
Internet Traffic
Measurements
A Brief Introduction to R and Data Mining

School of Electrical Engineering
AALTO UNIVERSITY

Page 1

Document Modification Record

Index Author/s Created on Revised by Revised on Descriptions

1 Mortezaei 07/01/2016 Creation of the draft version

Contents

What is R? ... 2

Page 2

How to get and install R ... 3

Getting started with R ... 3

Value Assignment .. 3

Listing and removing the current variables .. 4

Basic arithmetic operations ... 4

Vectors and matrices operations ... 4

Importing data from file .. 6

Viewing data.. 7

Plotting the data .. 9

Statistics and probability.. 13

Regression ... 17

Data mining ... 20

Classification and decision Tree ... 20

Decision tree using C5.0 function in R .. 23

Decision tree using rpart function in R ... 25

Clustering .. 26

Partitioning method ... 28

K-means clustering in R .. 30

K-medoids clustering in R ... 32

Hierarchical clustering in R ... 33

Density based clustering in R ... 34

What is R?
R is a free software programming language and a software environment for statistical computing and
graphics. The R language is widely used among statisticians and data miners for developing statistical
software and data analysis and compiles and runs on a wide variety of UNIX platforms, Windows and
Mac.

Page 3

How to get and install R
Installing R is very easy and straightforward process. Installation package for R can be downloaded for
free from following website:

https://cran.r-project.org/mirrors.html

After selecting the appropriate mirror you will be redirected to page which make you able to select
the installation package for different operation systems including Windows, Linux and Mac.

Note:

Windows operating system has been used through the entire of this tutorial.

When you finished downloading the package try to install it using the default and recommended
settings during the installation process.

In addition to use R for doing the ordinary tasks in statistical and data mining, sometimes it might be
easier and more beneficial for the users to install the R Studio software packages and integrate it with
their already existing installation of R.

R Studio is complementary software for R and usually is considered as an IDE for R to provide more
comprehensive facilities and interesting graphical interfaces to users and It must be noted that
installing and using R Studio is not mandatory part of the process and you still are able to use R and
analyze your data or write your scripts without installing and using R Studio.

Download and install the latest version R Studio from following link:

https://www.rstudio.com/products/rstudio/download2/If you don’t not encounter any problem
during the installation process then you are able to run the R Studio which is something like this:

Getting started with R
Working with R is quite simple and handy as it have lot of things in common with already existing
programing languages, so if you are familiar with any of those programing languages then you might
find the command line and commands more easier to understand.

Value Assignment
Values can be assigned to variable using both equal sign “=” or arrow sign “<-“as follows:

variable1 = 1362

https://cran.r-project.org/mirrors.html
https://www.rstudio.com/products/rstudio/download2/

Page 4

variable2 = 3.1415

Or equivalently:

variable1 <- 1362
variable2 <- 3.1415

Use quotation mark to assign String values to variables:

firstName = "Alex"

it must be noted as like other programing languages, R is also case sensitive so variable “X” is differen
t than variable ”x”.

Listing and removing the current variables
Use ls() command to list the current available variables and rm() to remove a variable in workspace:

ls()
[1] "variable1" "variable2"

rm(variable1)

ls()
[1] "variable2"

Basic arithmetic operations
x = 4
y = -2
z = 8

x + y + z
[1] 10

x - z
[1] -4

x * y
[1] -8

z / x
[1] 2
x ^ 2
[1] 16

log(x)
[1] 1.386294

exp(x)
[1] 54.59815

abs(y)
[1] 2

Vectors and matrices operations
Use c() , “:” or seq() to create a vector of numerical or string values as follows:

vector1 = c(1,2,3,4,5)
vector1

Page 5

[1] 1 2 3 4 5

vector2 = 1:10
vector2
[1] 1 2 3 4 5 6 7 8 9 10

vector3 = seq(from=1 , to=10 , by=2)
vector3
[1] 1 3 5 7 9

Above command will create a numerical vector beginning from 1 up to 10 by steps of 2.
Vectors with same number of elements can be added, subtracted, multiplied or divided in element w
ise fashion as follows:

vector1
[1] 1 2 3 4 5

vector3
[1] 1 3 5 7 9

vector1 + vector2
[1] 2 4 6 8 10 7 9 11 13 15

vector1 * vector2
[1] 1 4 9 16 25 6 14 24 36 50

You can extract specific or range of elements from the vector by using following different methods:

vector3
[1] 1 3 5 7 9

vector3[3]
[1] 5

Will extract the third element.

vector3[3:5]
[1] 5 7 9

Will extract the third to fifth element.

vector3[-3]
[1] 1 3 7 9

Will extract all elements except the third element.

vector3[c(1,5)]
[1] 1 9

Will extract the first and fifth element.

Create the matrices using matrix command:
matrix1 = matrix(100:108 , nrow = 3 ,byrow=TRUE)
matrix1
 [,1] [,2] [,3]
[1,] 100 101 102
[2,] 103 104 105
[3,] 106 107 108

Or

matrix2 = matrix(100:108 , nrow = 3 ,byrow=FALSE)

Page 6

matrix2
 [,1] [,2] [,3]
[1,] 100 103 106
[2,] 101 104 107
[3,] 102 105 108

You can extract specific or range of elements from the vector by using following different methods:

matrix1
 [,1] [,2] [,3]
[1,] 100 101 102
[2,] 103 104 105
[3,] 106 107 108

matrix1[1,3]
[1] 102

Will extract the element on first row and third column.

matrix1[c(1,2),3]
[1] 102 105

Will extract the elements on first and second row and third column.

matrix1[,3]
[1] 102 105 108

Will extract the elements on third column.

