

Introduction to Space: Space plasma physics

Lecturer: Esa Kallio

Assistant: Dr. Riku Järvinen

Aalto University School of Electrical Engineering

Contents

Three space plasma physics weeks, three topics:

- 1. lecture week (September 14 & 15)
 - Space plasma <u>physics</u>: Space plasma & Solar system plasma environments
- 2. lecture week (September 21 & 22)
 - Space plasma observations & instruments
- 3. lecture week (September 28 & 29)
 - Space plasma <u>modelling & simulations</u>

1. Space science: Plasma environments in the Solar System

Science objective:
How does flowing
plasma interacts
with Solar System
objects?

 Space weather in the Solar System Example: Comet - solar wind interaction

1. Space plasma physics: Plasma environments in the Solar System

Density of the atmosphere/ionosphere

2. Space plasma observations & instruments

Aalto University: Co-I or PI status

Lots of space missions

COSMIC JOURNEYS:

The colored lines illustrate nearly 200 unmanned missions at 1958 - end of 2014

Aalto University's cubesat program

Geospace reseach (geoavaruustutkimus)

Payload:

- White light camera
- Radio instrument(~ 1-10 MHz)

Joint measurements with ground based equipments

http://www.suomi100satelliitti.fi/S100 esilla AGUssa

"Electrical space weather simulator": Aalto University's "Terrella Cubica"

3. Space plasma modelling & simulations

Aalto University's space plasma simulations

