Computational Methods in Stochastics

Lecture I

Intro
 Probability Review Random variables
 Common Distributions Random Number
 Generators

Stochastic Modelling

The word "stochastic" derives from the Greek ($\sigma \tau \circ \chi \alpha \zeta \varepsilon \sigma \theta \alpha_{\imath}$ to aim, to guess) and means "random" or "chance".
A deterministic model predicts a single outcome from a given set of circumstances.

A stochastic model predicts a set of possible outcomes weighted by their likelihoods or probabilities.

Stochastic modelling can be applied also to deterministic states whose outcome is not known (e.g. a hidden tossed coin).

Notation for stochastic processes is really compact:
Computing a deterministic equation $x=-A \log (u)$ means computing x from a single value of u, whereas the stochastic equation $X=-A \log (U)$ requires computing from the distribution U.

Stochastic Modelling

Scientific modelling has three components: (i) a natural phenomenon under study, (ii) a logical system for deducing implications about the phenomenon, and (iii) a connection linking the elements of the natural system under study to the logical system used to model it.

Example: (i) The earth with airports, (ii) mathematics of spherical geometry, and (iii) viewing the airports in the physical system as points in the logical system.

The law of large numbers: The relative fraction of times in which an event occurs in a sequence of independent similar experiments approaches, in the limit of an infinite sequence, the probability of the occurrence of the event on any single trial.

Stochastic Modelling

A stochastic process is a family of random variables X_{t}, where t is a parameter running over a suitable index set T. (Sometimes we write $X(t)$ instead of X_{t}.)

In a common situation the index t corresponds to discrete units of time, and the index set is $T=\{0,1,2, \ldots\}$.

Stochastic processes for which $T=[0, \infty)$ are important. t often represents time. It may also represent e.g. distance from an arbitrary origin, and X_{t} may count the number of defects in the interval $(0, t]$ along a thread, or the number of cars in the interval $(0, t]$ along a highway.
Stochastic processes are distinguished by their state space, or the range of possible values for the random values X_{t}, by their index set T, and by the dependence relations among the random variables X_{t}.

Probability Review

For a clear review, see: Intro of the online book

Let A and B be events.
The event that at least one of A or B occurs: $A \cup B$ (union).
The event that both A and B occur: $A \cap B$, or $A B$ (intersection).
This notation extends to finite and countable sets of events A_{1}, A_{2}, \ldots :
At least one event occurs: $A_{1} \cup A_{2} \cup \cdots=\cup_{i=1}^{\infty} A_{i}$.
All events occur: $A_{1} \cap A_{2} \cap \cdots=\cap_{i=1}^{\infty} A_{i}$.
The probability of an event $A: \operatorname{Pr}\{A\}$.
The certain event is denoted by $\Omega: \operatorname{Pr}\{\Omega\}=1$.
The impossible event is denoted by $\emptyset: \operatorname{Pr}\{\emptyset\}=0$.

Probability Review

Disjoint events, $A \cap B=\emptyset$, cannot both occur.
The addition law for disjoint events: $\operatorname{Pr}\{A \cup B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}$; if events A_{i} and A_{j} are disjoint for $i \neq j$, then
$\operatorname{Pr}\left\{\mathrm{U}_{i=1}^{\infty}\right\}=\sum_{i=1}^{\infty} \operatorname{Pr}\left\{A_{i}\right\}$.
The law of total probability: Let A_{1}, A_{2}, \ldots be disjoint events for which $\Omega=A_{1} \cup A_{2} \cup \ldots$ (exactly one event will occur). Then $\operatorname{Pr}\{B\}=\sum_{i=1}^{\infty} \operatorname{Pr}\left\{B \cap A_{i}\right\}$ for any event B.

Many important equations and principles are derived from the law of total probability.

Events are said to be independent if $\operatorname{Pr}\{A \cap B\}=\operatorname{Pr}\{A\} \times \operatorname{Pr}\{B\}$, or $\operatorname{Pr}\left\{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{n}}\right\}=\operatorname{Pr}\left\{A_{i_{1}}\right\} \operatorname{Pr}\left\{A_{i_{2}}\right\} \cdots \operatorname{Pr}\left\{A_{i_{n}}\right\}$ for every infinite set of distinct indices $i_{1}, i_{2}, \ldots, i_{n}$.

Random Variables

See Introduction to Probability, Statistics and Random

Processes, Chapter 3

A useful non-formal definition:
A random variable is one that takes on its values by chance.
Random variables are denoted by capital letters, e.g. X, Y, and Z.
Real numbers are denoted by lowercase letters, e.g. x, y, and z.
The expression $\{X \leq x\}$ is the event that the random variable X assumes a value that is less than or equal to the real number x.

