Prediction and Time Series Analysis [lmonen,/ Lietzén/ Voutilainen/ Mellin
Department of Mathematics and Systems Analysis Fall 2019
Aalto University Exercise 4.

4. Computer exercises

Demo exercises

4.1 Examine the following time series

File (.txt) | Variable Description Interval Length
INTEL Intel Close Intel stock price Trading day | n = 20
Intel Volume | Intel stock volume
SUNSPOT | Spots Number of sun spots | 1 year n =215
SALES Sales Sales volume of 1 month n =144
a wholesaler

Fit SARIMA processes to the corresponding time series. Use the last fifth of the time
series to verify the goodness of fit.

Solution. We begin by accessing the functions of the R-package forecast. Note that,
you might encounter some problems when installing the corresponding package to a
Linux computer.

install.packages("forecast")
library(forecast)

# install.packages() run only once

# library() run every time you wish to
# use the functions of the package

INTEL <- read.table("INTEL.txt",header=T)
SUNSPOT <- read.table("SUNSPOT.txt",header=T,row.names=1)
SALES <- read.table("SALES.txt",header=T)

Intel_Close <- ts(INTEL$Intel_Close)

Spots <- ts(SUNSPOT,start=1749)
Sales <- ts(SALES$Sales,frequency=12,start = 1970)

Intel Close

We compute the correlation functions as,

acf (Intel_Close,main="ACF")
pacf(Intel_Close,main="PACF")

We see from Figure 1 that the PACF seems to cut off after lag 2 and that the ACF

decays exponentially. We try to fit an AR(2) model. The fitting of SARIMA models
can be done with the function Arima. The first argument of the function is the modeled
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Figure 1: Auto- and parial autocorrelation functions of Intel Close.

time series, order sets the degrees (p,h,q), where p, h and q are as in the lecture slides.
In addition, it is possible to give argument seasonal that sets the degrees (P,H,Q) of
the seasonal part.

Arima(Intel_Close, order=c(2,0,0))

Series: Intel_Close
ARIMA(2,0,0) with non-zero mean

Coefficients:
arl ar2 intercept
1.3342 -0.5263 64 .3965
s.e. 0.1850 0.2038 1.0501

sigma~2 estimated as 0.8844: 1log likelihood=-28.2
AIC=64.39 AICc=67.06 BIC=68.38

The estimated model involves a constant term (Intercept). Estimating the model with-
out the constant term can be done with the argument include.mean=FALSE. The func-
tion Arima estimates the model parameters with CSS-ML (conditional sum of squares
- maximum likelihood) method as a default. Next, we study the residuals of the fitted
AR(2)-model.

model <- Arima(Intel_Close, order=c(2,0,0))
acf (model$res,main="ACF")
pacf (model$res,main="PACF")

By Figure 2, the residuals do not seem to be correlated. The goal is to find a model

such that the residuals resemble white noise. Next, consider the Ljung-Box test for the
residuals:
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Figure 2: ACF and PACF of the residuals corresponding to the AR(2) model for Intel _Close.

Box.test(residual,lag=h,fitdf=k,type="Ljung-Box")

where h is the lag, and k£ the number of the estimated parameters of the model. Here,
we have that k=2. Note that, the Ljung-Box test is only defined for lags greater than
k.

The default test that the Box.test function performs is the so called Box-Pierce test.
However, in the literature, Ljung-Box test is usually preferred.

ljung_box <- c(rep(NA,17))
k <- 2
for(i in 1:17){
ljung_box[i] <- Box.test(model$res,lag=(i+k),
fitdf=k, type="Ljung-Box")$p.value
}
[1] 0.3786061 0.4713735 0.5906405 0.6158862 0.6485075 0.7648594 0.7350293
[8] 0.5646156 0.6414046 0.5078315 0.4545944 0.5403243 0.5671877 0.1945652
[15] 0.1691062 0.2126523 0.2622378

The null hypothesis of the Ljung-Box test is that there is no correlation. Hence, by
the Ljung-Box test, the AR(2) model is satisfactory with significance level of 5%. The
fitted model and the original time series are presented in Figure 3.

fit <- fitted(model)
plot(fit,type="b",col="blue",ylim=c(60,68),
ylab="Price",xlab="Time")
lines(Intel_Close,col="red",type="b")
legend (16,68, legend=c("time series", "fit"),
col=c("red","blue"),lty=c(1,1),cex=0.8)
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Figure 3: Intel Close time series as red and the fitted AR(2) model as blue.

According to Figure 3, the fitted model and the original time series are pretty close to
each other. Next, we estimate an AR(2) model by using the first 16 observations and
study how well the model predicts the last four observations.

model_ver <- Arima(Intel_Close[1:16],order=c(2,0,0))

prediction <- forecast(model_ver,h=4,level=FALSE)$mean

#level=FALSE, omits confidence intervals

plot(Intel_Close,col="red",type="b",ylim=c(60,68),

ylab="Price",xlab="Time")

lines(prediction,col="blue",type="b")

legend (16,68, legend=c("time series", "prediction"),
col=c("red", "blue"), lty=c(1,1), cex=0.8)

Even though the previous diagnostics imply that the AR(2) model is satisfactory, we
can see from Figure 4 that the first 16 observations do not provide a good prediction for
the last four observations. This is explained by the shortness of the original time series.
When predicting the future behavior of time series, one has to be careful, especially
when dealing with short time series.