Importing data from file
R supports several different method to import data including import from the command line or impo
rt from the GUI menus.
Use following commands to import your data (in comma separated value format) files into R:

dataSet1 = read.csv(file=" C:\Users\Nariman\Desktop\somefile.csv" , header
= TRUE)

Two import parameters for this command are “file” which denoted the full path to your data file and
“header” which tells the R to consider the first row as variable names instead of data.
The easier method to select your data file instead of giving the full path to the file is using the “file.ch
oose” option to let the R open the select file window and asks you to select your data file.

dataSet1 = read.csv(file.choose() , header = TRUE)

More general approach for importing data files with different formats other than CSV files is using th
e “read.table” command in R.
As an example use following commands to import CSV or tab delimited files into R workspace:

dataSet1 = read.table(file.choose() , header = TRUE , sep = ",")

or

dataSet1 = read.table(file.choose() , header = TRUE , sep = "\t")

Page 7

As you can see “read.table” command make you able to choose the proper delimiter used to format t
he data in your file.

Viewing data
When you finished importing your data into the workspace then you are able to take a look at your
data using the GUI or using some more sophisticated built-in functions in R to view or analyze your
dataset.

Followings are some useful commands to help you to gain some overall information about your datas
et.

Data = read.table(file.choose() , header = TRUE , sep = ",")
dim(Data)
[1] 725 6

To view the dimension of your data.

length(Data)
[1] 6

To view length of vectors your data.

names(Data)
[1] "Variable1" "Variable2" "Variable3" "Variable4" "Variab
le5" "Variable6"

To view names of the objects in your data.

attach(Data)

To attach the dataset to the R search path. This means that the dataset is searched by R when evalua
ting a variable, so objects in the database can be accessed directly by simply giving their names. with
out attaching a dataset to workspace you can access the object by referencing the object name in fol
lowing format:
Your_dataset_variable$column_name

detach(Data)

To de-attach your already attached dataset from the workspace.

head(Data)

Page 8

 Variable1 Variable2 Variable3 Variable4 Variable5 Variable6
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no

To view the first 6 rows of your dataset.

tail(Data)
 Variable1 Variable2 Variable3 Variable4 Variable5 Variable6
720 7.325 9 66.3 no male no
721 5.725 9 56.0 no female no
722 9.050 18 72.0 yes male yes
723 3.850 11 60.5 yes female no
724 9.825 15 64.9 no female no
725 7.100 10 67.7 no male no

To view the last 6 rows of your dataset.

Data[c(100,101,102,103) ,]
 Variable1 Variable2 Variable3 Variable4 Variable5 Variable6
100 6.100 10 57.0 no male no
101 8.025 13 66.2 yes male no
102 9.225 14 66.9 no male no
103 3.450 13 58.5 no female yes

To view the 100th, 101th, 102th, 103th rows of your data.

Data[-c(1:720) ,]
 Variable1 Variable2 Variable3 Variable4 Variable5 Variable6
721 5.725 9 56.0 no female no
722 9.050 18 72.0 yes male yes
723 3.850 11 60.5 yes female no
724 9.825 15 64.9 no female no
725 7.100 10 67.7 no male no

To view all rows except row 1 up to 720 of your data.

summary(Variable3)
Min. 1st Qu. Median Mean 3rd Qu. Max.
45.30 59.90 65.40 64.84 70.30 81.80

To produce result summaries of the results of various model fitting functions. The function invokes p
articular methods which depend on the class of the first argument of your data.

cor(iris[,1:4])
 Variable1 Variable2 Variable3 Variable4
Variable1 1.0000000 -0.1093692 0.8717542 0.8179536
Variable2 -0.1093692 1.0000000 -0.4205161 -0.3565441
Variable3 0.8717542 -0.4205161 1.0000000 0.9627571
Variable4 0.8179536 -0.3565441 0.9627571 1.0000000

To check the correlation among the first four columns in your dataset.
The higher values for the correlations among two datasets means the higher similarity among those d
atasets in question.

aggregate(Sepal.Length ~ Species, summary, data=iris)
 Species Sepal.Length.Min. Sepal.Length.1st Qu. Sepal.Length.Medi
an Sepal.Length.Mean Sepal.Length.3rd Qu. Sepal.Length.Max.
1 Iris-setosa 4.300 4.800 5.0
00 5.006 5.200 5.800
2 Iris-versicolor 4.900 5.600 5.9
00 5.936 6.300 7.000

http://127.0.0.1:39341/help/library/base/help/methods
http://127.0.0.1:39341/help/library/base/help/class

Page 9

3 Iris-virginica 4.900 6.225 6.5
00 6.588 6.900 7.900

To split your dataset based on the given condition (here we split Sepal.Length according to Spec
ies) and building the summary for each column in the dataset.

