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Characteristics of the MA(q) processes

xt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, (εt )t∈T ∼WN(0, σ2)

The expected value

µx = E[xt ] = 0.

The variance

σ2
x = var(xt ) = σ2

q∑
i=0

θ2
i , θ0 = 1.

The autocovariance

γk = cov
(
xt , xt−k

)
=

{
σ2∑q−k

i=0 θiθi+k , k = 0,1,2, ...,q
0, k > q.
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Characteristics of the MA(q) processes

xt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, (εt )t∈T ∼WN(0, σ2)

The autocorrelation

ρk =


1, k = 0∑q−k

i=0 θiθi+k∑q
i=0 θ

2
i
, k = 1,2, ...,q

0, k > q

The AR(∞) representation (if invertible)
∞∑

i=0

πixt−i = εt (π0 = 1)

The partial autocorrelation decays exponentially.
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MA(3) process, θ1 = 1, θ2 = 0.5, θ3 = 0.2
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Characteristics of an invertible MA(1) process

xt = εt + θ1εt−1, (εt )t∈T ∼WN(0, σ2)

Since the root of the lag polynomial θ(L) = 1 + θ1L is
outside of the unit circle, we have |θ1| < 1.
AR(∞) representation:

∞∑
i=0

(−θ1)ixt−i = εt

The autocovariance and the autocorrelation

γk =


σ2(1 + θ2

1
)
, k = 0

σ2θ1, k = 1
0, k > 1

, ρk =


1, k = 0
θ1

1+θ2
1
, k = 1

0 k > 1.
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MA(1) process, θ1 = −0.9
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Characteristics of the stationary AR(p) models

xt = φ1xt−1 + φ2xt−2 + ...φpxt−p + εt , (εt )t∈T ∼WN(0, σ2).

The MA(∞) representation

xt =
∞∑

i=0

ψiεt−i (ψ0 = 1).

The expected value µx = E[xt ] = 0.
The variance

σ2
x = var(xt ) = σ2

∞∑
i=0

ψ2
i .

The autocovariance and the autocorrelation

γk = σ2
∞∑

i=0

ψiψi+k , ρk =

∑∞
i=0 ψiψi+k∑∞

i=0 ψ
2
i

.
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Stationary AR(p) models

xt = φ1xt−1 + φ2xt−2 + ...φpxt−p + εt , (εt )t∈T ∼WN(0, σ2).

The autocorrelations satisfy

ρ0 = 1
ρk = φ1ρk−1 + φ2ρk−2 + ...+ φpρk−p, k > 0,

as

γk = E[xtxt−k ] = E

[
xt−k

( p∑
i=1

φixt−i + εt

)]

=

p∑
i=1

φi E[xt−k xt−i ] + E[xt−kεt ] =

p∑
i=1

φiγk−i .

MS-C2128 Prediction and Time Series Analysis Characteristics of the ARMA models



AR(3) process, φ1 = 0.5, φ2 = −0.4, φ3 = −0.2
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Stationary AR(1) models: Characteristics

xt = φ1xt−1 + εt , (εt )t∈T ∼WN(0, σ2).

The MA(∞) representation

xt =
∞∑

i=0

φi
1εt−i

The expected value µx = E[xt ] = 0.
The variance

σ2
x = var(xt ) = σ2

∞∑
i=0

φ2i
1 =

σ2

1− φ2
1
.

The autocovariance and the autocorrelation

γk = σ2
∞∑

i=0

φi
1φ

i+k
1 = φk

1σ
2
x , ρk = φk

1.
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AR(1) process, φ1 = −0.9
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Stationary AR(2) models: Characteristics

xt = φ1xt−1 + φ2xt−2 + εt , (εt )t∈T ∼WN(0, σ2).

The MA(∞) representation

xt =
∞∑

i=0

ψiεt−i ,

ψ0 = 1, ψ1 − φ1 = 0, ψi − φ1ψi−1 − φ2ψi−2 = 0, i ≥ 2.
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Stationary AR(2) models: Characteristics

xt = φ1xt−1 + φ2xt−2 + εt , (εt )t∈T ∼WN(0, σ2).

The expected value µx = E[xt ] = 0.
The variance

σ2
x = var(xt ) = σ2

∞∑
i=0

ψ2
i .

