicollinearity

What should one do, if one detects high degree
multicollinearity?

One can remove some of the explanatory variables from
the model.
One can consider suitable variable transformations.
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Heteroscedasticity

If the variances of the residuals εi are not the same for all the
values of the explanatory variables, then the residuals are
called heteroscedastic. The least squares estimators are
unbiased also under heteroscedastic residuals, but
heteroscedasticity makes the model unstable and the residual
variance estimator may be biased. Heteroscedasticity can often
be detected from the residual plot.
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Heteroscedasticity, residual plot
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Simple homoscedasticity test

Calculate the coefficient of determination R2
a of the test

model
e2

i = α0 + α1ŷi + δi .

The null hypothesis H0: The residuals εi are
homoscedastic.
Test statistic: nR2

a .
If the value of the test statistic differs significantly from
zero, the null hypothesis is rejected.
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White homoscedasticity test

White homoscedasticity test is almost like the simple
homoscedasticity test but in addition to the explanatory
variables in the simple test model, the White test model
includes the squared explanatory variables and the products of
the explanatory variables. The test statistic in White
homoscedasticity test is the sample size times the coefficient of
determination R2

a of the White test model. If the value of the test
statistic nR2

a differs significantly from zero, the null hypothesis is
rejected.

Remark
The p-value of the test statistic can be estimated by applying
permutations. Moreover, if the residuals are normally
distributed, then the test statistic follows, under the null, χ2(p)
distribution, where the degrees of freedom p is equal to the
number of explanatory variables in the test model.
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White homoscedasticity test, Example

Let the original regression model be

yi = β0 + β1xi1 + β2xi2 + εi .

The White test model is then

e2
i = γ0 + γ1xi1 + γ2xi2 + γ3x2

i1 + γ4x2
i2 + γ5xi1xi2 + δi .
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Heteroscedasticity

What should one do, if the residuals are heteroscedastic?
One can consider variable transformations.
One can consider methods (for example generalized least
squares estimators) that are suitable for heteroscedastic
residuals.
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Testing distributional assumptions

If it is assumed that the variables follow some specific
distribution (for example normal distribution), this assumption
should be tested.

One can visualize the data using a histogram.
One can examine quantile-quantile plots, where the
empirical quantiles are plotted against theoretical quantiles
from the assumed distribution.
One can apply the chi-square goodness of fit test.
If normal distribution is assumed, one can apply for
example the Shapiro-Wilk or Kolmogorov-Smirnov test.
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Testing prediction ability

Assume that we observe the sample (xi1, ..., xik , yi),
i = 1, ...,n + h. For example, first part of the observations was
measured in Finland, and the second part was measured in
Uganda.

Estimate the linear model from the observations i = 1, ...,n
−→ least squares estimate b, variance estimate s2.
Apply b to predict the values yn+1, ..., yn+h:

ŷi = x>∗i b, i = n + 1, ...,n + h,

where x∗i = (1, xi1, ..., xik )>.
Calculate the prediction errors ui = yi − ŷi .
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Testing prediction ability

The null hypothesis H0: β1 = β2, σ2
1 = σ2

2.
The parameter β1 is related to the observations 1, ...,n.
The parameter β2 is related to the observations
n + 1, ...,n + h.

The test statistic is

χ2 =
n+h∑

i=n+1

u2
i

s2 .

Large values of the test statistic yield rejection of the null
hypothesis. (This is similar to testing for instability of the model
parameters.)

The p-value can be estimated using permutations. If the
residuals are normally distributed, the the test statistic
follows, under the null, the χ2(h) distribution.
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Model selection

In linear regression analysis, it is crucial to select good
explanatory variable. Too many explanatory variables lead to
inefficient model and unnecessary large variances for the
regression parameter estimators. Missing explanatory variables
lead to small coefficient of determination (and, in a sense,
biased estimators).
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Missing explanatory variables

Assume that the correct regression model is (1):
y = X1β1 + X2β2 + ε, but assume that we calculate the
estimate vector b1 from the model (2): y = X1β1 + ε. Then

Part of the explanatory variables are missing, and the
residual is of the form δ = X2β2 + ε.
The estimator b1 is

b1 = β1 +
(
X>1 X1

)−1X>1 X2β2 +
(
X>1 X1

)−1X>1 ε.