Plotting the data
The raw data is not interesting for anyone as it cannot show any valuable information to the beholde
rs.
Potting data is an excellent way to extract useful information out of the raw data and show it to peop
les who are interested to that data.
R supports different methods for plotting data including:

Bar Chart:
barplot(table(Ports) , col = "blue" , main = "Sample Plot (Bar Chart)", na
mes.arg = c("TCP" , "UDP") , las = 1)

To plot a bar chart from the port information dataset which includes TCP or UDP ports.

As you can see from the command line argument, the “table” command has been used to build a con
tingency table of the counts on a dataset called “Ports” and then “barplot” command has been used t
o plot the final result.

Page 10

Other arguments used in this command are not mandatory but just used to change the appearance o
f the figures and represented data such as:

Argument Purpose Values Example
col Changing the color of the figur

es.
blue, green, yello
w… or their num
ber equivalent.

col = “blue”

main Changing the title of the figure
.

string Main = “Sample Plot”

xlab Changing the label for X axis. string xlab = “ports”
ylab Changing the label for Y axis. string ylab = “counts”
lwd Changing the line width. integer lwd = 3
lty Changing the line type. integer lty = 2
names.arg Changing the label or bars. vector names.arg = c(“TCP”, “UDP”)
horiz Changing the horizontal/vertic

al view.
boolean horiz = True

xlim Changing the range for X axis. vector xlim = c(0,5)
ylim Changing the range for Y axis. vector ylim = c(-10,10)
type Changing the drawing type fro

m dots to line.
Type = “l”

Pie chart:
pie(table(Ports) , main = "Sample Plot (Pie Chart)")

To plot a pie chart from the port information dataset which includes TCP or UDP ports.

Box plot:
boxplot(ActiveCon , main = "Sample Plot (Box Plot)" , ylim =c(0,15) , ylab
= "Active Connections" , las = 1)

To plot a box plot from the number of active TCP connection in a small LAN.

Page 11

Scatter plot:
plot(Variable2 , Variable1 , col = "Blue" , main = "Sample Plot (Scatter P
lot)" ,xlab = "Varibale2" , ylab = "Variable1")

To plot a values for variable against the values for another variable. As you can see from the function
argument and the below picture, values for the first variable and second variable will lays on X and Y
axis respectively.

Pair plot:
data(iris)
pairs(iris , col = "blue")

Page 12

To plot a pairs of scatter plot for each variable against other variables in the dataset. The advantages
of the pair plot is that you can quickly discover the relations among the different variables in the data
set.

Histogram:
hist(set1 , prob = T , col = "blue" , ,breaks = 20)

To plot a histogram from a normal distribution dataset called “set1” with mean value of 5 and standa
rd deviation of 3.

Page 13

As you can see from the command line the argument “prob” is used to use probability instead of freq
uency (default case with “hist” command) and argument “breaks” is used to denote the number of b
reak points or bin width in dataset.
Besides using histogram to represent the data sometime it is useful to use the density curve using fol
lowing command:
lines(density(set1) , col = "red" , lwd = 4)

Statistics and probability
Using R you are able to analyze the statistical behavior of your data.
Use following commands to check the basic statistical parameters of the data set such as mean value
, variance and …

Mean:
mean(set1)
[1] 5.178111

To get the mean value for dataset “set1”.

Variance:
var(set1)
[1] 9.408577

To get the variance for dataset “set1”.

Stamdard deviation:
sd(set1)
[1] 3.06734
To get the standard deviation for dataset “set1”.

Quartiles:
quantile(set1 , prob = c(0 , 0.25 , 0.5 , 1))
 0% 25% 50% 100%
-5.484332 3.358616 5.087211 15.018549

To get the different quartiles for dataset “set1”.

Binomial random variable:

Page 14

dbinom(x=3 , size = 10 , prob = 0.5)
[1] 0.1171875

To get probability of 3 success out of 10 trials where the probability of success is 0.5.

pbinom(q=3 , size = 10 , prob = 0.5 , lower.tail = T)
[1] 0.171875

To get probability of maximum 3 success out of 10 trials where the probability of success is 0.5.

binom = rbinom(n=1000 , size = 30 , prob = 0.5)
hist(binom , breaks = seq(1:30) , prob= T , col = "blue" , main = "Histogr
am for Binomial Distribution" , xlab = "Number of Success")

To generate 1000 observation for 30 trials where the probability of success is 0.5.

Poisson random variable:
dpois(x = 3 , lambda = 4)
[1] 0.1953668

To get probability of 3 arrivals when the arrival rate (ߣ) is equal to 4.

ppois(q= 7 , lambda = 4 , lower.tail = F)
[1] 0.05113362

To get probability of at least 7 arrivals when the arrival rate (ߣ) is equal to 4.

pois = rpois(1000 , 4)
hist(pois , breaks = 19 , prob= T , col = "blue" , main = "Histogram for P
oisson Distribution" , xlab = "Number of Arrivals")

To generate 1000 observation for a Poisson process when the arrival rate (ߣ) is equal to 4.

