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Introduction to genes and proteins

• What are proteins?

• Central workhorses of the cell, 
performing a wide variety of functions:
– catalyzing metabolic reactions, replicating 

DNA, responding to stimuli, transporting 
molecules, etc.

• They consist of a chain of amino-acids 
that folds itself into a 3-dimentional 
shape which ultimately determines its 
function
– Errors in the amino-acid sequence can 

lead to malfunctioning proteins

• There are 20 amino-acids that can form 
a huge number of proteins
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From genes to proteins

• Central dogma of molecular biology:
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https://biochemist01.wordpress.com/tag/what-is-central-dogma/
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From genes to proteins
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http://slideplayer.com/slide/7225692/



Reading frames
• Not all regions of an mRNA molecule are translated. 

• The translational machinery must know on which 
nucleotide to start the translation
– Depending on the start position there are 3 different ways to 

decompose a sequence into codons.

– Example: Consider the sequence ACTCGGGCTGGACACAC

ACT CGG GCT GGA CAC AC

A CTC GGG CTG GAC ACA C

AC TCG GGC TGG ACA CAC

• Reading frame: each of the three ways to decompose 
the DNA sequence into codons
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Open reading frame (ORF)

• Translation starts at codon ATG (methionine)

• 3 stop codons signal the end of the translation: TGA, 
TAA and TAG

• Open reading frame: a stretch of DNA whose length is a 
multiple of 3, that begins with the start codon and ends 
with one of the 3 stop codons
– internal start codons are accepted
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Exercise

• Below is a DNA fragment from the beginning of a gene. Determine 

which strand is transcribed, indicate the polarity of the two DNA 

strands, and the sequence of bases in the resultant mRNA.

• Slightly modified from 

https://www.youtube.com/watch?v=gAm1ASjAMf8
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Frame-shift mutations

• Mutations in DNA changing a nucleotide to another will 
typically only change one amino acid to another
– May not affect the function of the protein

• Mutations that insert or delete a nucleotide are called 
frameshift mutations

• Frameshift mutations usually have drastic 
consequences
– The rest of the amino acid sequence is changed

– The resulting protein might not be functional
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Gene finding (aka Gene predition)

• Task: given a genomic sequence, find the Open 
Reading Frames (ORF’s)
– delineated by start (ATG) and stop codons (TAA,TAG,TGA).

• What’s the difficulty here? 
– Cannot we just mark down all start and stop codons that we can 

find in the genome and declare a stretch between a start and 
stop codon as an ORF?

• Two challenges:
1) Triplets of nucleotides looking like start and stop codons may 

appear by chance

2) In eukayrotic genes, one should also find the introns and 
exons inside the coding region. 
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Spurious start and stop codons

• If the correct reading frame (=codon boundaries) is not known, 

there may be several candidates for start and stop codons within 

the sequence

TCTCTACGATGCTGAAAATTGTTACTCGGGCTGGACACACAGCTAGAATATCGAACA

TCGCAGCACATCTTTTACGCACCTCTCCATCTCTGCTCACACGCACCACCACAACCA

CAAGATTTCTGCCCTTCTCTACGTCTTCGTTCTTAAACCATGGCCATTTGAAAAAAC

CGAAACCAGGCGAAGAACTGAAGATAACTTTTATTCTGAAGGATGGCTCCCAGAAGA

CGTACGAAGTCTGTGAGGGCGAAACCATCCTGGACATCGCTCAAGGTCACAACCTGG

ACATGGAGGGCGCATGCGGCGGTTCTTGTGCCTGCTCCACCTGTCACGTCATCGTTG

ATCCAGACTACTACGATGCCCTGCCGGAACCTGAAGATGATGAAAACGATATGCTCG

ATCTTGCTTACGGGCTAACAGAGACAAGCAGGCTTGGGTGCCAGATTAAGATGTCAA

AAGATATCGATGGGATTAGAGTCGCTCTGCCCCAGATGACAAGAAACGTTAATAACA

ACGATTTTAGTTAATGCCCTGC
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Finding genes on the complementary strand

