3. Theoretical exercises

Demo exercises

3.1 Let u and v be random variables with the following properties,

$$\mathbb{E}(u) = \mathbb{E}(v) = 0$$

$$Var(u) = Var(v) = \sigma^2 < \infty$$

$$Cov(u, v) = \mathbb{E}(uv) = 0$$

Let $\lambda \in \mathbb{R}$ be a nonrandom constant. Show that the process,

$$x_t = u \cdot \cos(\lambda t) + v \cdot \sin(\lambda t), \quad t \in T,$$

is stationary.

Solution.

i) The expectation of x_t is,

$$\mathbb{E}(x_t) = \mathbb{E}(u \cdot \cos(\lambda t) + v \cdot \sin(\lambda t))$$

$$= E(u)\cos(\lambda t) + \mathbb{E}(v)\sin(\lambda t)$$

$$= 0 \cdot \cos(\lambda t) + 0 \cdot \sin(\lambda t)$$

$$= 0, \quad \text{for all } t \in T.$$

ii) The variance of x_t is,

$$Var(x_t) = \mathbb{E}(x_t^2) - [\mathbb{E}(x_t)]^2$$

$$= \mathbb{E}(u^2 \cos^2(\lambda t) + v^2 \sin^2(\lambda t) + 2uv \cos(\lambda t) \sin(\lambda t))$$

$$= \mathbb{E}(u^2) \cos^2(\lambda t) + \mathbb{E}(v^2) \sin^2(\lambda t) + 2\mathbb{E}(uv) \cos(\lambda t) \sin(\lambda t)$$

$$= \sigma^2 \cos^2(\lambda t) + \sigma^2 \sin^2(\lambda t)$$

$$= \sigma^2, \quad \text{for all } t \in T.$$

iii) The autocovariance of the process x_t is given by,

$$Cov(x_t, x_{t-\tau}) = \mathbb{E}(x_t x_{t-\tau})$$

$$= \mathbb{E}(u^2 \cos(\lambda t) \cos(\lambda (t-\tau)) + v^2 \sin(\lambda t) \sin(\lambda (t-\tau))$$

$$+ uv \cos(\lambda t) \sin(\lambda (t-\tau)) + uv \sin(\lambda t) \cos(\lambda (t-\tau))]$$

$$= \mathbb{E}(u^2) \cos(\lambda t) \cos(\lambda (t-\tau)) + \mathbb{E}(v^2) \sin(\lambda t) \sin(\lambda (t-\tau))$$

$$+ \mathbb{E}(uv) \cos(\lambda t) \sin(\lambda (t-\tau)) + \mathbb{E}(uv) \sin(\lambda t) \cos(\lambda (t-\tau))$$

$$= \sigma^2 \cos(\lambda t) \cos(\lambda (t-\tau)) + \sigma^2 \sin(\lambda t) \sin(\lambda (t-\tau))$$

$$= \sigma^2 \cos(\lambda t - \lambda (t-\tau))$$

$$= \sigma^2 \cos(\lambda \tau), \quad \text{for all } t \in T.$$

Note that $\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$. By i), ii) and iii), it follows that x_t is stationary.

Prediction and Time Series Analysis Ilmonen/ Shafik/ Voutilainen/ Lietzén/ Mellin Department of Mathematics and Systems Analysis Fall 2020 Aalto University Exercise 3.

3.2 Consider the following stationary AR(1) process,

$$x_t - \phi_1 x_{t-1} = \varepsilon_t, \quad \varepsilon_t \sim \text{i.i.d.}(0, \hat{\sigma}^2).$$
 (1)

Show that, in the case of AR(1)-processes, the assumption of weak stationarity implies that $|\phi_1| < 1$. In the proof, assume that,

$$\mathbb{E}\left[x_{t-1}\varepsilon_t\right] = 0, \quad \text{for every } t \in T. \tag{2}$$

Solution. A stochastic process x_t is weakly stationary if the following conditions are satisfied.