The probability that this event occurs is $\operatorname{Pr}\{X \leq x\}$.
Allowing x to vary, this probability defines the distribution function (or cumulative distribution function, CDF) of the random variable X as

$$
F(x)=\operatorname{Pr}\{X \leq x\}, \quad-\infty<x<+\infty .
$$

Random Variables

Subscripts are used, when several random variables appear in the same context, $F_{X}(\xi)=\operatorname{Pr}\{X \leq \xi\}$ and $F_{Y}(\xi)=\operatorname{Pr}\{Y \leq \xi\}$.

It's easy to see that, for example, $\operatorname{Pr}\{X>a\}=1-F(a), \operatorname{Pr}\{a<$ $X \leq b\}=F(b)-F(a)$, and $\operatorname{Pr}\{X=x\}=F(x)-\lim _{\epsilon \backslash 0} F(x-\epsilon)=F(x)-F(x-)$.
Discrete random variable X : There is a finite or denumerable set of distinct values x_{1}, x_{2}, \ldots such that $a_{i}=\operatorname{Pr}\left\{X=x_{i}\right\}>0$ for $i=$ $1,2, \ldots$ and $\sum_{i} a_{i}=1$.
The probability mass function (PMF) for the random variable X :

$$
p\left(x_{i}\right)=p_{X}\left(x_{i}\right)=a_{i} \quad \text { for } i=1,2, \ldots
$$

The relation between the probability mass and distribution function:

$$
p\left(x_{i}\right)=F\left(x_{i}\right)-F\left(x_{i}-\right) \text { and } F(x)=\sum_{x_{i} \leq x} p\left(x_{i}\right) .
$$

Random Variables

For a continuous random variable $X: \operatorname{Pr}\{X=x\}=0 \quad \forall x$.
If there is a nonnegative function $f(x)=f_{X}(x)$ defined for
$-\infty<x<\infty$ such that

$$
\operatorname{Pr}\{a<X \leq b\}=\int_{a}^{b} f(x) \quad \text { for }-\infty<a<b<\infty
$$

then $f(x)=f_{X}(x)$ is called the probability density function (PDF) for the random variable X.

Then the cumulative distribution (CDF) takes the form:

$$
\begin{aligned}
& F(x)=F_{X}(x)=\operatorname{Pr}\{X \leq x\}=\int_{-\infty}^{x} f(z) d z \\
& \Rightarrow f_{X}(x)=\frac{d}{d x} F_{X}(x)
\end{aligned}
$$

Random Variables

Then the continuous distribution function

$$
F(x)=\int_{-\infty}^{\infty} f(\xi) d \xi, \quad-\infty<x<\infty
$$

If $F(x)$ is differentiable in $x, f(x)=\frac{d}{d x} F(x)=F^{\prime}(x),-\infty<x<\infty$
$\Rightarrow \operatorname{Pr}\{x<X \leq x+d x\}=F(x+d x)-F(x)=d F(x)=f(x) d x$.

More precisely, $\operatorname{Pr}\{x<X \leq x+\Delta x+o(\Delta x)\}, \Delta x \downarrow 0$. $o(\Delta x)$ represents any term for which $\lim _{\Delta x \downarrow 0} o(\Delta x) / \Delta x=0$.

Random Variables

The m th moment of a discrete random variable X :

$$
E\left[X^{m}\right]=\sum_{i} x_{i}^{m} \operatorname{Pr}\left\{X=x_{i}\right\}
$$

If the infinite sum diverges, the moment is said not to exist.

The m th moment of a continuous random variable X :

$$
E\left[X^{m}\right]=\int_{-\infty}^{\infty} x^{m} f(x) d x
$$

(the integral must converge absolutely).

Random Variables

The first moment, $m=1$, is called the mean or expected value of X, denoted by m_{X} or μ_{X}.

The m th central moment of X is defined as the m th moment of the random variable $X-\mu_{X}$.

The second central moment is called the variance of X and written σ_{X}^{2} or $\operatorname{Var}[X]$. $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-\mu^{2}$.
σ_{X} is called the standard deviation.
The median of a random variable X is any value v such that

$$
\operatorname{Pr}\{X \geq v\} \geq \frac{1}{2} \text { and } \operatorname{Pr}\{X \leq v\} \geq \frac{1}{2}
$$

Random Variables

$Y=g(X)$ is also a random variable. The expectation of $g(X)$:

$$
E[g(X)]=\sum_{i=1}^{\infty} g\left(x_{i}\right) \operatorname{Pr}\left\{X=x_{i}\right\} .
$$

For continuous $X: \quad E[g(X)]=\int g(x) f_{X}(x) d x$.

Generally, for both the discrete and continuous cases:

$$
E[g(X)]=\int g(x) d F_{X}(x),
$$

where F_{X} is the distribution function of the random variable X. (Lebesque-Stieltjes integral.)