• In DNA genes lie on both strands

• To find genes on a single strand of DNA, we also need to 
consider the reverse complement

• We have in total six reading frames to consider
– Three in one direction
– Three in the reverse direction, with reverse complement start and 

stop codons 
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Gene prediction: main approaches

• Evidence-based gene finding:  identify genes by inspecting 
the products of the genes, mRNA and protein sequences in 
the cell, and map them back to the genome 
– Note: not discussed in C&H book; the techniques became 

mainstream after 2007

• Ab initio gene prediction:   detecting the 'signal' of 
functional elements via statistical approaches or matching 
against a database of known motifs

• Comparative genomics approaches: detect conserved DNA 
regions by comparing a large set of related genomes
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Evidence-based gene finding

• In evidence-based gene finding, one assumes that there is 
access to mRNA or protein sequences expressed by the 
organism
– RNA-seq is one suitable experimental technique for mRNA

– Peptide sequencing via tandem mass spectrometry gives amino acid 
sequences

• Target genome is searched for sequences that match the 
expressed mRNA or protein sequences
– Sequence alignment problem using, e.g. BLAST for prokaryotic 

genes, relatively straight-forward

– Exon-intron structure of eukaryotic genes is a complication
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RNA-seq for gene finding

• Two alternative
approaches:
i. Assemble mRNA from 

short reads and match 
the mRNA transcript to 
the genome, taking 
introns into account 
(right).

ii. Align the short reads of 
cDNA directly to the 
genome and vote for 
exons.
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Eukaryotic Gene finding with known protein sequences

• Consider matching known protein sequence to the 
target genome

• As only exons are translated, when matching the 
protein sequence into the target genome, one needs to 
consider where the introns might be located

• By computational means one can find the best 
alignment between the protein sequence and the DNA 
sequence
– Sequence of predicted exons interleaved by introns

– Sequence alignment algorithms
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Limitations of evidence-based gene 

finding
• Major limitation of evidence-based approach is coverage

– mRNA approach: 

• Not all genes are expressed all the time or in all tissues, so mRNA will 
not in general cover the all genes

– Known protein approach: 

• Not all proteins have been sequenced, corresponding genes would be 
missed

• What if the target genome contains previously unknown genes?

• For larger coverage, we need ab initio tools that do not 
require observing the gene products
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Ab initio gene prediction

• What can be deduced just by looking at the genome?

• In this lecture we discuss some basic ab initio methods used 
for prokaryotic gene finding
– Hidden Markov Model (HMM) –techniques can be used for 

eukaryotic gene finding. (later in the course)

• In prokaryotic cells all genes are DNA sequences beginning 
with a start codon and ending with a stop codon
– Already non-trivial for prokaryotes as not all start codon – stop 

codon pairs (open reading frames, ORFs) correspond to genes.
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Detecting spurious signals: hypothesis 

testing
• When searching a genome for patterns (k-mers, ORFs, 

exons,...) we need to consider the probability of them 

being created by chance

• Need methods for separating “true findings” (or “signal”) 

from “false” (or “noise”)

• In statistics, hypothesis testing refers to calculating 

these probabilities and making inferences based on 

them
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Statistical hypothesis testing

• Ingredients:

– Null model or null hypothesis, denoted H0 (e.g. ORF is 

generated by a random process)

– Alternative hypothesis H1, generally the logical complement of 

H0 (e.g. ORF has been generated by a biologically relevant 

process)

– Probability distribution for data under the null hypothesis (e.g. 

the i.i.d multinomial distribution)

– Test statistic of interest (e.g. length of the ORF)

– Significance level: a fixed probability α wrongly rejecting the null 

hypothesis H0

– p-value: the probability of the test statistic obtaining as extreme 

or more extreme value by chance, if null hypothesis H0 is true
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Statistical hypothesis testing

• We consider the probability of a given pattern (e.g ORF) 

being created by chance under the null hypothesis 

• An occurrence of a pattern (k-mer, ORF, exon) is 

significant if it has a smaller p-value than the given 

significance level α, i.e. it is highly unlikely to appear 

under the null model 

• Note that by the means of statistical hypothesis testing, 

we cannot guarantee that the pattern is not created by 

chance.
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False positive and false negative 

findings
• Two types of errors in hypothesis testing

• False positive (FP)