4/ 14



Prediction and Time Series Analysis [lmonen,/ Lietzén/ Voutilainen/ Mellin
Department of Mathematics and Systems Analysis Fall 2019
Aalto University Exercise 4.

—— time series
—— prediction

66
\
J/
\O

/ o]

i
/
o\O
IS
/O
\o
\o

-

\
v
AN

Time

Figure 4: Intel Close time series as red and the four-step prediction given by AR(2) as
blue.

Spots

acf (Spots,lag.max=50)
pacf (Spots,lag.max=50)

ACF PACF
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Figure 5: Auto- and partial autocorrelation functions of the Spots time series.
According to Figure 5, it seems that PACF cuts off after lag 2, although the sample

partial autocorrelations with lags 6-8, 29 and 48 reach over the blue lines indicating
statistical significance. We fit an AR(2) model and study the residuals.
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model2 <- Arima(Spots,order=c(2,0,0))

acf (model2$res)
pacf (model23%res)
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Figure 6: ACF and PACF of the residuals corresponding to the AR(2) model for Spots.

We see from Figure 6 that the auto- and partial autocorrelations corresponding to lags
9-11 are significant. We test the residuals with Ljung-Box.

k <- 2
spots_bl <- rep(NA,47)
for (i in 1:47)
{
spots_bl[i]=Box.test(model2$res,lag=(i+k) ,fitdf=k,
type="Ljung-Box")$p.value
}
round (spots_bl,3)

[1] 0.093 0.072 0.153 0.210 0.298 0.360 0.085 0.033 0.004 0.005 0.008
[12] 0.013 0.020 0.026 0.034 0.039 0.053 0.067 0.090 0.090 0.116 0.146
[23] 0.181 0.149 0.067 0.078 0.077 0.095 0.075 0.092 0.099 0.107 0.118
[34] 0.086 0.099 0.067 0.077 0.088 0.101 0.109 0.122 0.143 0.167 0.103

According to Ljung-Box test, the AR(2) model is not satisfactory when modeling the
Spots time series. The null hypothesis of Ljung-Box is rejected with lags 10-18. Note
that the first output of Ljung-Box corresponds to lag k + 1. Next we try the function
auto.arima, which automatically finds and fits a SARIMA model to a given time series.
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model.auto <- auto.arima(Spots)
model.auto

acf (model.auto$res,lag.max=50)
pacf (model.auto$res, lag.max=50)

Series: Spots
ARIMA(3,0,1) with non-zero mean

Coefficients:
arl ar?2 ar3 mal intercept
0.6574 0.3494 -0.5433 0.6580 49.1226
s.e. 0.2000 0.2622 0.1308 0.2128 3.4416

sigma~2 estimated as 266.4: log likelihood=-906.65
AIC=1825.3 AICc=1825.7 BIC=1845.52

The algorithm fits the best possible SARIMA model by using AIC, AICc or BIC as
a minimizing criterion. Note that, the fitting of SARIMA models is usually not easy.
Furthermore, there are no perfect algorithms that always find the best possible models.
Therefore, don’t trust the function auto.arima blindly. The function often chooses
unnecessarily complicated models that are only marginally better than some simpler
alternatives.

By Figure 7, the auto- and sample autocorrelations corresponding to lags 9,10 and 11 are
significant also for the residuals of the ARMA(3,1) fit. In addition, the null hypothesis
of Ljung-Box is rejected with lags 10-19 (results below). Thus, ARMA(3,1) model is
neither satisfactory.

k <-4
spots_bl <- rep(NA,47)
for (i in 1:47)
{
spots_bl[i]=Box.test (model.auto$res,lag=(i+k) ,fitdf=k,
type="Ljung-Box")$p.value
}
round(spots_bl,3)

[1] 0.073 0.144 0.274 0.366 0.055 0.019 0.002 0.002 0.004 0.008 0.013
[12] 0.020 0.025 0.030 0.043 0.057 0.077 0.082 0.108 0.136 0.171 0.117
[23] 0.054 0.065 0.073 0.082 0.065 0.083 0.091 0.103 0.113 0.071 0.082
[34] 0.053 0.060 0.071 0.079 0.084 0.089 0.104 0.124 0.072 0.085 0.093
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Figure 7: ACF and PACF of the residuals corresponding to the model given by auto.arima().

Comments:

(1) Time series Spots turned out to be hard to model with SARIMA processes. Here,
the period (around 11 years) of the seasonal component is not constant, which is
difficult to model with SARIMA processes.