This is unbiased if and only if β2 = 0 or X>1 X2β2 = 0.
Note that the above mentioned estimator is biased only in the
larger model (1). In the smaller model (2), it is an unbiased
estimator.
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Selecting explanatory variables step by step

In multiple regression models, the aim is to select variables
such that the coefficient of determination is as high as possible
and that the explanatory variables are significant and as
independent of each other as possible. Significance of the
parameters can be assessed by testing the null hypothesis H0:
βj = 0. VIF (or some other measure of dependence) can be
used in selecting variables that are not multicollinear. Variables
can be added and removed one by one and the changes in
significance, in VIF and in coefficient of determination can be
tracked. Note that every time a variable is added or removed,
the significance and VIF of the other variables may also change
and everything has to be calculated again. Thus, the order in
which the variables are tested and removed or added has an
effect on the outcome.
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Model selection criteria

For a good model, the residual variance is small (and the
coefficient of determination is large).

Error sum of squares SSE decreases (or at least does not
increase) as explanatory variables are added.
Simply minimizing SSE (or maximizing R2) leads to
selecting all the possible explanatory variables to the
model.

Model selection criteria are usually based on minimizing
SSE , but there is a penalty function that adds a penalty
that is based on the number of the explanatory variables.

If an explanatory variable is added, the penalty term
increases the value of a model selection criteria function
unless the decrease in the error sum of squares is large
enough.

Principle of parsimony: If two models perform equally well,
the simpler one is better.

MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection



Model selection criteria

Let y = Xβp + ε be a linear regression model.
1 The number of the estimated parameters is p = k + 1.
2 The least squares estimator bp =

(
X>X

)−1X>y .
3 Error sum of squares

SSEp =
(
y − Xbp

)>(y − Xbp
)

4 The residual variance σ̂2
p = SSEp/(n − p).

Model selection criteria are often based on
minimizing/maximizing a function that is of the form

C(p, σ̂2
p).
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Model selection criteria

Modified coefficient of determination is given as

R̄2
p = 1− n − 1

n − p
SSEp

SST
, SST = (n − 1)s2

y .

For a good model, the modified coefficient of determination
is as large as possible.

If the residuals are normally distributed, the model
selection can be based on minimizing the Akaike
information criterion (AIC)

C(p, σ̂2
p) = log(σ̂2

p) +
2p
n
,

where σ̂2
p is the estimated residual variance.
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Linearization

If the response variable y depends on the explanatory
variables in some non-linear way, then one usually has to
build a non-linear regression model.
However, sometimes one can obtain a linear model by
applying suitable linearizing transformations.

We here consider linearizing transformations only in the
case when we have one response variable and one
explanatory variable.
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Linearization

Nonlinear dependence can be linearized if there exist
bijective transformations f and g such that for f (xi), g(yi),
i = 1, ...,n it holds that

f (yi) = β0 + β1g(xi) + εi , i = 1, ...,n

where the residuals εi satisfy the standard linear model
assumptions.

Now standard linear model approach can be applied to this
linearized model.

In searching for suitable transformations f and g one can
consider:

context knowledge (physics, economics,...),
graphics (scatter plots), well-known transformations
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Linearizing transformations

Nonlinear dependence of the variables y and x can usually
be detected from the scatter plot of (xi , yi), i = 1, ...,n. The
scatter plot can give hints on what type of functions could
be applied in linearizing transformations.
If the transformations f and g are successful in linearizing
the dependence between y and x , then nonlinear
dependencies are not present in the scatter plots and
residual plots: (

g(xi), f (yi)
)
, i = 1, ...,n(

f (yi),ei
)
, i = 1, ...,n(

g(xi),ei
)
, i = 1, ...,n.
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Linearizing transformations

g(x)
f (y) x 1/x log x

y y = β0 + β1x y = β0 + β1/x y = β0 + β1 log x
1/y 1/y = β0 + β1x 1/y = β0 + β1/x 1/y = β0 + β1 log x
log y log y = β0 + β1x log y = β0 + β1/x log y = β0 + β1 log x

g(x)
f (y) x 1/x log x

y y = β0 + β1x y = β0 + β1/x y = β0 + β1 log(x)

1/y y = 1
β1

(
x+β0

β1

) y = 1
β0
− β1

β2
0

+ 1
x+β1

β0

y = 1
β1

(
log x+β0

β1

)
log y y = eβ0eβ1x y = eβ0eβ1/x y = eβ0xβ1
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Next week:

1 Stationary stochastic processes
1 Definition
2 Autocorrelation function
3 Partial autocorrelation function
4 Lag and difference operators
5 Difference stationarity

2 ARMA models
1 Pure random process
2 Different SARMA models
3 Spectrum
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