- (i) $\mathbb{E}(x_t) = \mu$, $\forall t \in T$,
- (ii) $Var(x_t) = \sigma^2 < \infty$, $\forall t \in T$,
- (iii) $Cov(x_t, x_{t-\tau}) = \gamma_\tau, \quad \forall t, \tau \in T.$

By condition (ii), the variance of the process is not time dependent. Then, by Assumption (2),

$$\operatorname{Var}(x_t) = \operatorname{Var}(\phi_1 x_{t-1} + \varepsilon_t) = \phi_1^2 \operatorname{Var}(x_{t-1}) + \operatorname{Var}(\varepsilon_t) = \phi_1^2 \operatorname{Var}(x_t) + \hat{\sigma}^2,$$
 (3)

As we have

$$Var(x+y) = E[x+y-E(x+y)]^2$$

Substitute by x_t

$$Var(x_t) = Var(\phi_1 x_{t-1} + \varepsilon_t)$$

$$= E[(\phi_1 x_{t-1} + \varepsilon_t) - E(\phi_1 x_{t-1} + \varepsilon_t)]^2$$

$$= E[(\phi_1 x_{t-1} + \varepsilon_t) - E(\phi_1 x_{t-1}) - E(\varepsilon_t)]^2$$

$$= E[(\phi_1 x_{t-1} + \varepsilon_t) - E(\phi_1 x_{t-1})]^2$$

$$= E[\phi_1^2 x_{t-1}^2] + 2E[\phi_1 x_{t-1}\varepsilon_t] + E[\varepsilon_t^2] - 2E[(\phi_1 x_{t-1} + \varepsilon_t)]E[\phi_1 x_{t-1}] + (E[\phi_1 x_{t-1}])^2$$

$$= \phi_1^2 E[x_{t-1}^2] + 2\phi_1 E[x_{t-1}\varepsilon_t] + E[\epsilon_t^2] - \phi_1^2 (E[x_{t-1}])^2$$

$$= \phi_1^2 E[x_{t-1}^2] - \phi_1^2 (E[x_{t-1}])^2 + E[\epsilon_t^2]$$

Therefore,

$$\operatorname{Var}(x_t) = \phi_1^2 \operatorname{Var}(x_{t-1}) + \operatorname{Var}(\varepsilon_t)$$

As the variance of weakly stationary process does not depend on the time t.

$$Var(x_t) = Var(x_{t-1})$$

Then

$$\operatorname{Var}(x_t) = \phi_1^2 \operatorname{Var}(x_t) + \operatorname{Var}(\varepsilon_t)$$

And since $\varepsilon_t \sim \text{i.i.d.}(0, \hat{\sigma}^2)$. By solving the equation above for $\text{Var}(x_t)$, we obtain,

$$\operatorname{Var}(x_t) = \frac{\hat{\sigma}^2}{1 - \phi_1^2}.$$

Condition (ii) gives us that the variance is finite. Furthermore, by definition, variance cannot be negative. Thus, $|\phi_1| < 1$.

Prediction and Time Series Analysis Ilmonen/ Shafik/ Voutilainen/ Lietzén/ Mellin Department of Mathematics and Systems Analysis Fall 2020 Aalto University Exercise 3.

Homework

3.3 Show that MA(1) process

$$x_t = \varepsilon_t + \theta \varepsilon_{t-1}, \qquad \varepsilon_t \sim \text{i.i.d.}(0, \sigma^2),$$

is always stationary.

- **3.4** a) Derive the autocorrelation function of a MA(1) process.
 - b) Derive the autocorrelation function of a stationary AR(1) process:

$$x_t = \phi x_{t-1} + \varepsilon_t, \quad (\varepsilon_t)_{t \in \mathbb{Z}} \sim \text{i.i.d.}(0, \sigma^2).$$

Use the $MA(\infty)$ representation,

$$x_t = \Psi(L)\varepsilon_t = \sum_{i=0}^{\infty} \phi^i L^i \varepsilon_t,$$

where the series $\sum_{i=0}^{\infty} \phi^i$ converges absolutely.

Hint: If $\sum_{i=0}^{\infty} a_i$ converges absolutely, and $\mathbb{E}[|x_i|]$ is an index invariant finite constant, then $\mathbb{E}[\sum_{i=0}^{\infty} a_i x_i] = \sum_{i=0}^{\infty} a_i \mathbb{E}[x_i]$.