(2) The corresponding sun spot time series has been widely studied in the literature.
According to current understanding, one of the better candidates to describe its
behavior is a so called threshold model.

We plot the fitted models together with the original time series.

fit.sun <- fitted(model2)
fit.auto <- fitted(model.auto)
plot(fit.sun,type="b",col="blue",

ylab="Spots",xlab="Time")
lines(Spots,col="red",type="b")
lines(fit.auto,col="green",type="b")
legend("topleft", legend=c("Spots time series", "AR(2)-fit",

"ARMA(3,1)-fit"),
col=c("red","blue","green"),lty=c(1,1),cex=0.8)

We can see from Figure 8 that the behaviour of both fitted models is consistent with
the original time series. We predict the last 43 observations by using an AR(2) model:

model_ver <- Arima(Spots[1:172],order=c(2,0,0))
# Set the first year of the prediction correctly
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Figure 8: The Spots time series as red, fitted AR(2) model as blue and fitted ARMA(3,1)
model as green.

prediction <- ts(forecast(model_ver,h=43)8$mean,start=1921)
plot(Spots,col="red",type="1",ylim=c(0,200))
lines(prediction,col="blue",type="1")

From Figure 9 we see that long term predictions can be unreliable. On the other hand,
predicting just few next steps works out relatively well. It is no surprise that the model
is not suited for long term predictions, since it was labeled as unsatisfactory by the
earlier diagnostics.
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Figure 9: The Spots time series as red and the predictions given by the estimated AR(2)
models as blue.

Sales

By the previous homework assignment, the time series Sales does not look stationary,
but D3 DSales might be. The auto- and partial autocorrelation functions indicate that
Sales could be modeled with a SARIMA process. We try to find a valid model with
the auto.arima function, and study the corresponding residuals.
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Figure 10: ACF and PACF of the
SARIMA(2,1,0)(0,1,1);5 for the Sales time series

Series: Sales
ARIMA(2,1,0)(0,1,1) [12]

Coefficients:
arl ar?2 smal
-0.7059 -0.4665 -0.4873
s.e. 0.0829 0.0839 0.0957

sigma~2 estimated as 23.67:

AIC=795.21  AICc=795.53 BIC=806.71

acf (model_sales$res,lag.max=50)
pacf (model_sales$res,lag.max=50)

# the number of fitted parameters 2+1=3
k <- 3

sales_bl <- rep(NA,47)

for (i in 1:47)

{

residuals

[lmonen,/ Lietzén/ Voutilainen/ Mellin
Fall 2019
Exercise 4.

Series model_sales$res

0.2

01

Partial ACF
0.

-0.1

-0.2

corresponding to the fitted

log likelihood=-393.6

sales_bl[i]=Box.test(model_sales$res,lag=(it+k),fitdf=k,
type="Ljung-Box")$p.value

11 / 14



Prediction and Time Series Analysis [lmonen,/ Lietzén/ Voutilainen/ Mellin

Department of Mathematics and Systems Analysis Fall 2019
Aalto University Exercise 4.
}

round(sales_bl,3)

[1] 0.326 0.290 0.124 0.216 0.324 0.441 0.109 0.090 0.126 0.144 0.145 0.035 0.020
0.012 0.018 0.027 0.038 0.053 0.016 0.001 0.001

[22] 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.003 0.003 0.002
0.002 0.003 0.002 0.003 0.004 0.006 0.007 0.009

[43] 0.002 0.001 0.001 0.002 0.001

Comments:

The null hypothesis is accepted with lags 4-14 and 21. SARIMA(2,1,0)(0,1,1);5 model’s
result is still not particularly satisfactory according to Ljung-Box test. However, the
fitted model is good which can be seen from Figure 11.
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Figure 11: Sales as red and the fitted SARIMA(2,1,0)(1,1,0);2 process as blue.

Now, how does the 48 time steps (4 years) prediction look like?:
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fit.sales <- fitted(model_sales2)

plot(fit.sales,type="b",col="blue",
ylab="Sales",xlab="Time")

lines(Sales,col="red",type="b")

prediction_sales <- forecast(model_sales2,h=48)$mean

plot(Sales,col="red",type="b",ylim=c(100,340),
x1im=c(1970,1987) ,ylab="Sales",xlab="Time")

lines(prediction_sales,col="blue",type="b")
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Figure 12: Sales as red and the prediction given by the SARIMA(2,1,0)(0,1,1) model as blue.

From Figure 12 we see that the four year prediction seems reasonable, although accord-
ing to the Ljung-Box test the SARIMA(2,1,0)(1,1,0);2 model was not satisfactory.
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Homework

4.3 A time series of carbon dioxide measurements from the Mauna Loa volcano is given in
the file MLCO2.txt. The length of the time series is 216 months. Recall that, we studied
this time series during the third computer exercises.

a) Using SARIMA processes, find the best possible model to describe the time series
MLCO2.

b) Make 2 and 24 time step predictions by using the model chosen in a). Study the
goodness of the predictions.
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