Given a pair (X, Y) of random variables, their joint distribution function is given by

$$
F_{X Y}(x, y)=F(x, y)=\operatorname{Pr}\{X \leq x \text { and } Y \leq y\} .
$$

Random Variables

A joint distribution is said to possess a (joint) probability density if there exists a function $f_{X Y}$ of two real variables for which

$$
F_{X Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X Y}(\xi, \eta) d \eta d \xi \quad \forall x, y .
$$

The marginal distribution functions of X and Y are $F_{X}(x)=\lim _{y \rightarrow \infty} F_{X Y}(x, y)$ and $F_{X}(x)=\lim _{x \rightarrow \infty} F_{X Y}(x, y)$, respectively.

The marginal density functions are
$f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$ and $f_{Y}(x)=\int_{-\infty}^{\infty} f(x, y) d x$.

If X and Y are jointly distributed, then $E[X+Y]=E[X]+E[Y]$.

Random Variables

The random variables X and Y are said to be independent if $F(x, y)=F_{X}(x) \times F_{Y}(y) \quad \forall x, y$.

Then the joint density function $f(x, y)=f_{X}(x) f_{Y}(y) \forall x, y$.
Given that the jointly distributed X and Y have means μ_{X} and μ_{X} and finite variances, the covariance of X and Y is

$$
\operatorname{Cov}[X, Y]=\sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y}
$$

X and Y are said to be uncorrelated if $\sigma_{X Y}=0$.
Independent random variables having finite variances are uncorrelated, but the converse is not true; there are uncorrelated random variables that are not independent.
Correlation coefficient: $\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}$.

Random Variables

The joint distribution function of any finite collection $X_{1}, X_{2}, \ldots, X_{n}$:

$$
F\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

Independence of $X_{1}, X_{2}, \ldots, X_{n}$:

$$
F\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \ldots F_{X_{n}}\left(x_{n}\right) \forall x_{1}, \ldots, x_{n}
$$

A joint distribution function is said to have a probability density function $f\left(\xi_{1}, \ldots, \xi_{n}\right)$ if

$$
F\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} f\left(\xi_{1}, \ldots, \xi_{n}\right) d \xi_{1}, \ldots, d \xi_{n} \forall x_{1}, \ldots, x_{n} .
$$

Random Variables

For jointly distributed $X_{1}, X_{2}, \ldots, X_{n}$ and arbitrary functions h_{1}, \ldots, h_{n} of n variables each, the expectation is:

$$
E\left[\sum_{j=1}^{m} h_{j}\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{j=1}^{m} E\left[h_{j}\left(X_{1}, \ldots, X_{n}\right)\right]
$$

Random Variables

If X and Y are independent random variables having distribution functions F_{X} and F_{Y}, respectively, then the distribution function of their sum $Z=X+Y$ is the convolution of F_{X} and F_{Y} :

$$
F_{Z}(z)=\int_{-\infty}^{\infty} F_{X}(z-\xi) d F_{Y}(\xi)=\int_{-\infty}^{\infty} F_{Y}(z-\eta) d F_{X}(\eta)
$$

Respectively, for probability density functions:

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z-\xi) f_{Y}(\xi) d \xi=\int_{-\infty}^{\infty} f_{Y}(z-\eta) f_{X}(\eta) d \eta
$$

(for nonnegative random variables, replace the lower limit $-\infty$ by 0 .)
The variance: $\quad \sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$

Random Variables

For all events A and B such that $\operatorname{Pr}\{B\}>0$, the conditional probability of A given B is written

$$
\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A \cap B\}}{\operatorname{Pr}\{B\}} \quad \text { if } \operatorname{Pr}\{B\}>0 .
$$

This is the Bayes Theorem.
If $\Omega=B_{1} \cup B_{2} \cup \cdots$ and $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$, then

$$
\operatorname{Pr}\{A\}=\sum_{i=1}^{\infty} \operatorname{Pr}\left\{A \cap B_{i}\right\}=\sum_{i=1}^{\infty} \operatorname{Pr}\left\{A \mid B_{i}\right\} \operatorname{Pr}\left\{B_{i}\right\} .
$$

This is the law of total probability.

Discrete Distributions

Bernoulli Distribution

Random variable X has two possible values 0 and 1.
The probability mass function (PMF) $p(1)=p$ and $p(0)=$ $1-p$ where $0<p<1$.
The mean: $E[X]=p$.
The variance: $\operatorname{Var}[X]=p(1-p)$.
Bernoulli random variables occur frequently as indicators of events. The indicator of an event A is the random variable

$$
\mathbf{1}(A)=\mathbf{1}_{A}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A \text { does not occur }\end{cases}
$$

$\mathbf{1}_{A}$ is a Bernoulli random variable with parameter $p=E\left[\mathbf{1}_{A}\right]=\operatorname{Pr}\{\mathrm{A}\}$.