– We incorrectly reject the null hypothesis, i.e. call the pattern significant

– Also denoted to Type I error in statistics

• False negative (FN)

– We incorrectly accept the null hypothesis, i.e. call the pattern not 

significant
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Sequence is not a 

gene

Sequence is a gene

Test significant FP TP

Test non-significant TN FN



Significance levels

• The significance level of a statistical hypothesis test is a fixed 

probability of wrongly rejecting the null hypothesis H0.

• Commonly used levels for statistical significance:

– 5% is generally considered as “almost significant”, 

– 1% significant and 

– 0.1% very significant.

• However, the levels are conventions, not arising from theory

• In bioinformatics, it is also possible to use the p-values to 

rank the discovered patterns, without using the arbitrary 

significance level cut-off

– List of highly ranked patterns can then be presented to a human 

expert for further analysis
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Multinomial sequence model

• The simplest model for DNA sequences

• Assumes that nucleotides appear independently from 

each other and with a fixed probability, according to a 

given distribution (i.i.d assumption)

• The probability of observing a nucleotide is independent 

of the position

• Probability of a sequence s obtained by multiplying the 

observed nucleotide probabilities
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Example: Computing the probability of 

an ORF

• For an already identified ORF in a sequence, what is the 

probability of finding an ORF of equal length (or longer) 

in a random sequence?

• What is the probability of an ORF of k or more codons 

arising by chance?

• First approximations: 

– assume an i.i.d multinomial model

– assume all 64 codons are equally likely

– need to consider a sequence of k codons that do not contain a 

stop codon
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Significance of an ORF

• What is the sequence length k such that 95% of randomly 
created ORFs are shorter than k?

• Try different k to discover

• By accepting only ORFs of length 65 (63 non-stop codons + 
start & stop codons) or more, 95% of the spurious ORF’s are 
removed.

• For significance level of 99% (α=0.01), the threshold would 
be 98 codons

• More details in note_on_orf_significance.pdf.
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Computing the probability of an ORF

• To get a more refined model, we can drop the 

assumption of equal codon frequencies

• Consider the probabilities of observing a stop codon

• Now the probability of an ORF of k non-stop codons 

under an i.i.d model is given by
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Randomization tests

• Sometimes it may be difficult to exactly compute p-

values for observations. 

• For example, it may not be clear what kind of null model 

to use, or the null model leads to very complicated 

equations

• In these cases we can use randomization tests

• In randomization testing, one creates a large set of data 

that is consistent with the chosen null model, but 

otherwise resembles the observed data 
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Randomization tests
1. Simulate random data that are consistent with the null model.

2. Check the distribution of the test statistic (e.g. ORF length) in the 

simulated data.

3. Check the rank of our observed pattern in this distribution (lengths 

of randomly created ORFs).

4. p-value is the fraction of simulated data that have test statistic 

values greater than or equal to the test statistic for the observed 

pattern.

28

2828

Random ORF lengths

Observed ORF lengths



Randomization tests

• Several ways to obtain randomized sequences 

• In permutation testing, one shuffles the original sequence 

randomly. Several choices, capturing different aspects

– Shuffle nucleotides independently

– Shuffle the codons

• If the ORFs have been already predicted, this is straightforward

• Otherwise, needs a method to pick the reading frame (codon 

boundaries).

• In Bootstrapping, one samples with replacement from the 

original sequence
• Again, can be done for individual nucleotides or longer stretches of 

DNA
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Multiple testing

• In computational genomics, hypothesis testing is 

typically conducted for 100s or 1000s of patterns

• p-values determine the significance of a single test

• The number of tests should be taken into account 

• This is called the multiple testing correction



Multiple testing

• False positive rate

– The probability of getting a significant result for a random 

sequence. 

– Formally:  FP / (FP + TN)

– 5 “significant” results in 100 tests does not mean that the 

significance tests meant anything biologically (with α=0.05).

