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Introductory example
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Cautionary example

A dataset contains the records (sex, age, fare, survived or
not) of 714 passengers onboard Titanic.
We are interested in studying the relationship between
survival (response) and sex, age and fare (explanatory
variables).

Survived Sex Age Fare
1 0 male 22.00 7.25
2 1 female 38.00 71.28
3 1 female 26.00 7.92
4 1 female 35.00 53.10
5 0 male 35.00 8.05
6 0 male 54.00 51.86

Table: First 6 subjects of the Titanic dataset
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Cautionary example

0 1 Sum
female 8.96 27.59 36.55

male 50.42 13.03 63.45
Sum 59.38 40.62 100.00

Table: Cross-tabulation of Sex vs. Survived
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Figure: Boxplots of Age by Survived.
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Cautionary example
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Figure: Boxplots of Fare by Survived.
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Cautionary example

The response variable yi (Survived) is binary and follows the
Bernoulli distribution,

P(yi = 1) = pi = prob. that passenger i survives
P(yi = 0) = 1− pi = prob. that passenger i does not survive.

Recall that in linear regression, the expected value of the
response, E(yi), is modelled with a linear function of the
predictors,

E(yi) = b0 + b1xi1 + b2xi2 + · · ·+ bpxip.

For Bernoulli distribution, E(yi) = pi so we fit the line,

pi = b0 + b1 · (sex)i + b2 · (age)i + b3 · (fare)i .

Question:

What can go wrong with this approach?
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Simple logistic regression
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Simple logistic regression model
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Link functions

The non-matching ranges of the two sides of the model
equation are generally unified through the use of a link
function, g, by assuming that:

g(E(yi)) = b0 + b1xi1 + b2xi2 + · · ·+ bpxip,

for some g that transforms the range of the left-hand side to
match that of the right-hand side.
Popular ones to use when E(yi) ∈ [0,1] are:

1 The logit link: g(p) = logit(p) = log[p/(1− p)],
2 The probit link: g(p) = φ−1(p) (the quantile function of the

standard normal distribution),
3 The cloglog link: g(p) = log[− log(1− p)].

Link function is simply a way of changing the scale of the
(expected value of the) response.
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Assumptions

The standard logistic regression is obtained by using the logit link.

Simple logistic regression, assumptions

Consider n independent observation pairs
(x1, y1), (x2, y2), ..., (xn, yn) of (x , y). Assume, that the values
yi are observed values of a binary random variable y and
assume, for simplicity, that the values xi are non-random.
Assume that the logit-transformed expected values
pi = E(yi) depend linearly on the value xi :

logit(pi) = b0 + b1xi , i ∈ {1, ...,n},

where the regression coefficients b0 and b1 are unknown
constants.
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Logistic curve

Thus we are modeling the probability to “succeed” as a
function of the explanatory variable.
When the value of the explanatory variable xi is varied, the
probability to succeed changes according to the relation,

pi = logit−1(b0 + b1xi).

The resulting relationship is not linear but logistic (sigmoid)
shape (analogy for the regression line in linear regression).



Introductory
example

Simple logistic
regression
Simple logistic
regression model

Parameter
interpretation

Diagnostics

Multiple logistic
regression

References

Example logistic curves

Logistic curves logit−1(b0 + 1 · x) for b0 = −2, b0 = 0 and b0 = 2.
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The intercept b0 moves the logistic shape around x-axis.



Introductory
example

Simple logistic
regression
Simple logistic
regression model

Parameter
interpretation

Diagnostics

Multiple logistic
regression

References

Example logistic curves

Logistic curves logit−1(0 + b1 · x) for b1 = 1/2, b1 = 1 and b1 = 2.
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The slope b1 determines how steeply the probability of success
grows with xi .
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Model fitting

As opposed to linear regression, the parameter estimates b̂0
and b̂1 do not have closed form expressions in logistic
regression.
The standard way of solving the logistic regression problem
is through iteratively weighted least squares (IWLS).
Most statistical software have logistic regression
implemented in them.
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Parameter interpretation
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Odds

Odds is a way of writing probabilities used mostly in statistics
and gambling.
An event that has the probability p of happening is said to
have odds (of happening) odds(p) = p/(1− p).
In layman usage this is usually written as “1 : (1− p)/p” or
p/(1− p) : 1, depending on whether p > 1/2 or p < 1/2.
Examples:

A probability p = 1/2 corresponds to even odds of
odds(p) = 1 (written also as 1 : 1)
A gambler wins the game with probability p = 1/6, or with odds
odds(p) = 1/5 (written also as 1 : 5).
The chance of rain is p = 0.89 or the odds of rain are
odds(p) = 8.09 (written also as 8.09 : 1)
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Odds visually

The relationship between a probability p and the corresponding
odds(p) = p/(1− p).
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Comparing odds

Odds ratios are used to compare the odds of two events with
probabilities p1 and p2,

OR =
odds(p1)

odds(p2)
.