The autocovariance and the autocorrelation

γk = σ2
∞∑

i=0

ψiψi+k , ρ1 =
φ1

1− φ2
, ρ2 =

φ2
1

1− φ2
+ φ2.
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Stationary AR(2) models: Characteristics

xt = φ1xt−1 + φ2xt−2 + εt , (εt )t∈T ∼WN(0, σ2).

Since the roots of the lag polynomial

φ(L) = 1− φ1L− φ2L2

are outside of the unit circle, we have that
φ1 + φ2 < 1,
−φ1 + φ2 < 1,
|φ2| < 1.
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Stationary AR(2) models: Characteristics

xt = φ1xt−1 + φ2xt−2 + εt , (εt )t∈T ∼WN(0, σ2).

The roots of the lag polynomial are complex valued if
φ2

1 + 4φ2 < 0.
If the roots are complex valued, then the autocorrelation
function is bounded by an exponentially decaying
sine-function.
If the roots are real valued, then the autocorrelation function
is bounded by an exponential function (or exponential
functions).
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AR(2) process, φ1 = 0.5, φ2 = 0.2
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AR(2) process, φ1 = 0.5, φ2 = −0.4
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Stationary and invertible ARMA(p,q) processes

xt−φ1xt−1−φ2xt−2−...−φpxt−p = εt +θ1εt−1+θ2εt−2+...+θqεt−q,

where (εt )t∈T ∼WN(0, σ2).
For a stationary AR(p) process

The autocorrelation function decays exponentially
(geometric series).
The partial autocorrelation function is equal to 0 after p.

For an MA(q) process
The autocorrelation function is equal to 0 after q.
The partial autocorrelation function decays exponentially.

The autocorrelation function and the partial autocorrelation
of a stationary ARMA(p,q) process decay exponentially.
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ARMA(2,3), φ = (0.5,−0.2), θ = (−0.8,0.6,0.2)
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Stationary ARMA(p,q) processes

xt−φ1xt−1−φ2xt−2−...−φpxt−p = εt +θ1εt−1+θ2εt−2+...+θqεt−q,

where (εt )t∈T ∼WN(0, σ2).

Model Auto- Partial auto-
correlation function correlation function

AR(p) Decays Is equal to 0
exponentially after p

MA(q) Is equal to 0 Decays
after q exponentially

ARMA(p,q) Decays Decays
exponentially exponentially
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Stationary and invertible ARMA(1,1) models

xt − φ1xt−1 = εt + θ1εt−1, (εt )t∈T ∼WN
(
0, σ2)

The roots of the lag polynomials

φ(L) = 1− φ1L, θ(L) = 1 + θ1L

are outside of the unit circle, if |φ1| < 1, |θ1| < 1.
The MA(∞) representation

xt =
∞∑

i=0

ψiεt−i ,

ψ0 = 1, ψi = θ1φ
i−1
1 + φi

1, i > 0.

The expected value, the variance and the autocovariance:

µx = E[xt ] = 0 σ2
x = var(xt ) = σ2

∞∑
i=0

ψ2
i γk = σ2

∞∑
i=0

ψiψi+k
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ARMA(1,1), φ = 0.8, θ = −0.6
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Stationary SARMA(P,Q)s processes

xt−Φ1xt−s−...−ΦPxt−Ps = εt +Θ1εt−s+...+ΘQεt−Qs, (εt )t∈T ∼WN(0, σ2)

At time points s,2s,3s, ..., the autocorrelation function and
the partial autocorrelation function of a SARMA(P,Q)s
process behave as the autocorrelation function and the
partial autocorrelation function of the corresponding
ARMA(p,q)process. At other time other points, the
autocorrelation function and the partial autocorrelation
function of a SARMA(P,Q)s process are equal to 0.
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Stationary SARMA(P,Q)s processes

For a stationary SAR(P)s process
The values of the autocorrelation function at time points
s,2s,3s, ... decay exponentially. At other time other points,
the autocorrelation function is equal to 0.
The partial autocorrelation function is non-zero at time
points s,2s,3s, ...,Ps. At other time points, and especially
after the time point Ps, it is equal to 0.
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Stationary SARMA(P,Q)s processes

