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4. Theoretical exercises

Demo exercises

Throughout these exercises, assume that E[z;_,¢;] = 0 for all v > 1. In addition, assume that
(€t)ter ~ 1.1.d.(0, 0?), such that ¢% < 4o0.

4.1 Consider the following AR(1) processes:
Ty = 0.71}71 —+ € (1)
Ty = —O.5$t_1 + €& (2)
(a) Show that both processes are (weakly) stationary.

(b) Using pen and paper, draw the auto- and partial autocorrelation functions that
correspond to the process (2).

Solution.

(a) An AR(1) autoregressive process has the following lag polynomial representation:
(1—¢1L)xy = ¢,. An ARMA process is stationary, if the zeros of the lag polynomial
of the autoregressive part lie outside the closed unit disk. The lag polynomials are,

(1-07L)=0 = L=10/7
(1405L)=0 = L=-2

Hence, both AR(1) processes are stationary.

(b) In the previous homework assignment, we derived the autocorrelation function for
the AR(1) process:

p(T) = ¢7.
Use this formula to draw the autocorrelation function. Note that the autocorrela-
tion function decays exponentially. For example, when ¢; = —0.5:

/70:17 ;01:_1/27 102:1/47 p3:_1/87

Recall that the partial autocorrelation function of an AR(1) process cuts of after
lag 1. Thus, it suffices to determine only the first partial autocorrelation. Hereby,
the Yule-Walker equations give us directly that, a1, = p;.

4.2 Solve the partial autocorrelation ay by using the Yule-Walker equations.

Solution. Denote ag; = ay ja aas = an. The Yule-Walker equations give,
I m ar) _ (P
p1 1 Qg p2)
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The matrix equations produce the following,
aq + aapr = pr
a1p1 + g = pa.

By solving the upper equation for a; and substituting the solution into the lower equa-
tion, we get that,

(p1 — a2p1)p1 + g = po

4.3 Derive the spectral density functions of MA(1) and SMA(1);5 processes.

Solution. The processes are of the form
Tt = &t + 91575_1 (MA(l)),
Ty =6+ 01612 (SMA(1)12),

where &; ~ 1.i.d(0, 0?) in both processes for every t € T.. The spectral density function
f(A) of a stationary process is

) = 5 (% 23 cos(Ak)) . Aeo.,

k=1
where 74 is the k:th autocovariance and A is the frequency. By the previous homework
assignment, we have that the autocovariance function of a MA(1) process is,

(1+6%)0% k=0
Ve = 910’2, |]€‘ =1
0, |k| > 1.
Hence, the spectral density function of MA(1) process is

02

F =2

Similarly as in the case of MA(1) process, one can derive the autocovariance function
for SMA(1);2 process. The result is given below.

(1+06Ho?, k=0
=14 0,02, k= 412
0, ke Z\{-12,0,12}.

(1+ 67 + 26, cos(N)) .

Hence, the spectral density function of SMA(1);5 process is
2

FON) = ;’—W (1+©2 + 20, cos(12))) .
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Series 1 Spectrum
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Figure 1: Time series 1 and the corresponding spectral, auto- and partial autocorrelation

functions.

Homework

4.4 We have simulated four time series using R. Figures 1-4 contain the trajectories, spec-
trum, autocovariance function and partial autocovariance function of the corresponding
time series. Using Figures 1-4, choose the correct model from the choices given in Table

1. Justify your selection!

Table 1: Choose the correct process.

Time series

Model candidates

= W DN =

MA(1), AR(1)

AR(2), MA(2), ARMA(2,2)
SMA<1)127 AR(12), SAR(1)12
SMA(1)12, MA(12), SAR(1),5

In Figures 1-4, the spectral density functions are calculated from the theo-
retical stochastic process. The corresponding autocorrelation functions and
the partial autocorrelation functions are estimated from the observed time

series.
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Figure 2: Time series 2 and the corresponding spectral, auto- and partial autocorrelation
functions.

1/6



Prediction and Time Series Analysis [lmonen,/ Shafik/ Voutilainen/ Lietzén/ Mellin

Department of Mathematics and Systems Analysis Fall 2020
Aalto University Exercise 4.
Series 3 Spectrum

<
o - T
< _| o
! T T T T T T T T T T T T
0 100 200 300 400 500 0.0 0.1 0.2 0.3 0.4 0.5
Time Frequency
ACF PACF
< | _
o | J’”T”}Iﬂ”J””[
I U T 777777 rT 77777 0 L O LA
3 “‘H My MH . LA u { [m hww ST
? 7\” ”\”7 7\ 777777 — — \7 S T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Figure 3: Time series 3 and the corresponding spectral, auto- and partial autocorrelation
functions.
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Figure 4: Time series 4 and the corresponding spectral, auto- and partial autocorrelation
functions.
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