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Exercise 6.

6. Computer exercises
6.1 The file Const.txt contains monthly data of the number of started construction projects

in a neighborhood in the USA between the years 1966 and 1974.

(a) Visualize the data. Does the time series look stationary? Into which components
could one try to decompose the time series?

(b) Use the function stl to decompose the time series. In other words, decompose the
time series into a trend component, a seasonal component and a random compo-
nent.

(c) Use the following filter to estimate the trend:

yt =
1

24
(xt−6 + 2xt−5 + 2xt−4 + . . .+ 2xt + . . .+ 2xt+4 + 2xt+5 + xt+6) .

Plot the obtained estimate yt, the estimate given by the function stl and the
original time series into a single figure. Are there differences between the estimates?

(d) Remove the trend and seasonal component from the time series by using difference
operations. Use the function stl to decompose the obtained time series.

Solution.

(a) By Figure 2, the time series does not seem to be stationary. We decompose the
time series into trend (mt), seasonal (st) and random (et) components:

xt = mt + st + et,

where mt = β0 + β1 · t+ . . .+ βkt
k is a polynomial of order k.

(b) The decomposition can be performed as follows.

CONST<- read.table("Const.txt",header=T,sep=",",row.names=1)

const <- ts(CONST,start=1966, frequency=12)
const.stl <- stl(const[,1], s.window="periodic")
# with s.window-parameter it is possible to set the method for
# estimating the seasonal component.

plot(const.stl)
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Figure 1: Decomposition of the time series Const.

(c) The filtering can be applied conveniently by utilizing the function filter. From
Figure 2, we see that the trend given by stl is almost identical to the one given
by filtering. However, the trend given by the filter is a bit rougher than the trend
given by stl, which can be seen by zooming the figure.

const.filt <- filter(const, c(1,rep(2,11),1)/24 )
trend <- const.stl$time.series[,2]

plot(const,lty=3)
lines(trend, col="blue")
lines(const.filt, lty=2, col="red")
legend("topleft", legend=c("Time series","Filter","STL"),

col=c(1,"red","blue"), lty=c(3,2,1))
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Figure 2: The original time series as gray, the trend given by stl function as blue and the
trend given by the filter as red.

(d) Next, we calculate the difference DD12 and decompose the obtained time series.
By the top subfigure of Figure 3, the time series obtained by taking the differences
could be stationary.

const.diff <- diff(diff(const, lag=12))

const.diff.stl <- stl(const.diff[,1], s.window="periodic")

plot(const.diff.stl)
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Figure 3: Decomposition of the time series DD12Const.
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Figure 4: DD12Const as gray and the trend given by stl function as blue.
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6.2 The file arsimulation.txt contains realizations at 100 distinct points of time for the
following three processes,

xt = εt −
xt−1
2
, (1)

yt = νt −
yt−1
2
, (2)

zt = ηt −
zt−1
2
, (3)

where for every t ∈ {2, 3 . . . , 100}, εt was generated independently from the standard
Cauchy distribution, νt was generated independently from the Student’s t-distribution
with 3 degrees of freedom and ηt was generated independently from the Student’s t-
distribution with 30 degrees of freedom. The starting point for the time series was
chosen to be deterministically x1 = y1 = z1 = 0.

(a) Visualize the three time series.
(b) Fit an AR(1) process to each of the three time series by using the function Arima

from the package forecast. Use Arima with the arguments include.mean = FALSE
and method="ML". Does the AR(1) parameter estimates given by Arima match the
true parameter values −1/2?

(c) Bootstrap 95% confidence intervals for the AR(1) model parameters. Use Arima
with the arguments include.mean = FALSE and method="ML".

(d) Assume that for all s ≥ 1, we have that xt−s ⊥⊥ εt, yt−s ⊥⊥ νt, and zt−s ⊥⊥ ηt,
where ⊥⊥ is used to denote stochastic independence. In addition, assume that the
elements of the set {εt}t∈Z are i.i.d., the elements of {νt}t∈Z are i.i.d. and the
elements of {ηt}t∈Z are i.i.d. Under these assumptions, which of the theoretical
processes (1)–(3) are weakly stationary?

Solution.

(a) We import the data and plot the three time series, see Figure 5 and the following
code.