Page 15

Normal random variable:
pnorm(q = 3 , mean = 5 , sd = 2 , lower.tail = F)
[1] 0.8413447

To get the probability of ܺ ≥ 3 if ܺ is normal random variable with mean value of 5 and standard de
viation of 2.

norm = rnorm(n=1000 , mean = 5, sd = 2)
hist(norm , breaks = 19 , prob= T , col = "blue" , main = "Histogram for N
ormal Distribution" , xlab = "Value")

To generate 1000 observation for random variable ܺ with mean value of 5 and standard deviation of
2.

Page 16

Uniform random variable:
uniform = runif(1000 , min = 10 , max = 15)
hist(uniform , breaks = 9 , prob= T , col = "blue" , main = "Histogram for
Unifirm Distribution" , xlab = "Value")

To generate 1000 observation for random variable ܺ where ܺ has uniform distribution from 10 to 15
.

Log-Normal random variable:
lnormal = rlnorm(1000, meanlog=0, sdlog=1)

Page 17

hist(lnormal , prob= T , col = "blue" , main = "Histogram for Log-Normal
Distribution" , xlab = "Value")

To generate 1000 observation for random variable ܺ where ܺ has log-normal distribution with mean
valve of 0 and standard deviation of 1.

It must be noted if ܺ has normal distribution then ܻ = 	 ݁௑ has log-normal distribution.

Regression
In statistical modeling regression analysis is one of the most important statistical methods for estima
ting the relationships among different variables. There are multiple techniques for modeling the relat
ion among different variables in a dataset but usually the focus is on the relationship between a depe
ndent variable and one or more independent variables.
Regression analysis helps data scientists to understand how the values for dependent variable chang
es does when one of the independent variables changes and other independent variables are held fix
ed.
Most commonly, regression analysis estimates the conditional expectation of the dependent variable
given the independent variables, that is, the average value of the dependent variable when the indep
endent variables are fixed.
R supports different methods for regression analysis and here we describe the most common technic
s which might be helpful for you during this course.

Linear regression:
Given a dataset and we are interested to see if there is any relation between the dependent variable
ܻ and variable ܺ.
If we plot the variable ܻ against variable ܺ	then we have:

Page 18

As it is clear from the picture there is a linear relation among those variables which can be modeled a
s follows:
lminfo = lm(Yvariable ~ Xvariable)
summary(lminfo)

Call:
lm(formula = Yvariable ~ Xvariable)

Residuals:
 Min 1Q Median 3Q Max
-3.3619 -0.7014 -0.0032 0.7787 3.2938

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.996829 0.367451 -38.09 <2e-16 ***
Xvariable 0.337157 0.005633 59.86 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.092 on 723 degrees of freedom
Multiple R-squared: 0.8321, Adjusted R-squared: 0.8319
F-statistic: 3583 on 1 and 723 DF, p-value: < 2.2e-16
.2e-16

abline(lminfo , col = "red" , lty = 2 , lwd = 4)

Page 19

As you can see from above results the coefficient section includes important information such as the
slope (0.337157) and intercept (-13.996829) of the model and as we are dealing with linear regressio
n, knowing the slope and intercept is sufficient to predict the other values of the dependent variable.

Sometimes we might be interested to model the values for the dependent random variable based th
e values of several independent variables (ݕ = 	ℱ(1ݔ	, ,2ݔ …)).
The procedure for
mlminfo = lm(Yvariable ~ Xvariable + Zvariable)
summary(mlminfo)

Call:
lm(formula = Yvariable ~ Xvariable + Zvariable)

Residuals:
 Min 1Q Median 3Q Max
-3.4080 -0.7097 -0.0078 0.7167 3.1679

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -11.747065 0.476899 -24.632 < 2e-16 ***
Xvariable 0.126368 0.017851 7.079 3.45e-12 ***
Zvariable 0.278432 0.009926 28.051 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.056 on 722 degrees of freedom
Multiple R-squared: 0.843, Adjusted R-squared: 0.8425
F-statistic: 1938 on 2 and 722 DF, p-value: < 2.2e-16

Page 20

Data mining
Data mining is mainly dealing with exploring and analyzing the available data from the
past and predicting the future by those analysis. Data mining is a multi-disciplinary and vast field
which can contains and utilize different concepts and technologies such as statistics, machine learning,
artificial intelligence and database technology. Many businesses have stored large amounts of data
over years of operation, and data mining is able to extract very valuable knowledge from this data.
The businesses are then able to leverage the extracted knowledge into more clients, more sales, and
greater profits.

In this section we will take a brief look at implementation of common data mining methods such as d
ecision trees, clustering and some other useful methods using R.

Classification and decision Tree
Decision trees are one the most prevalent and common technics in data mining used for classificatio
n or regression models in the form of a tree structure. Decision trees divides and breaks down a data
set into smaller subsets based on some specific criteria and continue this procedure until there is no
data left to be divided by the criteria.
The structure of the decision trees are flowchart based where each node represents a specific criteri
a on an attribute and there for each branch is result of evaluating the data against the criteria and ea
ch leaf node represents a class label.
As an example to what mentioned above, let’s consider we already have some prior information abo
ut the computers bought by different peoples during a specific period of time and now are interested
to build a model by the means of decision tree to anticipate the sales in the upcoming future.

Age Income Student Credit Card
Status

Bought a PC?