Discrete Distributions

Binomial Distribution

Independent events $A_{1}, A_{2}, \ldots, A_{n}$ all having the same probability $p=\operatorname{Pr}\left\{A_{i}\right\}$ of occurrence. Let Y count the total number of events among $A_{1}, A_{2}, \ldots, A_{n}$ that occur. Then Y has a binomial distribution with parameters n and p.
The probability mass function:

$$
p_{Y}(k)=\operatorname{Pr}\{Y=k\}=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \quad \text { for } k=0,1 \ldots, n
$$

Trick worth remembering: write Y as a sum of indicators $Y=\mathbf{1}\left(A_{1}\right)+\cdots+\mathbf{1}\left(A_{n}\right)$ to determine the moments.
$E[Y]=E\left[\mathbf{1}\left(A_{1}\right)\right]+\cdots+E\left[\mathbf{1}\left(A_{n}\right)\right]=n p$
$\operatorname{Var}[Y]=\operatorname{Var}\left[\mathbf{1}\left(A_{1}\right)\right]+\cdots+\operatorname{Var}\left[\mathbf{1}\left(A_{n}\right)\right]=n p(1-p)$

Discrete Distributions

Notation: $X \sim \operatorname{Bin}(n, p)$ means X is a binomial random quantity based on n independent trials, each occurring with probability p.

Discrete Distributions

The Poisson Distribution

The probability mass function of the Poisson distribution with parameter $\lambda>0$

$$
p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \quad \text { for } k=0,1, \ldots
$$

In calculations related to the Poisson distribution the series expansion for the exponential comes in handy

$$
e^{\lambda}=1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\cdots
$$

$\sum_{k=0}^{\infty} k p(k)=\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=\lambda, \sum_{k=0}^{\infty} k(k-1) p(k)=\lambda^{2}$

Discrete Distributions

In terms of a Poisson distributed random variable $X \sim P o(\lambda)$:
Mean: $E[X]=\lambda$
Variance: $\operatorname{Var}[X]=E\left[X^{2}\right]-\{E[X]\}^{2}=$

$$
=E[X(X-1)]+E[X]-\{E[X]\}^{2}=\lambda
$$

The simplest form of the law of rare events: The binomial distribution with parameter n and p converges to the Poisson distribution with parameter λ if $n \rightarrow \infty$ and $p \rightarrow 0$ so that $\lambda=n p$ remains constant. (See 'An Introduction to Stochastic Modeling' for a proof.)

An important property: The sum of Poisson random quantities is also a Poisson random quantity.

Discrete Distributions

Poisson Distribution PDF

Discrete Distributions

The Multinomial Distribution

$=$ joint distribution of r variables taking nonnegative values
$0, \ldots, n$. The joint probability mass function
$\operatorname{Pr}\left\{X_{1}=k_{1}, \ldots, X_{n}=k_{n}\right\}=\left\{\begin{array}{cl}\frac{n!}{k_{1}!\cdots k_{r}!} p_{1}^{k_{1}} \cdots p_{r}^{k_{r}} & \text { if } \sum_{i=1}^{r} k_{i}=n \\ 0 & \text { otherwise }\end{array}\right.$
Here, $p_{i}>0$ for $i=1, \ldots, r$ and $\sum_{i=1}^{r} p_{i}=1$.
Mean:

$$
E\left[X_{i}\right]=n p_{i}
$$

Variance: $\quad \operatorname{Var}\left[X_{i}\right]=n p_{i}\left(1-p_{i}\right)$
Covariance: $\operatorname{Cov}\left[X_{i} X_{j}\right]=-n p_{i} p_{j}$
Multinomial is the generalisation of the binomial distribution.

Continuous Distributions

The Normal/Gaussian Distribution $N\left(\mu, \sigma^{2}\right)$
The probability density function
$\phi\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty$.

Mean: $E[X]=\mu$
Variance: $\operatorname{Var}[X]=\sigma^{2}$
Standard normal distribution when $\mu=0$ and $\sigma=1 ; N(0,1)$.

Continuous Distributions

The Normal Distribution

Continuous Distributions

See the online book

The central limit theorem: For partial sums $S_{n}=\xi_{1}+\cdots+\xi_{n}$ of independent and identically distributed (i.i.d.) summands ξ_{1}, ξ_{2}, \ldots having finite means $\mu=E\left[\xi_{k}\right]$ and finite variances $\sigma^{2}=\operatorname{Var}\left[\xi_{k}\right]$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \leq x\right\}=\Phi(x) \forall x
$$

Here, $\quad \Phi(x)=\int_{-\infty}^{x} \phi(\xi) d \xi=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\xi^{2} / 2} d \xi$
(the standard normal distribution function)
So, the normal distribution results for numerous small additive, independent ξ, no matter how they are distributed.

