6. Theoretical exercises

Demo exercises

6.1 Show that the optimal mean squared error prediction for the stationary and invertible ARIMA $(0,1,1)$ process,

$$
\begin{equation*}
D x_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}, \quad\left(\varepsilon_{t}\right)_{t \in T} \sim \operatorname{iid}\left(0, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

where ε_{s} and x_{t} are independent for $s>t$, satisfies the formula,

$$
\hat{x}_{t+1 \mid t}=\alpha x_{t}+(1-\alpha) \hat{x}_{t \mid t-1},
$$

of exponential smoothing when $\left|\theta_{1}\right|<1$ and $\alpha=1+\theta_{1}$.
Solution. We consider the optimal mean squared prediction of the $\operatorname{ARIMA}(0,1,1)$ process,

$$
\hat{x}_{t+1 \mid t}=\mathbb{E}\left[x_{t+1} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right] .
$$

Since

$$
D x_{t}=x_{t}-x_{t-1}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}, \quad t \in T,
$$

we have that,

$$
x_{t+1}=x_{t}+\varepsilon_{t+1}+\theta_{1} \varepsilon_{t} .
$$

The optimal prediction in the sense of the mean squared error is

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =\mathbb{E}\left[x_{t+1} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right]=\mathbb{E}\left[x_{t}+\varepsilon_{t+1}+\theta_{1} \varepsilon_{t} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right] \\
& =x_{t}+\theta_{1} \varepsilon_{t} .
\end{aligned}
$$

Then, by combining Equation (1) with $\hat{x}_{t \mid t-1}=x_{t-1}+\theta_{1} \varepsilon_{t-1}$, we get that $\varepsilon_{t}=x_{t}-\hat{x}_{t \mid t-1}$. Thus,

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =x_{t}+\theta_{1} \varepsilon_{t}=x_{t}+\theta_{1}\left(x_{t}-\hat{x}_{t \mid t-1}\right) \\
& =\left(1+\theta_{1}\right) x_{t}-\theta_{1} \hat{x}_{t \mid t-1}=\alpha x_{t}+(1-\alpha) \hat{x}_{t \mid t-1},
\end{aligned}
$$

which concludes the proof.
6.2 Show that ARMA (p, q) process

$$
\begin{aligned}
\Phi(L) y_{t} & =\Theta(L) \varepsilon_{t}, \quad\left(\varepsilon_{t}\right)_{t \in T} \sim \mathrm{WN}\left(0, \sigma^{2}\right), \\
\Phi(L) & =1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{p} L^{p}, \\
\Theta(L) & =1+\theta_{1} L+\theta_{2} L^{2}+\ldots+\theta_{q} L^{q},
\end{aligned}
$$

has the following state-space representation,

$$
\begin{aligned}
x_{t+1} & =\left[\begin{array}{ccccc}
\phi_{1} & \phi_{2} & \cdots & \phi_{r-1} & \phi_{r} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] x_{t}+\left[\begin{array}{c}
\varepsilon_{t+1} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \\
y_{t} & =\left[\begin{array}{lllll}
1 & \theta_{1} & \theta_{2} & \cdots & \theta_{r-1}
\end{array}\right] x_{t},
\end{aligned}
$$

where $r=\max \{p, q+1\}$ and

$$
\phi_{j}=0, \quad \text { when } j>p \quad \text { and } \quad \theta_{j}=0 \quad \text { when } j>q .
$$

Solution.

The ARMA (p, q) process can be expressed as,

$$
\begin{equation*}
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{r} y_{t-r}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\ldots+\theta_{r-1} \varepsilon_{t-r+1}, \tag{2}
\end{equation*}
$$

where $r=\max \{p, q+1\}$ and $\phi_{j}=0$, when $j>p$, and $\theta_{j}=0$, when $j>q$. The corresponding lag polynomial representation is

$$
\left(1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{r} L^{r}\right) y_{t}=\left(1+\theta_{1} L+\theta_{2} L^{2}+\ldots \theta_{r-1} L^{r-1}\right) \varepsilon_{t} .
$$

The objective is to show that the state space representation corresponds to Equation (2). The first row of the state space representation gives

$$
\begin{equation*}
x_{t+1,1}=\phi_{1} x_{t, 1}+\phi_{2} x_{t, 2}+\ldots+\phi_{r} x_{t, r}+\varepsilon_{t+1}, \tag{3}
\end{equation*}
$$

where $x_{t}=\left(x_{t, 1}, \ldots, x_{t, r}\right)^{\top}$. The second row gives

$$
x_{t+1,2}=x_{t, 1} .
$$

By the equation above, the third row can be written as

$$
x_{t+1,3}=x_{t, 2}=x_{t-1,1} .
$$

Using the same logic, we get for the j :th row, $j \geq 2$, that,

$$
x_{t+1, j}=L^{j-1} x_{t+1,1}=x_{t+2-j, 1},
$$

which can be used to reformulate the first row of the state space presentation as

$$
x_{t+1,1}=\left(\phi_{1}+\phi_{2} L+\phi_{3} L^{2}+\ldots+\phi_{r} L^{r-1}\right) x_{t, 1}+\varepsilon_{t+1},
$$

which is equivalent with,

$$
\begin{equation*}
\varepsilon_{t+1}=\left(1-\phi_{1} L-\phi_{2} L^{2}-\phi_{3} L^{3}+\ldots-\phi_{r} L^{r}\right) x_{t+1,1} \tag{4}
\end{equation*}
$$

The observation equation is of the form

$$
\begin{equation*}
y_{t}=x_{t, 1}+\theta_{1} x_{t, 2}+\ldots+\theta_{r-1} x_{t, r}=\left(1+\theta_{1} L+\ldots+\theta_{r-1} L^{r-1}\right) x_{t, 1} \tag{5}
\end{equation*}
$$

By multiplying the observation equation (5) with $\left(1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{r} L^{r}\right)$ and utilizing Equation (4), we obtain

$$
\begin{aligned}
\left(1-\phi_{1} L-\ldots-\phi_{r} L^{r}\right) y_{t} & =\left(1+\theta_{1} L+\ldots+\theta_{r-1} L^{r-1}\right)\left(1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{r} L^{r}\right) x_{t, 1} \\
& =\left(1+\theta_{1} L+\ldots+\theta_{r-1} L^{r-1}\right) \varepsilon_{t},
\end{aligned}
$$

which corresponds to the lag polynomial representation of the $\operatorname{ARMA}(p, q)$ process.