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

And the respected decision tree would be as follows:

Age

http://www.saedsayad.com/explaining_the_past.htm
http://www.saedsayad.com/explaining_the_past.htm
http://www.saedsayad.com/predicting_the_future.htm

Page 21

There are different mathematical algorithms used for building the decision trees including:

· ID3
· C5.0
· Classification and regression tree (CART)

The basic algorithm used for building the decision trees are greedy algorithms (A greedy algorithm is
an algorithm that follows the problem solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum) which operate as follows:

1. Tree is constructed in a top-down recursive divide-and-conquer manner.
2. At start, all the training examples are at the root of the tree.
3. Attributes are categorical (if continuous-valued, they are discretized in advance).
4. Examples are partitioned recursively based on selected attributes.
5. Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information

gain).

And we will stop the partitioning the data if one or all of the following conditions happens:

1. All samples for a given node belong to the same class.
2. There are no remaining attributes for further partitioning – majority voting is employed for

classifying the leaf.
3. There are no samples left.

With knowing the general procedure of the algorithm we only need to determine order of attributes
from the root to the leafs in order to build the tree.

There are several attribute selection measurements to help us to choose the optimal attribute to begin
and continue in each stage including information gain, gain ratio or Gini index where each of these
methods have their own advantages and disadvantages. Here we will provide a brief description of on
information gain method:

Information gain method can be used in ID3 or C4.5 and select the best attribute based on the
following parameters:

Student Credit

No Yes

Yes

No

<=30 >40

31…40

No Yes Excellen Fair

Page 22

1. Expected information (entropy) needed to classify a tuple in D:

)(log)(2
1

i

m

i
i ppDInfo å

=

-=

Where pi is the probability that an arbitrary tuple in D belongs to class Ci, estimated by |Ci, D|/|D|.

2. Information needed (after using A to split D into v partitions) to classify D:

)(
||
||

)(
1

j

v

j

j
A DInfo

D
D

DInfo ´= å
=

3. Information gained by branching on attribute A:
(D)InfoInfo(D)Gain(A) A-=

As an example for using the information gain for selecting the attributes we use following dataset:

Age Income Student Credit Card
Status

Bought a PC?

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

The target in this example is to predict if someone with provided information (age, student, income,
credit card status) will or will not buy a computer.

As the first step we will divide the information in target class to positive for all “yes” and negative for
all “No” and then calculate the available entropy in D which is as follows:

940.0)
14
5(log

14
5)

14
9(log

14
9)5,9()(22 =--== IDInfo

For the second step we will do the similar procedure for finding the available entropy in other
classes:

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0

Page 23

>40 3 2 0.971

694.0)2,3(
14
5)0,4(

14
4)3,2(

14
5)(=++= IIIDInfoage

And finally we calculate the total gain for the attribute “age”:

246.0)()()(=-= DInfoDInfoageGain age

If we repeat the same procedure for other attribute, it will result:

048.0)_(
151.0)(
029.0)(

=
=
=

ratingcreditGain
studentGain
incomeGain

As we can see the “age” attribute has the biggest entropy among the others and therefore more
optimum option to start with.

In next steps we will do exactly the same procedure for choosing the optimum attributes among the
remaining ones until we meet the conditions for terminating the procedure.

Decision trees can also be implemented in R using different methods including ctree(), C5.0()

or rpart(). Building the decision trees using the C5.0 algorithm:

Decision tree using C5.0 function in R
First we will install and load the package:
install.packages("C50")
require(C50)

In this section we will use the already existing “iris” dataset (a data set composed of 150 observation
s on measurements for iris flower including sepal.length, sepal.width, petal.length, petal.width and s
pecies) available to almost R installations:
data(iris)
head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
103 7.1 3.0 5.9 2.1 virginica
20 5.1 3.8 1.5 0.3 setosa
63 6.0 2.2 4.0 1.0 versicolor
17 5.4 3.9 1.3 0.4 setosa
83 5.8 2.7 3.9 1.2 versicolor
53 6.9 3.1 4.9 1.5 versicolor

Then we use C50 function and first 100 rows of our data as training set to build our model:
myModel = C5.0(iris[1:100,-5] , iris[1:100,5])

Now we are able to see how the does the built-in function has estimated the decision tree for us:
> summary(myModel)

Call:
C5.0.default(x = iris[1:100, -5], y = iris[1:100, 5])

C5.0 [Release 2.07 GPL Edition] Thu Aug 11 19:08:11 2016

Page 24

Class specified by attribute `outcome'

Read 100 cases (5 attributes) from undefined.data

Decision tree:

Petal.Length <= 1.9: setosa (34)
Petal.Length > 1.9:
:...Petal.Width > 1.6: virginica (29)
 Petal.Width <= 1.6:
 :...Petal.Length <= 4.9: versicolor (35)
 Petal.Length > 4.9: virginica (2)

Evaluation on training data (100 cases):

 Decision Tree

 Size Errors

 4 0(0.0%) <<

 (a) (b) (c) <-classified as
 ---- ---- ----
 34 (a): class setosa
 35 (b): class versicolor
 31 (c): class virginica

Attribute usage:

100.00% Petal.Length
 66.00% Petal.Width

Time: 0.0 secs

As it can be seen from output above, the first attribute chosen to be in the root of the tree is Petal.Le
ngth and if the Petal.Length is less than or equal 1.9 then the specie is setosa.
If the Petal.Length is larger than 1.9 then the decision will be made by the second attribute or Petal.
Width (if the Petal.Width is greater than 1.6 then the specie virginica and so on…

Now we can try our recently created model to predict the results for some new data and for this pur
pose we use the remaining rows (from 101 to 150) in the dataset as our test set:
testResult = predict(myModel , iris[101:150,])
table(iris[101:150,5])

 setosa versicolor virginica
 16 15 19
table(testResult)
testResult
 setosa versicolor virginica
 16 12 22

As it can be seen from the table above there were a small amount of error in discriminating and class
ifying the versicolor and virginica species.
Beside the good explanations provided by the function, we are also able to have a graphical figure of
our model to help us have better and quicker understanding of how does our model look like.