For a stationary SMA(Q)s process
The autocorrelation function is non-zero at time points
s,2s,3s, ...,Qs. At other time points, and especially after
the time point Qs, it is equal to 0.
The values of the partial autocorrelation function at time
points s,2s,3s, ... decay exponentially. At other time other
points, the partial autocorrelation function is equal to 0.
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Stationary SARMA(P,Q)s processes

For a stationary SARMA(P,Q)s process, the values of the
autocorrelation function and the values of the partial
autocorrelation function at time points s,2s,3s, ... decay
exponentially. At other time points, the functions are equal to 0.
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Stationary SARMA(P,Q)s processes

xt−Φ1xt−s−...−ΦPxt−Ps = εt +Θ1εt−s+...+ΘQεt−Qs, (εt )t∈T ∼WN(0, σ2)

Model Autocorrelation Partial autocorrelation
function at s,2s,3s, ... function at s,2s,3s, ...

SAR(P)s
Decays Is equal to 0

exponentially after Ps

SMA(Q)s
Is equal to 0 Decays

after Qs exponentially

SARMA(P,Q)s
Decays Decays

exponentially exponentially
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Stationary SARMA(p,q)(P,Q)s models

xt−Φ1xt−s−...−ΦPxt−Ps = εt +Θ1εt−s+...+ΘQεt−Qs, (εt )t∈T ∼WN(0, σ2)

The behavior of the autocorrelation function and the partial
autocorrelation function of a stationary
SARMA(p,q)(P,Q)s process is a (complicated)
combination of the behaviours of the correlation functions
of the corresponding ARMA(p,q) and SARMA(P,Q)s
processes.
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Filtering

A stochastic process xt is said to be obtained by filtering
from a process yt using linear time invariant filter, if

xt =
∞∑

j=−∞
wjyt−j

The filter is defined by the weights wj ,
∑∞

j=−∞ |wj | <∞.
One can show that the spectral density function of the
filtered process xt can be given by

fx (λ) =
∣∣W (λ)

∣∣2fy (λ),

where fy (λ) is the spectral density function of yt and where

W (λ) =
∞∑

j=−∞
wje−iλj .

∣∣W (λ)
∣∣2 is the so called transition function of the filter.
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ARMA(p,q): Spectrum

A stationary ARMA(p,q) process xt has an MA(∞)
representation

xt = Ψ(L)εt , (εt )t∈T ∼WN
(
0, σ2),

Ψ(L) =
∞∑

j=0

ψjLj , ψ0 = 1, φ(L)Ψ(L) = θ(L).

The process xt is hence obtained by filtering from a pure
stochastic process εt using a filter with the transition
function

∣∣Ψ(e−iλ)
∣∣ =

∣∣θ(e−iλ)
∣∣∣∣φ(e−iλ)
∣∣ =

|1 + θ1e−iλ + ...+ θqe−qiλ|
|1 + φ1e−iλ + ...+ φpe−piλ|

.
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ARMA(p,q): Spectrum

Thus, the spectral density function of the process xt is

fx (λ) =
∣∣W (λ)

∣∣2fε(λ) =
σ2

2π
|1 + θ1e−iλ + ...+ θqe−qiλ|2

|1− φ1e−iλ − ...− φpe−piλ|2
.

(The spectral density function of the process εt is the
constant function σ2/2π.)
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Spectrums of selected (stationary) processes

ARMA(1,1) : f (λ) =
σ2

2π
|1 + θ1e−iλ|2

|1 + φ1e−iλ|2
=
σ2

2π
1 + θ2

1 + 2θ1 cos(λ)

1 + φ2
1 − 2φ1 cos(λ)

AR(p) : f (λ) =
σ2

2π
1

|1− φ1e−iλ − ...− φpe−piλ|2

AR(2) : f (λ) =
σ2

2π
1

|1− φ1e−iλ − φ2e−2iλ|2

=
σ2

2π
1

1 + φ2
1 + φ2

2 − 2φ1(1− φ2) cos(λ)− 2φ2 cos(2λ)

MA(q) : f (λ) =
σ2

2π
|1 + θ1e−iλ + ...+ θqe−qiλ|2

MA(2) : f (λ) =
σ2

2π
|1 + θ1e−iλ + θ2e−qiλ|2

=
σ2

2π
(
1 + θ2

1 + θ2
2 + 2θ1(1− θ2) cos(λ) + 2θ2 cos(2λ)

)
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SARIMA(p,h,q)(P,H,Q)s

Let xt be a stochastic process such that
(i) xt is non-stationary.
(ii) DG

s Dgxt is non-stationary, when g < h, G < H.
(iii) yt = DH

s Dhxt is stationary.
(iv) yt is a SARMA(p,q)(P,Q)s process.