#install.packages("forecast")
library(forecast)

simu <- read.table("arsimulation.txt",header=TRUE)

ts.plot(simu[,1], main="Time series (1)",ylab="x")
ts.plot(simu[,2], main="Time series (2)",ylab="y")
ts.plot(simu[,3], main="Time series (3)",ylab="z")

In Figure 5, there is a visible peak for time series (1) with t = 43. Note that,
the standard Cauchy distribution has considerably heavier tails when compared
to, e.g., any Normal distribution.
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Figure 5: Length 100 realizations of the stochastic processes (1) - (3).

(b) We estimate the AR(1) parameters using the three time series.

fitX <- Arima(X,order=c(1,0,0), include.mean = FALSE, method="ML")
fitY <- Arima(Y,order=c(1,0,0), include.mean = FALSE, method="ML")
fitZ <- Arima(Z,order=c(1,0,0), include.mean = FALSE, method="ML")
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fitX$coef # -0.499
fitY$coef # -0.494
fitZ$coef # -0.492

The AR(1) parameters estimated from the first, second and third time series are
approximately −0.499, −0.494 and −0.492, respectively. Hereby, the estimates are
all relatively close to the true parameter value −1/2.

(c) We implement steps 1-5 from the lecture slides, see the following code. Here, the
theoretical minimum time series length required for estimating the model param-
eters is w = 2. However, estimating the AR(1)-parameter from only two observa-
tions makes the maximum-likelihood (ML) procedure unstable. We ensure more
fluent computations by setting w = 10.

set.seed(3141)

# Choose number of repetitions
m <- 5000 # if slow, make this smaller
w <- 10 # Theoretical minimum would be w =2
# However, estimating the AR(1)-parameter from 2 observations
# makes the ML-estimation procedure unstable
# Thus, we set w = 10

n <- length(X) # The length of the time series is 100
resX <- rep(NA,m) # Initialize an empty vector for the results

for(i in 1:m){
# Step 1: Select two time points s and u, 0 < s < u <= n, u-s >= w
# uniformly

# Keep choosing the time points, until u-s >= w is satisfied
u <- 0 # initialize u and s
s <- 0
while(u-s < w){

# The same point cannot be chosen twice
su <- sample(1:n,2,replace=FALSE)
s <- min(su)
u <- max(su)

}# Keep repeating until u-s >= w = 10

# Step 2: Calculate a new parameter vector esimate from the series
# x_s, x_(s+1),..., x_u

# print(i) #uncomment this, if you want to track progress
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resX[i] <- Arima(X[s:u],order=c(1,0,0),include.mean = FALSE,
method="ML")$coef[1]

} # Step 3: Repeat m-1 times

# Step 4: Order the obtained m estimates from the smallest to the
# largest

resXsort <- sort(resX)

# Step 5: Set lower end of the boostrap confidence interval to be
# smaller than or equal to the 125th ordered estimate and
# set the upper end of the bootstrap confidence interval
# to be larger than or equal to the 4875th ordered estimate.

confintX <- c(resXsort[125],resXsort[4875])

# Repeat the same for Y and Z

The requested confidence intervals estimated from the first, second and third time
series are approximately [−0.94,−0.17], [−0.75,−0.26] and [−0.75,−0.23], respec-
tively.

(d) The standard Cauchy distribution is exactly the Student’s t-distribution with 1
degree of freedom. Student’s t-distribution with k degrees of freedom has k − 1
theoretical moments. As the variance of xt and the variance of εt are undefined,
the process (1) is not weakly stationary. Recall that, weak stationarity contains
the assumption that the variance is time invariant and finite.
Consequently, the AR(1) processes (2) and (3) have finite variances. Under the
assumptions of this exercise and by previous theoretical exercises, we have that the
theoretical processes (2) and (3) are weakly stationary.

6.3 The file alcoholdeaths.txt contains a univariate time series of the number of yearly
alcohol related deaths in Finland per 100 000 individuals belonging to the age group 40–
49. The data covers the years 1969–2007 and the data set is available in the homepage
of Statistics Finland.

Denote the observed number of deaths per 100 000 individuals in the year t as yt.
Assume that the underlying stochastic process that has generated the time series yt is
normally distributed for every t such that yt ∼ N (µt, σ

2
ε), that is, the variance is the

same for every t and the mean depends on t. Assume that the mean process µt is a
random walk with drift such that,

µt+1 = µt + ν + ηt, (4)
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where ηt ∼ N (0, σ2
η) for every t. Assume that we have no prior information regarding

the initial state µ1 and the constant slope ν. Using Kalman filter, estimate the model
parameter ν and calculate the one year prediction for the time series.