Page 25

Decision tree using rpart function in R
rpart() is another useful function in R used to build the decision tree out of our datasets by tacking the
training set and building the model. Unlike C5.0(), rpart() needs to be explicitly told about the target
and other attributes used as the predictors (separated by the plus sign) and also the method used in
the function.

First we will install and load the package:
install.packages("rpart")
install.packages("rpart.plot")
require(rpart)
require(rpart.plot)

myModel = rpart(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Peta
l.Width , data = iris[1:100,] , method = "class")

myModel
n= 100

node), split, n, loss, yval, (yprob)
 * denotes terminal node

1) root 100 65 versicolor (0.34000000 0.35000000 0.31000000)
 2) Petal.Length< 2.6 34 0 setosa (1.00000000 0.00000000 0.00000000) *
 3) Petal.Length>=2.6 66 31 versicolor (0.00000000 0.53030303 0.46969697)
 6) Petal.Width< 1.65 37 2 versicolor (0.00000000 0.94594595 0.0540540
5)*
 7) Petal.Width>=1.65 29 0 virginica (0.00000000 0.00000000 1.00000000
) *

As it can be seen from the output above the first attribute used for the classification is Petal.Length
and if the Petal.Length is less than 2.6 then the specie would be setosa and so on.

If we need to have graphical picture of the model instead of the text version then we have:

Page 26

Now we can try our recently created model to predict the results for some new data and for this pur
pose we use the remaining rows (from 101 to 150) in the dataset as our test set:
table(iris[101:150 , 5])

 setosa versicolor virginica
 16 15 19
table(testResult)
testResult
 setosa versicolor virginica
 16 15 19

As it can be seen from the result, rpart() was able to classify the new dataset without any error.

Clustering
In data mining terminologies a cluster is defined as a collection of data objects where it is preferred
that the objects:

· Have the maximum amount of similarity or relation to each other’s within a same group.
· Have the maximum amount of dissimilarity or relation to other objects in other groups.

Cluster analysis is dealing with finding the similarities between data according to the characteristics
found in the data and grouping similar data objects into clusters.

It must be noticed that unlike the classification which referred as supervised learning, clustering is
considered as unsupervised learning with no predefined classes (learning by observations versus
learning by examples: supervised).

Clustering is one the most important phases in data mining and knowledge extraction from raw data
which has many applications in different fields of science and technology such as:

· Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
· Information retrieval: document clustering
· Land use: Identification of areas of similar land use in an earth observation database
· Marketing: Help marketers discover distinct groups in their customer bases, and then use this

knowledge to develop targeted marketing programs
· City-planning: Identifying groups of houses according to their house type, value, and

geographical location

Page 27

· Earth-quake studies: Observed earth quake epicenters should be clustered along continent
faults

· Climate: understanding earth climate, find patterns of atmospheric and ocean
· Economic Science: market research

A good clustering method usually will produce high quality clusters with high intra-class similarity or
cohesive within clusters and low inter-class similarity or distinctiveness between different clusters and
also supposed to support following features:

I. Scalability
Good clustering method must be able to operate on both small and large datasets.

II. Ability to deal with different types of attributes
Good clustering method is able to operate on different types of data including numerical,
binary, categorical, ordinal, linked, and mixture of them.

III. Constraint-based clustering
Good clustering method is able to use domain knowledge to determine input parameters
while the users are still able to add or modify the constraints.

IV. Interpretability and usability
V. Discovery of clusters with arbitrary shape

VI. Ability to deal with noisy data
VII. Incremental clustering and insensitivity to input order

VIII. High dimensionality

There are multiple approaches, methods and algorithms available for data clustering including:

Partitioning approach:

Where the idea is to construct various partitions and then evaluate them by some criterion, e.g.,
minimizing the sum of square errors using typical methods such as: k-means, k-medoids, CLARANS.

Hierarchical approach:

Where the idea is to create a hierarchical decomposition of the set of data (or objects) using some
criterion using typical methods such as: Diana, Agnes, BIRCH, CAMELEON.

Density-based approach:

Where the idea is to create clusters based on connectivity and density functions using typical methods
such as: DBSACN, OPTICS, DenClue.

Grid-based approach:

Where the idea is to create clusters based on a multiple-level granularity structure using typical
methods such as: STING, Wave Cluster, CLIQUE.