Continuous Distributions

Equivalently, the central limit theorem for the sample mean $\bar{X}_{n}=\frac{1}{n} S_{n}$:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq x\right\}=\Phi(x) \forall x
$$

Continuous Distributions

The Lognormal Distribution

Here the natural logarithm of a nonnegative random variable V is normally distributed.

$$
f_{V}(v)=\frac{1}{\sqrt{2 \pi} \sigma v} \exp \left\{-\frac{1}{2}\left(\frac{\ln v-\mu}{\sigma}\right)^{2}\right\}, \quad v \geq 0
$$

Mean:

$$
\mathrm{E}[\mathrm{~V}]=\exp \left\{\mu+\frac{1}{2} \sigma^{2}\right\}
$$

Variance: $\operatorname{Var}[V]=\exp \left\{2\left(\mu+\frac{1}{2} \sigma^{2}\right)\right\}\left[\exp \left\{\sigma^{2}\right\}-1\right]$.
Lognormal distributions arise from multiplicatively stochastic processes. Here, the random process is described by a product (instead of a sum) of independent random variables: for a large number of variables the distribution $\ln f_{V}$ is normal (central limit theorem), so f_{V} is lognormal.

Continuous Distributions

The lognormal distribution is an example of a fat-tailed distribution. It is sometimes erroneously interpreted as a logarithmic distribution $p(x) \propto x^{-\alpha}, x>0$ and the constant $\alpha>0$. Logarithmic binning is crucial for visualising and analysis of fat-tailed distributions (Lecture 2).

Continuous Distributions

The Exponential Distribution

The random variable T has an exponential distribution with parameter $\lambda>0(T \sim \operatorname{Exp}(\lambda))$, if the probability density function is

$$
f_{T}(t)=\left\{\begin{array}{cc}
\lambda e^{-\lambda t} & \text { for } t \geq 0 \\
0 & \text { for } t<0
\end{array}\right.
$$

The distribution function

$$
F_{T}(t)=\left\{\begin{array}{cc}
1-e^{-\lambda t} & \text { for } t \geq 0 \\
0 & \text { for } t<0
\end{array}\right.
$$

Mean: $E[T]=\frac{1}{\lambda} \quad$ Variance: $\operatorname{Var}[T]=\frac{1}{\lambda^{2}}$
There is an alternative definition for the parameter λ, so be sure to specify which one you are using.

Continuous Distributions

Figure 6. Exponential pdf
To see if a distribution is really exponential, plot it in the semilogarithmic coordinates (y -axis logarithmic); you should have a straight line. (For logarithmic distributions, plot both with coordinates logarithmic scales/binning.)

Continuous Distributions

The exponential distribution is encountered in memoryless processes, which is why it is relevant for (continuous) Markov chains. (Markov property: the next state is determined only by the present state.)
T is a lifetime. The unit has survived up to time t. What is the conditional distribution of the remaining life $T-t$?

$$
\begin{aligned}
\operatorname{Pr}\{T-t>x \mid T>t\} & =\frac{\operatorname{Pr}\{T>t+x, T>t\}}{\operatorname{Pr}\{T>t\}} \\
& =\frac{\operatorname{Pr}\{T>t+x\}}{\operatorname{Pr}\{T>t\}} \quad(x>0) \\
& =\frac{e^{-\lambda(t+x)}}{e^{-\lambda t}}=e^{-\lambda x}
\end{aligned}
$$

Continuous Distributions

The Uniform Distribution

The probability density function for a random variable U distributed uniformly over the interval $[a, b]$, where $a<b$:

$$
f_{X}(u)=\left\{\begin{array}{cl}
\frac{1}{b-a} & \text { for } a \leq u \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

The distribution function

$$
F_{X}(x)=\left\{\begin{array}{cl}
\frac{x-a}{b-a} & \text { for } u \leq a \\
1 & \text { for } a<x \leq b \\
\text { for } x>b
\end{array}\right.
$$

Continuous Distributions

Notation: $X \sim U(a, b)$
Mean: $E[X]=\frac{1}{2}(a+b) \quad$ Variance: $\operatorname{Var}[X]=\frac{(b-a)^{2}}{12}$
The standard uniform distribution on the unit interval $[0,1]$ has $a=0$ and $b=1$. A random variable having this distribution is usually denoted by $U \sim U(0,1)$.
$\mathrm{E}(U)=1 / 2, \operatorname{Var}(U)=1 / 12$.
Standard (pseudo)random number generators implement a random variable uniformly distributed over the interval (0,1].

Continuous Distributions

The Gamma Distribution

The random variable X has a gamma distribution with parameters $\alpha, \beta>0$, written $\mathrm{X} \sim G a(\alpha, \beta)$, if it has PDF

$$
f(x)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

where $\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y$ is the gamma function.
$\operatorname{Ga}(1, \lambda)=\operatorname{Exp}(\lambda)$, so the gamma distribution is a generalisation of the exponential distribution.