Then we say that the process xt is integrable of order h
and seasonal integrable of order H. The process xt is
called a SARIMA(p,h,q)(P,H,Q)s process.
If xt is a SARIMA(p,h,q)(P,H,Q)s process, then
yt = DH

s Dhxt is a SARMA(p,q)(P,Q)s process.
If xt is an ARIMA(p,h,q) process, then yt = Dhxt is an
ARMA(p,q) process.
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Correlation functions, spectrum and stationarity

The theoretical autocorrelation and partial autocorrelation
functions and the spectral density function are defined only
for stationary processes.
The sample correlation functions and the sample spectral
density function can be calculated also when the observed
series is not stationary.

When the observed series is not stationary, the sample
functions should not be interpreted as estimators of the
theoretical functions.
When the observed series is not stationary, the sample
correlation functions and the sample spectral density
function may give hints to how one should proceed in order
to stationarize the series.
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Estimating autocorrelation

Let xt , t = 1,2, ...,n be an observed time series.
The (arithmetic) sample mean:

x̄ =
1
n

n∑
t=1

xt .

The sample variance:

c0 =
1
n

n∑
t=1

(xt − x̄)2.
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Estimating autocorrelation

The k . sample autocovariance:

ck =
1
n

n∑
t=k+1

(xt − x̄)(xt−k − x̄), k = 0,1, ...,n − 1.

The k . sample autocorrelation coefficient:

rk =
ck

c0
, k = 0,1,2, ...,n − 1.

These sample quantities estimate the corresponding
parameters.
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How many autocorrelations should one estimate?

Consider an observed series xt , t = 1,2, ...,n. Now,
technically, one can estimate the n − 1 first
autocovariances ck and the n − 1 first autocorrelations rk .
However, one should note that the k . autocovariance

ck =
1
n

n∑
t=k+1

(xt − x̄)(xt−k − x̄), k = 0, ...,n − 1,

is estimated from n − k observations. For large k , the
estimates ck ja rk are based on few observations only.
The sample autocovariances and the sample
autocorrelations are not reliable if the sample size n is
small and k is large. Often, if n < 50 and k > n

4 , the
estimates are thought to be unreliable.
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Partial autocorrelations coefficient: Estimation

One can estimate the partial autocorrelations coefficient as
follows:

1 Construct k Yule-Walker equations from the sample
1 r1 r2 · · · rk−1
r1 1 r1 · · · rk−2
r2 r1 1 · · · rk−3
...

...
...

. . .
...

rk−1 rk−2 rk−3 · · · 1




ak1
ak2
ak3

...
akk

 =


r1
r2
r3
...
rk

 ,
2 Solve akk from the equations.
3 Now φ̂k = akk is an estimate for the k . partial

autocorrelations coefficient.
Examples: φ̂1 = a11, φ̂2 = a22 =

r2−r2
1

1−r2
1

.

The sample partial autocorrelations coefficients φ̂k define
the sample partial autocorrelation function
φ̂ : {0,1, ...,n − 1} → R,

φ̂(k) = φ̂k for all k = 0,1, ...,n − 1.
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Estimating partial autocorrelations coefficient: AR(p)
processes

Partial autocorrelations coefficient can alternatively be
estimated from the regression models

xt = β1xt−1 + β2xt−2 + ...βpxt−p + εt .

using least squares estimates.
Then the estimator for the k . partial autocorrelations
coefficient φk is the least squares estimator bk for the
parameter βk . That is φ̂k = bk , k = 1,2, ...,p.

This approach is straightforwardly applicable only in the
case of AR(p) processes. (If the series contains an MA
part, then the noise is not uncorrelated.)
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Sample autocovariances

Remark
The k . sample autocovariance ck is a biased estimator for the
autocovariance γk . However, ck is asymptotically unbiased:

lim
n→∞

E[ck ] = γk .
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Autocorrelations: Significance testing

Consider a stationary stochastic process formed of
independent and identically distributed random variables.
Then the k . sample autocorrelation rk of the process is
asymptotically normally distributed:

rk ∼a N
(

0,
1
n

)
This motivates approximative significance testing:

Under the null hypothesis (H0 : ρk = 0) the estimate rk lies
in the interval [

− 2√
n
,

2√
n

]
(2 ≈ 1.96).

approximately with probability 95 %.