• False discovery rate

– The proportion of false findings among all significant tests.

– Formally:  FP / (FP + TP)

Sequence is not a 

gene

Sequence is a gene

Test significant FP TP

Test non-significant TN FN



Comparative genomics approach: 
Sequence homology

• Genomic studies rely heavily on the notion of genes in 

different organisms having evolutionary relationships

• For example, humans, mice and fruit fly share a large 

number of genes that are assumed to have a common 

ancestor gene

– Such genes are said to be homologs*

• Groups of homologous genes form gene families

*from Greek homologos: homo = agreeing, equivalent, same + logos = relation
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Orthology and paralogy

• Homologous genes come in 

two flavors

• Orthologous genes are copies 

of the descendants of the 

ancestral gene in different 

organisms

• Paralogous genes are copies of 

the ancestral genes within the 

same organism

– arise via duplication of genes 

in genomes

– enable function evolution via 

divergence of the copies
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Sequence homology and similarity

• Homology is tricky to detect directly with computational 

means (phylogenetic analysis deals with this problem)

• Typically, sequence similarity is used as an alternative 

concept

– Idea: if two genes share an ancestor, their nucleotide sequences 

will probably be similar

• Note: homology is a binary concept (common 

ancestor/no common ancestor), similarity is a multi-

valued concept (e.g.80% similar is possible)
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Sequence alignment

• The purposes of sequence 
alignment are

– to measure the sequence 
similarity of two sequences

– to reveal which parts of the 
sequences match and which 
do not

• Commonly used way to 
visualize pairwise alignments 
on the right:

“|” denote matching pair of 
symbols

“-” denotes a gap symbol inserted 
in the sequence to improve 
alignment

Example: align the 2 sequences

GAATTCAG

GGATCGA
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Uses of sequence alignment in biology

• Prediction of function: given a similar gene with a known 
function, one can predict the function for a new gene by 
transferring the annotation

• Database searching: searching for similar genes (with 
known or unknown function) in a large databases

• Gene finding: 
– comparison of whole genomes of sets of related organisms can 

reveal gene locations

– Evidence-based approaches: aligning the expressed mRNA or 
protein sequences against the genome

• Sequence assembly: aligning short DNA sequences 
against a reference genome or each other
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Global and local alignment

• Two types of alignment:

• Global alignment aims to maximize the alignment quality over the 

whole sequences

– leaving gaps typically penalized

• Local alignment looks to match sub-regions of the sequences 

– gaps typically not penalized
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Global alignment scoring functions

• By inserting gaps in different 

places, we get different 

alignments

• We wish to find the best one

• We define a simple scoring 

function σ(x,y) for a pair of 

symbols in the alignment

• The alignment score is the sum

where i indexes the positions in 

the alignment 
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Global alignment scoring functions: 

Example
• Simple scoring function:

• Scores of the alignments on the 

left 1*5 -1*3 = 2
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Substitution matrices

• We can collect the scores of the 
function σ into a matrix (right)

• In general, the scores can 
depend on the pair of symbols

• Matrix S containing the σ values 
is called the substitution matrix

• For DNA simple scoring schemes 
are typically used

• For amino acids more rich 
substitution matrices are used

– PAM

– BLOSUM
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Optimal global alignment

• The optimal alignment A* between two sequences s and 
t  is the alignment A(s,t) that maximizes the alignment 
score M over all possible alignments.

• There are        possible alignments between two 
sequences of length n, so brute-force enumeration of all 
of them is not feasible

• Can be solved efficiently with so called Needleman-
Wunsch algorithm, which is based on dynamic 
programming (we take a closer look in the next lecture)
– Basic idea: solve the problem for prefixes of length 1,2,...,n 

incrementally making use of the optimal solutions for the 
prefixes
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Local alignment
• Finding two subsequences of sequences s and t, that will have 

the best alignment score

• Biological motivation: perhaps part of the gene has been 
conserved, e.g. 
– a functional part (a domain) of a protein, or 

– a  binding site of a regulatory protein in the promoter region

• Smith-Waterman algorithm (next lecture)
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