The mean and variance:

$$
E[X]=\frac{\alpha}{\beta}, \quad \operatorname{Var}[X]=\frac{\alpha}{\beta^{2}} .
$$

Continuous Distributions

A useful property that can be utilised in sampling variates from the gamma distribution is that if $Y=X_{1}+X_{2}, X_{1} \sim$ $G a\left(\alpha_{1}, \beta\right)$, and $X_{2} \sim G a\left(\alpha_{2}, \beta\right)$ are independent and $Y \sim$ $\operatorname{Ga}\left(\alpha_{1}+\alpha_{2}, \beta\right)$, then

$$
Y \sim G a\left(\alpha_{1}+\alpha_{2}, \beta\right) .
$$

Continuous Distributions

Frequently CDF-based quantities are used to characterise a distribution:

Median $m: P(X \leq m)=\frac{1}{2}$, or equivalently, $F_{X}(m)=0.5$.
Lower quartile l : $F_{X}(l)=0.25$
Upper quartile $u: F_{X}(u)=0.75$
(The cumulative distribution (CDF):

$$
\left.F(x)=F_{X}(x)=\operatorname{Pr}\{X \leq x\}=\int_{-\infty}^{x} f(z) d z .\right)
$$

Quantifying noise

In stochastic modelling or when analysing data that is "noisy" or stochastic, one needs a measure of how noisy some random variable X is.
One can use the variance $\sigma^{2}=\operatorname{Var}[X]$, or, for having the noise in the same units as X, the standard deviation $\mathrm{SD}[X]=\sigma$.

A consistent way is to give the noise magnitude relative to the random quantity X :

1. The coefficient of variation is defined as

$$
\mathrm{CV}[\mathrm{X}]=\frac{\mathrm{SD}[X]}{|\mathrm{E}[X]|}=\frac{\sigma}{|\mu|}
$$

2. Signal-to-noise ratio $\operatorname{SNR}=1 / \mathrm{cV}_{[X]}$ is more commonly used in engineering.
3. The dispersion index, or variance-to-mean ratio:

$$
\operatorname{VMR}[X]=\operatorname{Var}[X] / \mathrm{E}[X]=\sigma^{2} / \mu .
$$

Random Number Generators

RNGs

Most computational methods use random numbers, for example Monte Carlo, molecular dynamics, stochastic optimization and cryptography. And, of course, all machine learning rests upon massive amounts of random numbers.

Deterministic algorithms. (Pseudorandom numbers.) Pseudorandom number generators (RNG's): Deterministic algorithms that mimic randomness $\boldsymbol{\rightarrow}$ Generated numbers are only "pseudo-random" but approximate real random numbers reasonably well.

In what follows, the term "random number" means pseudorandom number.

RNGs

Most RNG algorithms produce pseudorandom uniformly distributed numbers $x_{i} \in(0,1], i=1,2, \ldots, n$. Roughly, $X \sim U(0,1)$

These uniformly distributed random numbers can be used further to produce different distributions of random numbers, in other words to simulate different distributions.

RNGs

A good RNG has the following properties:
The numbers have a correct distribution:

- in simulations, the sequence of random numbers must be uncorrelated
- in numerical integration, it is important that the distribution is flat (uniform)
The sequence must have a long period:
- all RNGs repeat the same sequence of numbers eventually, but the sequence must be sufficiently long
The sequences should be reproducible:
- for testing of simulation parameters
- for stopping a simulation and continuing later

Starting from the same seed number gives you the same sequence \rightarrow store the seed, when testing.
The RNG must be fast. Simulations need loads of them.

Linear congruential generators (LCG)

LCGs are based on the integer recursion relation

$$
x_{i+1}=\left(a x_{i}+b\right) \bmod m \text { AND to scale to }(0,1): x_{i+1} / m
$$

where integers a, b, and m are constants.
LCG generates a sequence x_{1}, x_{2}, \ldots of random integers that are distributed within the intervals

- [0, m-1] (if $b>0$) or
- [1, m-1] (if $b=0$). (This means you need to start with $x_{0} \neq 0$ in order to get $x_{i} \neq 0$.)

Scaling: divide by m for the interval

- $(0,1]$ ($b>0$) or
$-(0,1)(b=0)$.
Classification:
- mixed ($b>0$): $\operatorname{LCG}(a, b, m)$
- multiplicative $(b=0)$: $\operatorname{MLCG}(a, m)$ input.

$\pm C C S$

Two standard LCGs:

GGL

$\operatorname{MLCG}\left(16807,2^{31}-1\right): x_{i+1}=\left(16807 x_{i}\right) \bmod \left(2^{31}-1\right)$
Available in some numerical software packages such as subroutine RAND in Matlab.

Simple and fast, but suffers from a short period of $2^{31}-1$ $\approx 2 \times 10^{9}$ steps.

Problems due to correlation.

$\pm C C S$

RAND

LCG(69069, 1, $\left.2^{32}\right): \quad x_{i+1}=\left(69069 x_{i}+1\right) \bmod \left(2^{32}\right)$
Also has problems due to correlations.