Remark
If one estimates the 100 first autocorrelations from a time series
generated from IID random variables, then approximately 5 of the
aurocorrelations lie outside of the given interval.
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ARMA model: Parameter estimation

Let xt , t = 1, ...,n be an observed time series. We now
consider fitting an ARMA(p,q) model

xt − φ1xt−1 − ...− φpxt−p = εt + θ1εt−1 + ...+ θqεt−q,

where (εt )t∈T ∼ IID(0, σ2) and εt ∼ N(0, σ2) for all t ∈ T .
Now, the joint distribution of x1, ..., xn is an n-dimensional
normal distribution, whose covariance matrix depends, in a
non-linear manner, of the parameters of the ARMA(p,q)
model.
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ARMA model: Parameter estimation

Using that, one can feed the data x1, ..., xn to the
corresponding likelihood function and maximize it with
respect to the model parameters (R: arima()). Maximum
likelihood estimators for the parameters of the ARMA(p,q)
model are then obtained:

φ̂1, φ̂2, ..., φ̂p, θ̂1, θ̂2, ..., θ̂q, σ̂
2

It is not possible to obtain closed form solutions for these
estimators. For details, see for example Hamilton (1994) or
Brockwell & Davis (1991).
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ARMA model: Parameter estimation

Assume that we have obtained the following maximum
likelihood estimates for the ARMA(p,q) model:

φ̂1, φ̂2, ..., φ̂p, θ̂1, θ̂2, ..., θ̂q, σ̂
2.

Standard deviations of the maximum likelihood estimators
can be obtained using Fisher information.1

1The second moment of the derivative of the log-likelihood function with
respect to each parameter
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ARMA model: Parameter estimation

The maximum likelihood estimators are asymptotically
normal, allowing us to construct parametric confidence
intervals and conduct significance testing.

Normal distribution or t-distribution based confidence
intervals can be obtained.
Significance can be tested applying the t-test.

The residuals are given as:

et =
φ̂(L)

θ̂(L)
xt ,

φ̂(L) = 1− φ̂1L− ...− φ̂pLp, θ̂(L) = 1 + θ̂1L + ...+ θ̂qLq .
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ARMA model: Parameter estimation

Maximum likelihood estimators constructed under normality
assumption may be applied also when the εt are not normally
distributed. The estimator, however, is not a maximum
likelihood estimator anymore. Significance testing and
confidence intervals for the model parameters can then be
constructed by applying, for example, interval bootstrapping.
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ARMA model: Bootstrap confidence intervals

Consider an observed ARMA series xt , t = 1,2, ...,n. Let w be
the minimum time series length required for estimating the
model parameters. A (1− α) bootstrap confidence interval for
the ARMA model parameters can be obtained as follows.

1 Select two time points s and u, 0 < s < u ≤ n, u − s ≥ w ,
randomly.

2 Calculate a new parameter vector estimate from the series
xs, xs+1, ..., xu.

3 Repeat the previous steps m − 1 times.
4 For each ARMA model parameter, order the obtained m

estimates from the smallest to the largest.
5 For each ARMA model parameter, set the lower end of the

bootstrap confidence interval to be smaller than or equal to
the [α2 ×m]th ordered estimate and set the upper end of
the bootstrap confidence interval to be larger than or equal
to the [(1− α

2 )×m]th ordered estimate.
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Bootstrap confidence interval

Some remarks:
In time series context, bootstrapping is based on sampling
intervals (that are of random length) from the original
series. That ensures that the time series structure is not
lost in the resampling procedure.
Approximate significance tests for the model parameters
are obtained by checking whether zero lies on the
corresponding bootstrap confidence interval.
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Box-Jenkins modeling

The goal is to construct a model that describes the modeled
phenomena as well as possible using as few parameters as
possible.

The more parameters to estimate, the more can go wrong.
Complicated constructions might provide an excellent fit,
but forecasting then usually turns out to be difficult.
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Box-Jenkins modeling

Box-Jenkins method is a three step strategy for fitting SARIMA
models.

