
Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen/ Shafik/ Voutilainen/ Lietzén/ Mellin
Fall 2020

Exercise 4.

4. Theoretical exercises

Demo exercises

Throughout these exercises, assume that E[xt−vεt] = 0 for all v ≥ 1. In addition, assume that
(εt)t∈T ∼ i.i.d.(0, σ2), such that σ2 < +∞.

4.1 Consider the following AR(1) processes:

xt = 0.7xt−1 + εt (1)
xt = −0.5xt−1 + εt (2)

(a) Show that both processes are (weakly) stationary.
(b) Using pen and paper, draw the auto- and partial autocorrelation functions that

correspond to the process (2).

Solution.

(a) An AR(1) autoregressive process has the following lag polynomial representation:
(1−φ1L)xt = εt. An ARMA process is stationary, if the zeros of the lag polynomial
of the autoregressive part lie outside the closed unit disk. The lag polynomials are,

(1− 0.7L) = 0 ⇒ L = 10/7

(1 + 0.5L) = 0 ⇒ L = −2

Hence, both AR(1) processes are stationary.
(b) In the previous homework assignment, we derived the autocorrelation function for

the AR(1) process:

ρ(τ) = φτ1.

Use this formula to draw the autocorrelation function. Note that the autocorrela-
tion function decays exponentially. For example, when φ1 = −0.5:

ρ0 = 1, ρ1 = −1/2, ρ2 = 1/4, ρ3 = −1/8, . . .

Recall that the partial autocorrelation function of an AR(1) process cuts of after
lag 1. Thus, it suffices to determine only the first partial autocorrelation. Hereby,
the Yule-Walker equations give us directly that, α11 = ρ1.

4.2 Solve the partial autocorrelation α2 by using the Yule-Walker equations.

Solution. Denote α21 = α1 ja α22 = α2. The Yule-Walker equations give,(
1 ρ1
ρ1 1

)(
α1

α2

)
=

(
ρ1
ρ2

)
.
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The matrix equations produce the following,{
α1 + α2ρ1 = ρ1

α1ρ1 + α2 = ρ2.

By solving the upper equation for α1 and substituting the solution into the lower equa-
tion, we get that,

(ρ1 − α2ρ1)ρ1 + α2 = ρ2

⇒ α2 =
ρ2 − ρ21
1− ρ21

.

4.3 Derive the spectral density functions of MA(1) and SMA(1)12 processes.
Solution. The processes are of the form

xt = εt + θ1εt−1 (MA(1)),
xt = εt + Θ1εt−12 (SMA(1)12),

where εt ∼ i.i.d(0, σ2) in both processes for every t ∈ T . The spectral density function
f(λ) of a stationary process is

f(λ) =
1

2π

(
γ0 + 2

∞∑
k=1

γk cos(λk)

)
, λ ∈ [0, π],

where γk is the k:th autocovariance and λ is the frequency. By the previous homework
assignment, we have that the autocovariance function of a MA(1) process is,

γk =


(1 + θ21)σ

2, k = 0

θ1σ
2, |k| = 1

0, |k| > 1.

Hence, the spectral density function of MA(1) process is

f(λ) =
σ2

2π

(
1 + θ21 + 2θ1 cos(λ)

)
.

Similarly as in the case of MA(1) process, one can derive the autocovariance function
for SMA(1)12 process. The result is given below.

γk =


(1 + Θ2

1)σ
2, k = 0

Θ1σ
2, k = ±12

0, k ∈ Z\{−12, 0, 12}.

Hence, the spectral density function of SMA(1)12 process is

f(λ) =
σ2

2π

(
1 + Θ2

1 + 2Θ1 cos(12λ)
)
.
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Series 1
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Figure 1: Time series 1 and the corresponding spectral, auto- and partial autocorrelation
functions.

Homework

4.4 We have simulated four time series using R. Figures 1–4 contain the trajectories, spec-
trum, autocovariance function and partial autocovariance function of the corresponding
time series. Using Figures 1–4, choose the correct model from the choices given in Table
1. Justify your selection!

Table 1: Choose the correct process.
Time series Model candidates

1 MA(1), AR(1)
2 AR(2), MA(2), ARMA(2,2)
3 SMA(1)12, AR(12), SAR(1)12
4 SMA(1)12, MA(12), SAR(1)12

In Figures 1-4, the spectral density functions are calculated from the theo-
retical stochastic process. The corresponding autocorrelation functions and
the partial autocorrelation functions are estimated from the observed time
series.
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Series 2
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Figure 2: Time series 2 and the corresponding spectral, auto- and partial autocorrelation
functions.
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Series 3
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Figure 3: Time series 3 and the corresponding spectral, auto- and partial autocorrelation
functions.
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Series 4
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Figure 4: Time series 4 and the corresponding spectral, auto- and partial autocorrelation
functions.
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