Visual Test

LCGs have a serious drawback of correlations between consecutive numbers $x_{i+1}, x_{i+2}, \ldots, x_{i+\mathrm{d}}$ in the sequence.

In d-dimensional space, the points given by these d numbers order on parallel hyperplanes. The average distance between these planes, whose dimension is $d-1$, is constant. The smaller the number of these planes, the less uniform is the distribution. In Assignment 1: hyperplanes = lines.

Lagged Fibonacci Generators

These are generalisations of LCGs: The period of a LCG can be increased by the form

$$
x_{i}=\left(a_{1} x_{i-1}+a_{2} x_{i-2}+\ldots+a_{p} x_{i-p}\right) \bmod m
$$

where $p>1$ and $a_{p} \neq 0$.
An LF generator requires an initial set of elements x_{1}, x_{2}, \ldots, x_{r} and then uses the integer recursion

$$
x_{i}=\left(x_{i-r} \otimes x_{i-s}\right) \bmod m
$$

where r and s are two integer lags satisfying $r>s$ and \otimes is one of the following binary operations:,,$+- \times$, or \oplus (exclusive-or). (To clarify: binary operations, x_{i} 's are integers.)

LFGs

The corresponding generators are termed $\operatorname{LF}(r, s, \otimes)$.
The initialization requires a set of q random numbers that can be generated for example by using another RNG.

The properties of LF-generators are not very well known but a definite plus is long period. Some evidence suggests that the exclusive-or operation should not be used.

LFGs

RAN3

$\mathrm{LF}(55,24,-): \quad x_{i}=\left(x_{i-55}-x_{i-24}\right) \bmod m$ $m=2^{32}$

- also called a subtractive method
- period 2^{55} - 1
- initialisation requires 55 numbers
- does not suffer from similar correlations as LCGs
(Assignment 1.)

Shift Register Generators

These can be viewed as the special case $m=2$ of LF generators.
Feedback shift register algorithms are based on the theory of primitive trinomials

$$
P(x ; p, q)=x^{p}+x^{q}+1 \quad(x=0,1)
$$

Given such a primitive trinomial and p initial binary digits, a sequence of bits $b=\left\{b_{i}\right\}(i=0,1,2, \ldots)$ can be generated using the following recursion formula:

$$
b_{i}=b_{i-p} \oplus b_{i-p+q}
$$

where $p>q$.

Shift Register Generators

Using the recursion formula, random words W_{i} of size i can be formed by

$$
W_{i}=b_{i} b_{i+d} b_{i+2 d} \cdots b_{i+(l-1) d}
$$

where d is a chosen delay.
The resulting binary vectors are treated as random numbers.
It can be shown that if p is a Mersenne prime, which means that $2^{p}-1$ is also a prime, then the sequence of random numbers has a maximal possible period of $2^{p}-1$.

If interested, see
https://en.wikipedia.org/wiki/Linear-feedback shift register

Shift Register Generators

In generalized feedback shift register (GFSR) generators, i-bit words are formed by a recursion where two bit sequences are combined using the binary operation \oplus :

$$
W_{i}=W_{i-p} \oplus W_{i-q}
$$

The best choices for q and p are Mersenne primes, which satisfy the condition $p^{2}+q^{2}+1=$ prime.

Examples of pairs that satisfy this condition:

$$
\begin{array}{rl}
p=98 & q=27 \\
p=250 & q=103 \\
p=1279 & q=216,418 \\
p=9689 & q=84,471,1836,2444,418
\end{array}
$$

Generalized feedback shift register generators are denoted by $\operatorname{GFSR}(p, q, \oplus)$.

Shift Register Generators

R250

R250 for which $p=250$ and $q=103$ has been the most commonly used generator of this class.
The 32-bit integers (32-bit words)are generated by

$$
x_{i}=x_{i-250} \oplus x_{i-103}
$$

250 uncorrelated seeds (random integers) are needed to initialize R250.
The latest 250 random numbers must be stored in memory.
The period length is $2^{250}-1$.

Shift Register Generators

R250 does not exhibit similar pair correlations as the LCG generators.

However, R250 has strong triple correlations:

$$
\left\langle x_{i} x_{i-250} x_{i-103}\right\rangle \neq 0
$$

In addition, R250 fails in some important physical applications such as random walks and simulations of the Ising model.

An efficient way of reducing correlations is to decimate the sequence by taking only every k th number ($k=3,5,7, \ldots$).

Combination Generators

It seems natural that shuffling a sequence or combining two separate sequences might help in reducing correlations.

The combination sequence z_{i} is defined by $z_{i}=x_{i} \otimes y_{i}$
where x_{i} and y_{i} are from some (good) generators and \otimes denotes a binary operation $(+,-, \times, \oplus)$.

