Prediction and Time Series Analysis Ilmonen/ Shafik/ Voutilainen/ Lietzén/ Mellin

4. Theoretical exercises

Demo exercises

Throughout these exercises, assume that $\mathbb{E}\left[x_{t-v} \epsilon_{t}\right]=0$ for all $v \geq 1$. In addition, assume that $\left(\epsilon_{t}\right)_{t \in T} \sim$ i.i.d. $\left(0, \sigma^{2}\right)$, such that $\sigma^{2}<+\infty$.
4.1 Consider the following $\mathrm{AR}(1)$ processes:

$$
\begin{align*}
& x_{t}=0.7 x_{t-1}+\epsilon_{t} \tag{1}\\
& x_{t}=-0.5 x_{t-1}+\epsilon_{t} \tag{2}
\end{align*}
$$

(a) Show that both processes are (weakly) stationary.
(b) Using pen and paper, draw the auto- and partial autocorrelation functions that correspond to the process (2).

Solution.

(a) An $\mathrm{AR}(1)$ autoregressive process has the following lag polynomial representation: $\left(1-\phi_{1} L\right) x_{t}=\epsilon_{t}$. An ARMA process is stationary, if the zeros of the lag polynomial of the autoregressive part lie outside the closed unit disk. The lag polynomials are,

$$
\begin{array}{lll}
(1-0.7 L)=0 & \Rightarrow & L=10 / 7 \\
(1+0.5 L)=0 & \Rightarrow & L=-2
\end{array}
$$

Hence, both $\mathrm{AR}(1)$ processes are stationary.
(b) In the previous homework assignment, we derived the autocorrelation function for the $\mathrm{AR}(1)$ process:

$$
\rho(\tau)=\phi_{1}^{\tau}
$$

Use this formula to draw the autocorrelation function. Note that the autocorrelation function decays exponentially. For example, when $\phi_{1}=-0.5$:

$$
\rho_{0}=1, \quad \rho_{1}=-1 / 2, \quad \rho_{2}=1 / 4, \quad \rho_{3}=-1 / 8, \ldots
$$

Recall that the partial autocorrelation function of an $\operatorname{AR}(1)$ process cuts of after lag 1. Thus, it suffices to determine only the first partial autocorrelation. Hereby, the Yule-Walker equations give us directly that, $\alpha_{11}=\rho_{1}$.
4.2 Solve the partial autocorrelation α_{2} by using the Yule-Walker equations.

Solution. Denote $\alpha_{21}=\alpha_{1}$ ja $\alpha_{22}=\alpha_{2}$. The Yule-Walker equations give,

$$
\left(\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{\rho_{1}}{\rho_{2}}
$$

The matrix equations produce the following,

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{2} \rho_{1}=\rho_{1} \\
\alpha_{1} \rho_{1}+\alpha_{2}=\rho_{2} .
\end{array}\right.
$$

By solving the upper equation for α_{1} and substituting the solution into the lower equation, we get that,

$$
\begin{aligned}
& \left(\rho_{1}-\alpha_{2} \rho_{1}\right) \rho_{1}+\alpha_{2}=\rho_{2} \\
& \Rightarrow \alpha_{2}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}} .
\end{aligned}
$$

4.3 Derive the spectral density functions of MA(1) and SMA(1) ${ }_{12}$ processes.

Solution. The processes are of the form

$$
\begin{aligned}
& x_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1} \quad(\operatorname{MA}(1)), \\
& x_{t}=\varepsilon_{t}+\Theta_{1} \varepsilon_{t-12} \quad\left(\operatorname{SMA}(1)_{12}\right),
\end{aligned}
$$

where $\varepsilon_{t} \sim$ i.i.d $\left(0, \sigma^{2}\right)$ in both processes for every $t \in T$. The spectral density function $f(\lambda)$ of a stationary process is

$$
f(\lambda)=\frac{1}{2 \pi}\left(\gamma_{0}+2 \sum_{k=1}^{\infty} \gamma_{k} \cos (\lambda k)\right), \quad \lambda \in[0, \pi]
$$

where γ_{k} is the k :th autocovariance and λ is the frequency. By the previous homework assignment, we have that the autocovariance function of a MA(1) process is,

$$
\gamma_{k}= \begin{cases}\left(1+\theta_{1}^{2}\right) \sigma^{2}, & k=0 \\ \theta_{1} \sigma^{2}, & |k|=1 \\ 0, & |k|>1\end{cases}
$$

Hence, the spectral density function of MA(1) process is

$$
f(\lambda)=\frac{\sigma^{2}}{2 \pi}\left(1+\theta_{1}^{2}+2 \theta_{1} \cos (\lambda)\right)
$$

Similarly as in the case of MA(1) process, one can derive the autocovariance function for $\operatorname{SMA}(1)_{12}$ process. The result is given below.

$$
\gamma_{k}= \begin{cases}\left(1+\Theta_{1}^{2}\right) \sigma^{2}, & k=0 \\ \Theta_{1} \sigma^{2}, & k= \pm 12 \\ 0, & k \in \mathbb{Z} \backslash\{-12,0,12\}\end{cases}
$$

Hence, the spectral density function of $\operatorname{SMA}(1)_{12}$ process is

$$
f(\lambda)=\frac{\sigma^{2}}{2 \pi}\left(1+\Theta_{1}^{2}+2 \Theta_{1} \cos (12 \lambda)\right) .
$$

Prediction and Time Series Analysis Department of Mathematics and Systems Analysis Aalto University

Ilmonen/ Shafik/ Voutilainen/ Lietzén/ Mellin
Fall 2020
Exercise 4.

Figure 1: Time series 1 and the corresponding spectral, auto- and partial autocorrelation functions.

Homework

4.4 We have simulated four time series using R. Figures 1-4 contain the trajectories, spectrum, autocovariance function and partial autocovariance function of the corresponding time series. Using Figures 1-4, choose the correct model from the choices given in Table 1. Justify your selection!

Table 1: Choose the correct process.

Time series	Model candidates
1	$\operatorname{MA}(1), \operatorname{AR}(1)$
2	$\operatorname{AR}(2), \operatorname{MA}(2), \operatorname{ARMA}(2,2)$
3	$\operatorname{SMA}(1)_{12}, \operatorname{AR}(12), \operatorname{SAR}(1)_{12}$
4	$\operatorname{SMA}(1)_{12}, \operatorname{MA}(12), \operatorname{SAR}(1)_{12}$

In Figures 1-4, the spectral density functions are calculated from the theoretical stochastic process. The corresponding autocorrelation functions and the partial autocorrelation functions are estimated from the observed time series.

Figure 2: Time series 2 and the corresponding spectral, auto- and partial autocorrelation functions.

Figure 3: Time series 3 and the corresponding spectral, auto- and partial autocorrelation functions.

Figure 4: Time series 4 and the corresponding spectral, auto- and partial autocorrelation functions.