Page 28

Partitioning method
The main idea in this approach is partitioning a database of	ܦ ݊	objects into a set of ݇ clusters, such
that the sum of squared distances is minimized (where p is position of each data object and ic is the

centroid or medoid of cluster	ܥ௜) regarding to following formula:

2
1)(iCp

k
i cpE

i
-SS= Î=

In partitioning approach we are given a value for ݇	and we try to find a partition of ݇ clusters that
optimizes the chosen partitioning criterion based on global optimum (where it has the least sum of
squared errors among other selections) or heuristic methods such as k-means and k-medoids
algorithms where each cluster is identified by the center of the cluster (k-means) or by one of the
objects in the cluster (k-medoids).

The main algorithm behind the k-means approach is quite easy and can be summarized as follows:

Given the value of ݇ by the user:

1-Select ݇ random points as the center of ݇ clusters.

Repeat:

1-Form the ݇ clusters by calculating the distance between each data object and center
of each cluster and assign each data point to a cluster where it has the least distance
to center of that cluster.

2-recompute the centroid of each cluster.

Until:

The centroid does not change anymore.

Following is the graphical representation of the above algorithm:

The initial data set

K=2, arbitrarily
partition objects
into 2 groups

Update
the cluster
centroids

Page 29

Like any other methodology, k-means has some advantages and disadvantages such as:

Advantages:

1-K-means algorithm is simple in both algorithm and also implementations.

2- Given that ݊ is total number of objects, ݇	is total number of clusters and ,is number of iterations ݐ
݇, ݐ ≪ ݊.

Disadvantages:

1- Algorithm can only be applied to objects in a continuous n-dimensional space.

2- The value for the	݇, number of clusters must be known in advance (there are ways to automatically
determine the best	݇).

3-Algorithm is sensitive to noisy data and outliers.

4- Algorithm is not suitable to discover clusters with non-convex shapes.

Due to some limitations in k-means methods for some specific datasets (with extremely large values
or different amount of densities…) scientists usually prefer K-medoids over the K-means method.

The logic behind the K-medoids method is almost similar to K-means but instead of calculating the
center of each cluster as the reference point, the medoid or the most centrally located object in a
cluster will be used as the reference point to that cluster.

Reassign the objectsLoop if needed

Update
the cluster
centroids

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

10

Page 30

PAM (Partitioning Around Medoids) is a classic algorithm for k-medoids clustering. While the PAM
algorithm is inefficient for clustering large data, the CLARA algorithm is an enhanced technique of PAM
by drawing multiple samples of data, applying PAM on each sample and then returning the best
clustering. It performs better than PAM on larger data.

K-means clustering in R
This section will provide a brief introduction on implementing k-means clustering for “iris” dataset in
R when the total number of clusters is set to 3. in order to cluster our data first we need to remove
the Species attribute and then apply the clustering function to the data.

data("iris")
head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
69 6.2 2.2 4.5 1.5 versicolor
102 5.8 2.7 5.1 1.9 virginica
51 7.0 3.2 4.7 1.4 versicolor
71 5.9 3.2 4.8 1.8 versicolor
82 5.5 2.4 3.7 1.0 versicolor
144 6.8 3.2 5.9 2.3 virginica

iris2 = iris
iris2$Species = NULL
result = kmeans(iris2, 3)

Now we can check the results:
result
K-means clustering with 3 clusters of sizes 62, 38, 50

Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.901613 2.748387 4.393548 1.433871
2 6.850000 3.073684 5.742105 2.071053
3 5.006000 3.428000 1.462000 0.246000

Clustering vector:
 69 102 51 71 82 144 62 36 45 98 88 41 85 24 80 37 16 138 12
1 92 7 56 53 38 119 8 61 63 100 122 68 6 59 133 70
 1 1 1 1 1 2 1 3 3 1 1 3 1 3 1 3 3 2
2 1 3 1 2 3 2 3 1 1 1 1 1 3 1 2 1
 5 107 90 1 137 110 49 74 117 147 136 22 108 42 48 32 77 18 7
2 101 55 134 67 20 128 94 126 104 47 78 149 112 43 13 23
 3 1 1 3 2 2 3 1 2 1 2 3 2 3 3 3 1 3
1 2 1 1 1 3 1 1 2 2 3 2 2 2 3 3 3
135 114 35 129 146 106 83 118 31 60 10 46 91 96 113 140 19 73 3
3 27 127 75 95 54 123 58 64 97 124 103 57 15 131 141 26
 2 1 3 2 2 2 1 2 3 1 3 3 1 1 2 2 3 1
3 3 1 1 1 1 2 1 1 1 1 2 1 3 2 2 3

Page 31

 81 44 50 87 132 89 29 139 86 116 148 9 4 145 25 65 40 14 12
0 28 2 93 142 150 79 76 66 30 21 111 143 84 3 17 34
 1 3 3 1 2 1 3 1 1 2 2 3 3 2 3 1 3 3
1 3 3 1 2 1 1 1 1 3 3 2 1 1 3 3 3
130 52 11 39 109 125 115 105 99 12
 2 1 3 3 2 2 1 2 1 3

Within cluster sum of squares by cluster:
[1] 39.82097 23.87947 15.15100
 (between_SS / total_SS = 88.4 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withi
nss" "betweenss" "size" "iter" "ifault"

And if we compare the original data with the clustered data in a single table we will have:
table(irisr$Species , result$cluster)

 1 2 3
 setosa 0 0 50
 versicolor 48 2 0
 virginica 14 36 0

As we can see there is a little overlap among different clusters and we should note that the result wil
l change from run to run due to random position of the initial centers for the clusters.