Combination Generators

RANMAR

- the best known and tested combination generator

The first RNG is a lagged Fibonacci generator

$$
x_{i}= \begin{cases}x_{i-97}-x_{i-33} & \text { if } x_{i-97} \geq x_{i-33} \\ x_{i-97}-x_{i-33}+1 & \text { otherwise }\end{cases}
$$

Only 24 most significant bits are used for single precision reals. The second part of the generator is a simple arithmetic sequence for the prime modulus $2^{24}-3=16777213$.
The sequence is defined as

$$
y_{i}=\left\{\begin{array}{lll}
y_{i}-c & \text { if } y_{i} \geq c & c=7654321 / 16777216 \\
y_{i}-c+d & \text { otherwise } & d=16777213 / 16777216
\end{array}\right.
$$

Combination Generators

The final random number z_{i} is produced by combining x_{i} and y_{i} :

$$
z_{i}= \begin{cases}x_{i}-y_{i} & \text { if } x_{i} \geq y_{i} \\ x_{i}-y_{i}+1 & \text { otherwise }\end{cases}
$$

The total period of RANMAR is about 2^{144}.
The code is available in the lectures in MyCourses.
RANMAR is first initialized by the call (in C) crmarin(seed); Here, seed is an integer seed.
The call
cranmar(crn,len);
fills the vector crn of length len with uniformly distributed random numbers.

Combination Generators

RANMAR is a very fast generator.
RANMAR has also performed well in several tests, and should thus be suitable for most applications.

RNG Tests

No single test can prove that a RNG is suitable for all applications

It is always possible to construct a test where a given RNG fails (since the numbers are not truly random but generated by a deterministic algorithm).

Classification of test methods

1. Theoretical tests

- based on theoretical properties of algorithms
- exact but often very difficult to perform
- only asymptotic: important correlations between consecutive number sets are not measured

RNG Tests

2. Empirical tests

- based on testing algorithms and their implementations in practice
- can be tailored to measure particular correlations
- suitable for all algorithms
- often difficult to say how much testing is sufficient
- further division into standard tests (statistical tests) and application specific tests (physical quantities)

3. Visual tests

- can be used to locate global or local deviations from randomness
- e.g. pairs of random numbers can be used to plot points in a unit square

Mersenne Twister RNG

In large simulations currently the best and computationally heaviest RNG is the Mersenne Twister, see:
https://en.wikipedia.org/wiki/Mersenne_Twister
Python uses the Mersenne Twister as the core generator. It produces 53-bit precision floats and has a period of $2{ }^{* *} 19937$ 1 . The underlying implementation is in C .

In Python you invoke the Mersenne-Twister RNG included in module random (import random) by random.random(). See the link: https://github.com/james727/MTP

Using Random Numbers

Example of a simple test
The moment test is a simple procedure to check that your RNG implementation works as it should.
The moments of the uniform distribution are known

$$
\left\langle x^{k}\right\rangle=\frac{1}{k+1}
$$

If we generate random numbers that should be uniformly distributed, the moments calculated from these numbers should be approximately equal to the analytical values within statistical fluctuations.

Using Random Numbers

Example: the mean value of random numbers for 100 independent measurements over $N=100$ and $N=1000$ random numbers using RANMAR.

The 'measured' values fluctuate around the correct value 0.5 . Error goes as $1 / \sqrt{N}$ for uncorrelated random numbers (idealisation).

Using Random Numbers

Central limit theorem

For any independently measured values $M_{1}, M_{2}, \ldots, M_{m}$ that come from the same (sufficiently short-ranged) distribution $p(x)$, the average

$$
\langle M\rangle=\frac{1}{m} \sum_{i=1}^{m} M_{i}
$$

will asymptotically follow a Gaussian distribution (normal distribution), whose mean is $\langle M\rangle$ (equal to the mean of the parent distribution $p(x))$ and standard deviation is $1 / \sqrt{N}$ times the standard deviation of $p(x)$.

We can use this result to analyse the errors in the calculated values of any of the moments.

Using Random Numbers

Example

Denote the second moment $\quad M=\left\langle x^{2}\right\rangle$
The errors should follow the normal distribution and the width of this distribution should behave as $1 / \sqrt{N}$

Let's take a set of m independent 'measurements' of the second moment, each consisting of an average obtained from N random numbers.
From each measurement we obtain a single value M_{α}. The average of all m measurements is $\langle M\rangle=\frac{1}{m} \sum_{\alpha=1}^{m} M_{\alpha}$
and the variance is given by

$$
\sigma^{2}=\left\langle M^{2}\right\rangle-\langle M\rangle^{2}
$$

Using Random Numbers

Here we have the variance of $M=<x^{2}>$ obtained from $m=$ 1000 measurements, each consisting of an average from N random numbers.

The variance behaves like $1 / \sqrt{N}$, meaning that the second moment obeys the scaling of the central limit theorem. Uniformly distributed random numbers from RANMAR.

