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Aalto University Exercise 6.

6. Theoretical exercises

Demo exercises

6.1 Show that the optimal mean squared error prediction for the stationary and invertible
ARIMA(0,1,1) process,

DJ?t =&+ 9181571, (Et)teT ~ 11d<0, 0'2), (1)
where ¢, and x; are independent for s > ¢, satisfies the formula,
Loy = axy + (1 — @) Typ—1,

of exponential smoothing when |0;| <1 and a =1+ 6.

Solution. We consider the optimal mean squared prediction of the ARIMA(0,1,1)
process,
£t+1\t =E 21 | er €61, -] -

Since
D.Z't =Ty — Tp_1 = &+ (91515,1, te T,

we have that,
Tip1 = Ty + €441 + 0164

The optimal prediction in the sense of the mean squared error is

Ty = ]E[xt—H | €ty €01, ] = E[xt + 1 + 016 | ery €0, ]
=T+ 61825.

Then, by combining Equation (1) with &;;_1 = 241+ 61,1, we get that e, = x; — Zy—1.
Thus,

Ty = oy + e = 2 + 6, («Tt - it\t—l)
= (14 6))x; — O Zepe—1 = oy + (1-— Oé)i"ﬂt—h

which concludes the proof.

1/3



Prediction and Time Series Analysis [lmonen,/ Shafik/ Voutilainen/ Lietzén/ Mellin
Department of Mathematics and Systems Analysis Fall 2020
Aalto University Exercise 6.

6.2 Show that ARMA(p, q) process

®(L)y; = O(L)e,  (e¢)er ~ WN (0,07),
O(L)=1—¢L— ¢ol?*—...— ¢,LP,
O(L) =1+ 0,L + 0L + ... + 6,19,

has the following state—space representation,

_Cbl ¢2 e Op ¢r Et+1

1 o --- 0 0 0
Ty = 0 1 .- 0 0 T + 0

_O o --- 1 O_ i 0 ]

Yt = [1 0 O--- 97«71} Tt,
where r = max{p,¢+ 1} and

¢; =0, whenj>p and 0; =0 when j>gq.

Solution.

The ARMA(p, q) process can be expressed as,

Yt = O1Yi—1 + Q22+ ...+ OpYp—y + ¢+ O1Er_1 + . OriEr i, (2)

where r = max{p,q+ 1} and ¢; = 0, when j > p, and §; = 0, when j > ¢. The
corresponding lag polynomial representation is

(1=61L = ¢L® = .. =L )y = (1 01 L+ 0,17+ Or a7 e

The objective is to show that the state space representation corresponds to Equation
(2). The first row of the state space representation gives

Tip1,1 = Q1T¢1 + Qoo + .o+ OpTyy + €441, (3)

where z; = (241,...,2;,)". The second row gives

Tiy1,2 = Tt1-

By the equation above, the third row can be written as

Ti41,3 = T2 = T—1,1-

Using the same logic, we get for the j:th row, 7 > 2, that,

i—1
Ti41,5 = L’ Ti41,1 = T42—5.1,
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which can be used to reformulate the first row of the state space presentation as
Tip11 = (¢1 + ¢oL + p3L* + ... + ¢7~LT_1) Te1 + Et41,
which is equivalent with,
Ety1 = (1 — 1L — ¢pol* — 3L + ... — ¢TLT) Tiq1,1- (4)
The observation equation is of the form
=21 + Oz + ...+ 0z, =(1+0 L+ .. +0, L gy (5)

By multiplying the observation equation (5) with (1 — ¢1L — ¢oL? — ... — ¢, L") and
utilizing Equation (4), we obtain

(1—¢pL—...— ¢ L)y =1+ L+...40,_1L ") (1—¢p1L—¢oL* — ... — ¢, L") 241
=(1+0L+...+0,_ 1L e,

which corresponds to the lag polynomial representation of the ARMA(p, q) process.
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