Interpretation:
OR < 1: the second event is more probable than the first.
OR = 1: the two events are equally probable.
OR > 1: the first event is more probable than the second.
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Odds ratio example

A total of p1 = 42% of subjects who received drug A had their
condition improved and a total of p2 = 67% of subjects who
received drug B had their condition improved.
The corresponding odds are odds(p1) = 0.724 and
odds(p2) = 2.030
The odds of the condition improving are 2.80 times higher for
the subjects receiving drug B as compared to drug A.
Summary: Odds ratio is simply a tool for comparing the
probabilities of two events, e.g. the chance of survival under
two different conditions.
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Interpretation of the estimates

Odds ratios are closely connected to the interpretation of the
regression coefficients in logistic regression.
Recall, that in standard regression a change of one unit in a
predictor causes a change in the expected value of the
response equal to the corresponding regression coefficient.

E(y∗
i )− E(yi) = (b0 + b1(xi + 1))− (b0 + b1xi) = b1.

The same interpretation holds in the case of multiple
predictors (assuming that the other predictors are held fixed
and no interaction terms exist).
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Interpretation of the estimates

In logistic regression, we have for the expected value
E(yi) = pi

log(odds(pi)) = logit(pi) = b0 + b1xi .

Thus, for a change of one unit the predictor,

OR(p∗
i ,pi) =

exp(b0 + b1(xi + 1))
exp(b0 + b1xi)

= exp(b1).

The exponentiated coefficient describes the proportional
change in odds corresponding to a single unit increase in the
explanatory variable.
If b1 > 0, an increase in x will increase the odds (and
probability) of “success” and vice versa.
Note that this interpretation is only valid for the logistic link
function.
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Interpretation examples

In studying the connection between age (xi ) and a risk of a
certain fictive disease (yi ), the following logistic regression
model was fitted,

logit(pi) = 1.23 + 0.03 · xi .

Interpretation: Every year of age increases the odds of
contracting the disease by a factor of exp(0.03) = 1.03. E.g.,
the odds of contracting the disease are 35% higher for a 60
years old than for a 50 years old
(exp(0.03)10 = exp(0.30) = 1.35).
Note: if we use a qualitative predictor (e.g. 1 = female, 0 =
male), then exp(b1) describes the proportional change in
odds for someone in class 1 vs. someone in class 0.
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Inference

Again, the logistic regression model can always be fitted for
any 0− 1 response, regardless whether the rest of the
assumptions are fulfilled.
However, the assumptions are required to make statistical
inference on the parameters (compute confidence intervals,
determine whether the parameters differ significantly from
zero).
The results are based on the central limit theorem and
require large sample sizes.
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Titanic, continued

We fit the model,

logit(P(Survivedi = 1)) = b0 + b1Sexi ,

to the Titanic dataset using R, and obtain the following
results:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1243 0.1439 7.81 0.0000

Sexmale -2.4778 0.1850 -13.39 0.0000

As in linear regression, the column Pr(>|z|) gives the
p-value for the null hypothesis H0 : b = 0 against the
two-sided alternative and currently shows that both estimates
differ significantly from zero.
That is, the odds ratio of women vs. men surviving is
exp(2.4778) ≈ 11.9 and this difference is statistically
significant.
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Titanic, continued

Simple approximate confidence intervals for the odds ratios
are obtained by taking a confidence interval for the
parameters and exponentiating them
Approximate 95 % confidence interval for −b1:

2.4778± 1.96 · 0.1850 = (2.1152,2.8404).

Approximate 95 % confidence interval for the odds ratio
exp(−b1) is:

(exp(2.1152), exp(2.8404)) = (8.2912,17.1226).