1 Model identification:
(a) In order to stationarize the series (SARIMA→ SARMA

model), the orders h and H (and s) are chosen.
Remember: h is the order of integrability and H is the order
of seasonal integrability.

(b) The orders (p,q,P,Q) of the lag polynomials of the SARMA
model are chosen.

2 Model estimation:
Parameters θi , Θi , φi , Φi (as total p + q + P + Q
parameters) are estimated using for example maximum
likelihood approach. (Compare to fitting ARMA models.)

3 Diagnostics:
The residuals of the estimated SARMA model are
analyzed.

The residuals are NOT white noise. → Return to step 1.
The residuals are white noise. → The model is fitted.
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Box-Jenkins method:
1a) Model identification – Differencing

Differencing, seasonal differencing (and other
transformations) are often applied in order to obtain
stationarity.

The time series, its correlation function and the spectrum
are often plotted and the plots are used as guides in
choosing the orders of the differences.

Differences and seasonal differences are taken until the
time series appears to be stationary.

If, based on the plots, the time series appears to be
stationary, then, naturally, one should not take differences.
Usually, taking the necessary differences in order to obtain
stationarity, make the variance of the series smaller. Taking
too many differences, on the other hand, usually tend to
increase the variance of the series.
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Box-Jenkins method:
1a) Model identification – Stationarization

Difference Dxt = xt − xt−1 removes deterministic linear
trend.

Similarly, p. difference Dp removes deterministic p. degree
polynomial trend.

Seasonal difference Dsxt = xt − xts removes deterministic
seasonality that has period s.
In addition, sometimes logarithmic transformations,
yt = log(xt ), are needed.

Logarithmic transformations can linearize exponential
trends.

The original time series is obtained by inverse
transformation.

Example If yt = Dxt , then x1 = y1 ja xt = y1 + y2 + ...+ yt ,
t = 2,3, ...,n.
Example xt = exp(yt ).
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Box-Jenkins method:
1b) Model identification – Lag polynomials

After stationarization of the time series, the order of the lag
polynomials of the SARMA model are chosen.

The choice of the order of the lag polynomials is based on
looking at the plots of the stationarized time series, its
correlation functions and its spectrum.

Choosing the orders of the lag polynomials is a challenging
task. Usually one first selects a set of possible orders.

Selected degrees are examined by fitting the corresponding
models and the final choice is based on comparing the
goodness of the fits.
Model fits are compared by considering the significance of
the estimated parameters and the diagnostics (step 3).
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Box-Jenkins method:
1) Model identification – Comments

When SARIMA(p,h,q)(P,H,Q)s models are fitted in
practical applications, one quite rarely has to consider
models where the orders of the differences or the orders of
the lag polynomials are other than reasonably small
integers.
Usually (but not always) it is enough to consider the
following options:

Differencing:
AR part:
MA part:

h = 0,1 or 2; H = 0 or 1
p = 0,1 or 2; P = 0 or 1
q = 0,1 or 2; Q = 0 or 1
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Example: Random walk
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A random walk
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Example: Random walk
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Example: Random walk
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The random walk (in black) and the differenced random walk (in
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Example: Random walk
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Example: Random walk
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Example: Random walk
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Example: Geometric random walk (GRW)
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Example: Geometric random walk
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Example: Geometric random walk
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geometric random walk (in blue)
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Example: Geometric random walk
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Example: Geometric random walk
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The geometric random walk (in red) and the two times
differenced geometric random walk (in green)
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Example: Geometric random walk
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Example: Geometric random walk
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The geometric random walk (in red) and the log-transformed
geometric random walk (in black)
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Example: Geometric random walk
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Example: Geometric random walk
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The geometric random walk (in red) and the diffenrenced
log-transformed geometric random walk (in blue)
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Example: Geometric random walk

5 10 15 20 25

−
0.

10
0.

05

Lag

A
C

F

5 10 15 20 25

−
0.

10
0.

05

Lag

P
ar

tia
l A

C
F

The autocorrelation and the partial autocorrelation of the
differenced log-transformed geometric random walk
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Box-Jenkins method:
2. Model estimation

SARMA model parameters can be estimated using R. One
can use R-functions (for example arima()) that estimate
the model parameters using some suitable estimation
method (for example maximum likelihood estimation).
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Box-Jenkins method:
3) Diagnostics

Diagnostics are based on analyzing the residuals of the
estimated SARMA model:

The residual time series and the plots of its correlations and
spectrum are examined.
The uncorrelatedness of the residuals is tested.