If we plot the data we will have:
plot(iris2[c("Sepal.Length", "Sepal.Width")], col = result$cluster)
points(result$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3,pch =
8, cex=2)

Page 32

K-medoids clustering in R
K-medoids method can be implemented using pam() and pamk() functions in R. Functions pam() and
clara() in package “cluster” are respectively implementations of PAM and CLARA in R. For both
algorithms, a user has to specify k, the number of clusters to find.

On the other hand function pamk() in package “fpc” considered as an enhanced version of pam() which
does not require a user to choose k. Instead, it calls the function pam() or clara() to perform a
partitioning around medoids clustering with the number of clusters estimated by optimum average
silhouette width.

Use following procedure to cluster your data using k-medoids method.

install.packages("cluster")
require(cluster)

result = pam(iris2 , 3)
result
Medoids:
 ID Sepal.Length Sepal.Width Petal.Length Petal.Width
79 130 6.0 2.9 4.5 1.5
113 85 6.8 3.0 5.5 2.1
8 26 5.0 3.4 1.5 0.2
Clustering vector:
 69 102 51 71 82 144 62 36 45 98 88 41 85 24 80 37 16 138 12
1 92 7 56 53 38 119 8 61 63 100 122
 1 1 1 1 1 2 1 3 3 1 1 3 1 3 1 3 3 2
2 1 3 1 2 3 2 3 1 1 1 1
 68 6 59 133 70 5 107 90 1 137 110 49 74 117 147 136 22 108 4
2 48 32 77 18 72 101 55 134 67 20 128
 1 3 1 2 1 3 1 1 3 2 2 3 1 2 1 2 3 2
3 3 3 1 3 1 2 1 1 1 3 1
 94 126 104 47 78 149 112 43 13 23 135 114 35 129 146 106 83 118 3
1 60 10 46 91 96 113 140 19 73 33 27
 1 2 2 3 2 2 2 3 3 3 2 1 3 2 2 2 1 2
3 1 3 3 1 1 2 2 3 1 3 3
127 75 95 54 123 58 64 97 124 103 57 15 131 141 26 81 44 50 8
7 132 89 29 139 86 116 148 9 4 145 25
 1 1 1 1 2 1 1 1 1 2 1 3 2 2 3 1 3 3
1 2 1 3 1 1 2 2 3 3 2 3
 65 40 14 120 28 2 93 142 150 79 76 66 30 21 111 143 84 3 1
7 34 130 52 11 39 109 125 115 105 99 12
 1 3 3 1 3 3 1 2 1 1 1 1 3 3 2 1 1 3
3 3 2 1 3 3 2 2 1 2 1 3
Objective function:
 build swap
0.6709391 0.6542077

Available components:
 [1] "medoids" "id.med" "clustering" "objective" "isolation" "clu
sinfo" "silinfo" "diss" "call"
[10] "data"

And if we compare the original data with the clustered data in a single table we will have:
table(iris$Species, result$clustering)

 1 2 3
 setosa 0 0 50
 versicolor 48 2 0
 virginica 14 36 0

Page 33

If we plot the data we will have:
plot(result)

Hierarchical clustering in R
Hierarchical clustering can be achieved by using the hclust() function in R.

index = sample(1:dim(iris)[1], 40)
irisSample = iris[index,]
irisSample$Species = NULL
hFigure = hclust(dist(irisSample), method="ave")

If we plot the dendrogram data we will have:
plot(hFigure, hang = -1, labels=iris$Species[index])
rect.hclust(hFigure, k=3)
groups = cutree(hFigure, k=3)

Page 34

Density based clustering in R
Density based clustering can be achieved by using dbscan() function from “fpc” package.

dbscan() function needs the parameters of “eps” (reachability distance) and “MinPts” (reachability
minimum no. of points) to perform the density based clustering by comparing the number of points in
the neighborhood of a data point to see if it is no less than “MinPts”.if the previous condition is met
then α is a dense point and all the points in its neighborhood are density-reachable from α and will be
considered in a same cluster as α.

Use following procedure to perform the density based clustering in R:

require(fpc)
irisTemp = iris[-5]
density = dbscan(irisTemp, eps=0.42, MinPts=5)
table(iris$Species , density$cluster)

 0 1 2 3
 setosa 2 48 0 0
 versicolor 10 0 37 3
 virginica 17 0 0 33

In table above dbscan() function has identified 3 different density clusters named cluster 1 to 3 (0 is
considered for noise, outliers or objects does not belong to any cluster).

We can plot the information generated by dbscan() to have graphical picture of different clusters.

Page 35

	What is R?
	How to get and install R
	Getting started with R
	Value Assignment
	Listing and removing the current variables
	Basic arithmetic operations
	Vectors and matrices operations
	Importing data from file
	Viewing data
	Plotting the data
	Statistics and probability
	Regression

	Data mining
	Classification and decision Tree
	Decision tree using C5.0 function in R
	Decision tree using rpart function in R

	Clustering
	Partitioning method
	K-means clustering in R
	K-medoids clustering in R
	Hierarchical clustering in R
	Density based clustering in R