Similarly, approximate 95 % confidence interval for exp(b1) is:

(exp(−2.8404), exp(−2.1152)) = (0.0584,0.1206),

but the former is easier to interpret.
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Diagnostics
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Deviance

Logistic regression does not produce R-squared statistics or
residuals in the same simple sense as the standard
regression.
Multiple different approaches for the two have been
developed and the most common ones are based on the use
of deviance, a generalization of sums of squares beyond
ordinary regression.
Using different forms of deviances (outputted by standard
statistical software), the McFadden pseudo-R2 is computed
as,

R̃2 = 1− ResidualDeviance
NullDeviance

∈ [0,1],

with larger values indicating a better fit (0.20-0.40 can
already be considered an excellent fit).
For the titanic fit earlier, R̃2 = 0.222.
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Residuals and diagnostics

The deviance can be decomposed into deviance residuals ε̂,
i = 1, . . . ,n, an analogy for the standard residuals in ordinary
linear regression.
If the data is grouped (multiple observations have identical
patterns of explanatory variables), the model assumptions
can be checked (model diagnostics) by plotting the deviance
residuals vs. the fitted values of the linear predictor b0 + b1xi .
In the previous situation, if the model assumptions hold, the
residuals,

1 are approximately evenly distributed on both sides of zero,
2 exhibit no unusual (non-linear) patterns in general.
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Diagnostics for the Titanic dataset

Although the titanic dataset in the previous example is
grouped, the small number of groups can make the previous
conditions difficult to verify.
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The conditions seem to be verified...



Introductory
example

Simple logistic
regression
Simple logistic
regression model

Parameter
interpretation

Diagnostics

Multiple logistic
regression

References

Diagnostics for ungrouped data

For ungrouped data, the previous diagnostic plot simply
contains several “bands” of observations and has little value
(though, outliers may be seen in the plot).
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Overdispersion

Unlike in the normal distribution, for Bernoulli distribution the
variance pi(1− pi) is a direct function of the expected value
pi .
Thus for the assumption on Bernoulli-distributed responses
to hold, no overdispersion (the variance of the observed
responses is too large compared to their expected value)
should occur.
If no overdispersion has occurred the value,

D̃ =
ResidualDeviance

n − q
,

where q is the number of parameters in the model, should be
roughly around 1 (no more than 1 +

√
8/(n − q))

For the Titanic example, D̃ = 750.70/712 = 1.05.
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Causes of overdispersion

Overdispersion can be caused by
missing explanantory variables,
wrong link function,
lack of non-linear effects,
outliers,
correlation between responses.
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Multiple logistic regression
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Multiple logistic regression

As with simple linear regression, also simple logistic
regression can be extended to multiple logistic regression by
simply adding more explanatory variables to the linear
predictor.

Multiple logistic regression, assumptions

Consider n independent observation pairs
(x1, y1), (x2, y2), ..., (xn, yn) of (x, y). Assume, that the values
yi are observed values of a binary random variable y and
assume, for simplicity, that the values xi are non-random.
Assume that the logit-transformed expected values
pi = E(yi) depend linearly on the vector xi :

logit(pi) = b0 + b1xi1 + b2xi2 + · · ·+ bpxip, i ∈ {1, ...,n},

where the regression coefficients b0,b1, ...,bp are unknown
constants.
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Multiple logistic regression

Everything that was said about simple logistic regression
(solutions, inference...) can be extended to multiple logistic
regression but goes beyond the scope of this course.
We simply go through an introductory example, the titanic
dataset with all three predictors included.

Survived Sex Age Fare
1 0 male 22.00 7.25
2 1 female 38.00 71.28
3 1 female 26.00 7.92
4 1 female 35.00 53.10
5 0 male 35.00 8.05
6 0 male 54.00 51.86

Table: First 6 subjects of the Titanic dataset
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Titanic, continued

We fit the model,

logit(P(Survivedi = 1)) = b0 + b1Sexi + b2Agei + b3Farei ,

to the Titanic dataset using R, and obtain the following
results:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.9348 0.2391 3.91 0.0001

Sexmale -2.3476 0.1900 -12.36 0.0000
Age -0.0106 0.0065 -1.63 0.1038
Fare 0.0128 0.0027 4.74 0.0000

The pseudo−R2 and the overdispersion statistic equal,

R̃2 = 0.258 and D̃ = 1.009.

Computing the VIFs does not reveal significant
multicollinearity.
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Final note

Both logistic and ordinary linear regression are special cases
of the so-called generalized linear models (GLM).
GLM:s are characterized by the distribution of the response
variable y :

Normal→ linear regression,
Bernoulli→ logistic regression,
Poisson→ log-linear models,
Negative binomial→ negative binomial regression.

Similar results as seen on lectures 7 and 8 are available for
other members of the GLM-family as well.
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