Solution. In order to apply the Kalman filter, we first need to construct the state–
space representation for the process. In this exercise, we use the R-package KFAS. The
notation used by the corresponding R-package differs a little from the notation used
in the lecture slides. In order to keep the estimation steps more clear, we follow the
notation of the R-package in this exercise.

Using the notation of the package KFAS, the state-space representation of a dynamical
system is of the from:

yt = Ztαt + εt, (observation equation)
αt+1 = Ttαt +Rtηt (state equation),

where εt ∼ N (0, Ht), ηt ∼ N (0, Qt) for every t and α1 ∼ N (α1, P1) and εt, ηs and
α1 are mutually independent of each other for every t and s. In general, the system
matrices Zt, Tt and Rt can be time dependent. However, in this exercise all of the
system matrices are time invariant, that is, constant over time.

The state–space representation for the process µt, given in Equation (4), is obtained by
defining,

Z =
(
1 0

)
, H = σ2

ε , T =

(
1 1
0 1

)
,

αt =

(
µt
νt

)
, R =

(
1
0

)
, Q = σ2

η,

α1 =

(
0
0

)
, P∗,1 =

(
0 0
0 0

)
, P∞,1 =

(
1 0
0 1

)
,

where the matrices P∗,1 and P∞,1 are related to the estimation of the unknown variances
σ2
ε and σ2

η. Again, the notation used by the package KFAS deviates slightly from the
notation of the lecture slides. Defining the matrices P∗,1 and P∞,1 as above, corresponds
to the initial guess that the covariance matrix is an identity matrix.

The state–space representation for the process is then,

yt =
(
1 0

)(µt
νt

)
+ εt,(

µt+1

νt+1

)
=

(
1 1
0 1

)(
µt
νt

)
+

(
ηt
0

)
.

Note that even though the slope term ν is time invariant in the model above (νt+1 = νt),
it is still recursively estimated by the Kalman filter for every t. In the recursive Kalman
filter estimation process, when the new observation yt becomes available, the estimates
are updated to take account of the new information given by yt. Thus, the final estimate
for the slope term will be the one given after the information of every yt has been utilized.
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The estimation procedure in R can be performed as follows. Note that all of the unknown
model parameters are set to be NA below. After estimating the model, the unknown
model parameters σ2

ε and σ2
η can be estimated using the function fitSSM.

#install.packages("KFAS")
library(KFAS)

alko <-ts(read.table("alcoholdeaths.txt"),start=1969)

a1 <- c(0,0) # Initial guess for mu and nu
Zt <- matrix(c(1, 0), 1, 2)
Ht <- matrix(NA)
Tt <- matrix(c(1, 0, 1, 1), 2, 2)
Rt <- matrix(c(1, 0), 2, 1)
Qt <- matrix(NA)
P1 <- matrix(0, 2, 2)
P1inf <- diag(2)

# -1 sets that no constant is estimated in the model.

model_gaussian <- SSModel(alko~-1+SSMcustom(a1=a1,Z=Zt,T=Tt,R = Rt,Q=Qt,
P1=P1,P1inf=P1inf),H=Ht)

fit_gaussian <- fitSSM(model_gaussian, inits = c(0, 0))
# above inits-parameter is related to the estimation procedure of the
# unknown variances

fit_gaussian$model$Q # ML-estimate for the variance of eta_t
fit_gaussian$model$H # ML-estimate for the variance of epsilon_t

out_gaussian <- KFS(fit_gaussian$model)

plot(alko)
lines(out_gaussian$a[,1],col="red")

Thus, the obtained estimate for the parameter ν is 0.84. The estimates for ν at every t
is given by:

out_gaussian$a[,2]

The one step predictions for the state variable µt given by the Kalman filter are pre-
sented in Figure 6. These predictions also serve as predictions for alcohol related deaths.
The prediction for the year 2008 is visible from the Figure 6. Note that longer term pre-
dictions produced by Kalman filter involve generally relatively wide confidence intervals.
In other words, long term predictions are generally unreliable.
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Figure 6: The original time series as black and the one step predictions as red.
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