The estimated model is considered good enough if the
residuals are white noise.

If the model is not good enough, one has to return to step 1
and try again.
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Box-Jenkins method:
3) Diagnostics

The uncorrelatedness of the residuals can be tested using
Ljung-Box Q-statistic

QK = n(n + 2)
K∑

i=1

r2
i

n − i
.

The ri , i ∈ {1,2, ...,K}, in the test statistic are the sample
autocorrelations of the residuals with lag i .
If the residuals are heavily correlated, the value of the test
statistic is large.
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Box-Jenkins method:
3) Diagnostics

If the SARMA model null hypothesis H0: εt ∼WN holds,
then

QK ∼a χ
2(K −m)

Above, m is the number of the estimated SARMA model
parameter.
If the value of the test statistic QK is large, the null
hypothesis is rejected.

The value of the QK test statistic and its distribution under
the null do depend on the number, K , of the
autocorrelations considered.

It is advisable to calculate QK for several different K .
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Box-Jenkins method:
3) Diagnostics

Remark
Ljung-Box test statistics tests the significance of the K first
autocorrelations.
K has to be larger than the number m of the estimated
model parameters.
In practice, since the degrees of freedom of the asymptotic
distribution, χ2(K −m), of the test statistic under the null
depend on K , the power of the test statistics decreases as
K increases.
If K is small, autocorrelations with larger lag are not tested.
There are no clear rules for how one should select K .
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Decomposition

When one examines time series data, one can often
detect:

Trends
Cyclic changes
Seasonal changes
Random changes

This empirical observation has led to the idea that, as part
of statistical analysis, one could decompose time series
data into corresponding components.
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Decomposition: Goals
(i) Description of the behavior of time series data using

components.
(ii) Analysis of time series data using components.
(iii) Elimination of disturbing seasonal changes in order to

conduct better statistical analyses.
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Decomposition
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Decomposition

When time series data is decomposed, it is assumed that
the series xt , t = 1,2, ...,n can be given as a sum or as a
product of the following components:

mt = trend
ct = cyclic component
st = seasonal component
et = random component.

An additive model: xt = mt + ct + st + et .
A multiplicative model: xt = mtctstet .

A multiplicative model can be transformed into an additive
model:

log xt = log mt + log ct + log st + log et .
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Decomposition

Remark
Cyclic changes and seasonal changes are not the same thing:

Cyclic changes are irregular and cycles may be long.
Example: economic cycles (expansion, peak, recession
and recovery)

Seasonal changes are regular and the season length
remains the same.

Example: Christmas trees sales
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Decomposition: Seasonal adjustment

The goal in decomposing a time series xt is often seasonal
adjustment.
Seasonal adjustment is based on constructing a new
series yt from which the disturbing seasonal component st
has been eliminated:

(i) Seasonal adjustment, additive model:

yt = xt − st = mt + ct + et

(ii) Seasonal adjustment, multiplicative model:

yt =
xt

st
= mtctet .
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Decomposition methods

Commonly applied decomposition methods:
X12 (an iterative moving average method)
X12-ARIMA (a combination of iterative moving average
method and ARIMA modeling)
Structural time series models
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Decomposition: Comments

Justification:
It is easier to analyze decomposed/seasonally adjusted
time series data.

Critique:
The division of a time series into different components is
always more or less arbitrary.
The components are not real, measurable quantities.
Decomposition methods (except structural time series
models) are not based on statistical modeling.
It is very difficult to statistically measure the goodness of a
decomposition.
Seasonal adjustment distorts the autocorrelation structure
(internal time dependencies) of the series.
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Decomposition: Comments

Conclusion:
Decomposition can be used when the behavior of a time
series is described, but using the components in formal
statistical modeling is questionable.

Seasonal adjustment can be replaced by methods that are
statistically better motivated:

Aggregation in time
A new time series is obtained by combining (by summing or
averaging) consecutive observations.

Sampling in time
A new time series is obtained by picking observations at
regular time interval points (for example every 7th
observation).

Seasonal differencing
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Next week

1 Prediction
1 Predicting using ARMA models
2 Exponential smoothing

2 Kalman filter
3 Dynamic regression
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