

Plant fibres: cell wall and structure of cellulose

Eero Kontturi Department of Bioproducts and Biosystems School of Chemical Engineering Aalto University

CHEM-E2140

Learning outcome

After this lecture, you will be able to:

- Answer the questions: where does cellulose come from?
- Distinguish herbaceous and woody plants (main source of cellulose)
- Describe the main points of cell wall ultrastructure: chemistry, morphology, and hierarchy
- Distinguish molecular vs. supramolecular structure with cellulose
- Recognize the crystalline polymorphs of cellulose

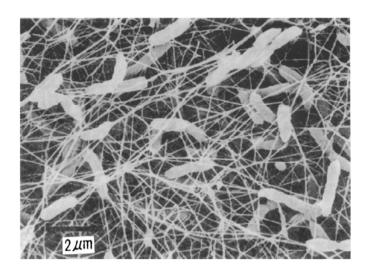
Contents

- (1) What is cellulose
- (2) Sources of cellulose
- (3) Plants: basics definitions
- (4) Woody plants and herbaceous plants
- (5) Wood structure and plant cell types
- (6) Plant cell walls: hierarchical structure of fibres
- (7) Chemical structure of fibres
- (8) Isolation of fibres from plant matrix
- (9) Cellulose structure: molecular vs. supramolecular
- (10) Cellulose structure: crystalline forms of cellulose

What is cellulose

- Cellulose is a polysaccharide biosynthesized in nature
- Main structural (load bearing) component of all plants
- The most abundant biopolymer on earth (10¹² tons produced per year)

- Poly (1,4-β-D-glucopyranose)
- Linear homopolymer
- Forms semi-crystalline microfibrils
- Recalcitrant
- Insoluble


Sources of cellulose

Cellulose is produced via biosynthesis in nature

There are three known sources of cellulose:

- (1) Certain species of bacteria (bacterial cellulose)
- (2) Tunicates (animal cellulose)
- (3) Plants (plant cellulose)

Bacterial cellulose

- Some species of bacteria are able to biosynthesize cellulose (notably acetobacteria xylinum)
- The cellulose is extracellular, it is not in the bacteria but extruded by the bacteria
- Bacterial cellulose is the only pure form of cellulose in nature, no other components are synthesized with cellulose
- Microfibrils in bacterial cellulose are generally larger than in other cellulose grades

Tunicate cellulose

- Tunicates are small marine animals
- They are the only species of animals that biosynthesize cellulose
- The body of a tunicate is surrounded by a test or a tunic where the cellulose is produced
- Tunicate cellulose is in the form of microfibrils that are highly crystalline compared with most plant celluloses

Plants

What is a plant?

By plants, people usually refer to *green plants*:

- Flowering plants (angiosperms)
- Gymnosperms
- Mosses
- Clubmosses
- Hornworts
- Liverworts
- Ferns
- Green algae

Two main features of all plants:

- Possess cell walls with cellulose as the main structural material
- Get most of their energy from photosynthesis

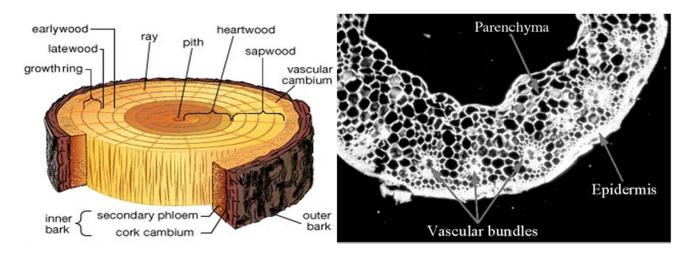
Categorisation of plants

Plants can be categorised in many ways; however, from the point of view of fibre materials, the most sensible division is to:

Herbaceous plants

- Agro fibres
- At least the part above ground dies after the growing season

Woody plants


- Wood fibres
- Remain alive during dormant season; reinforced by secondary xylem

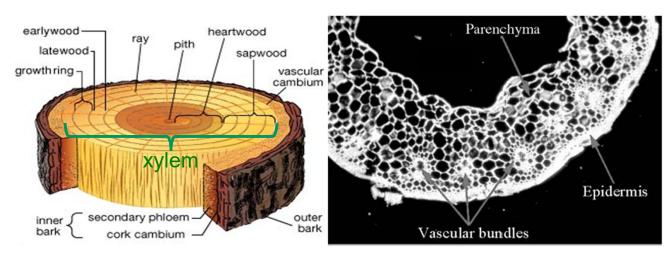
Herbaceous vs. woody plants

Localization of growth

(a) Woody plant

(b) Herbaceous plant

Growth occurs by cell division in vascular cambium


Growth occurs by cell division in vascular bundles

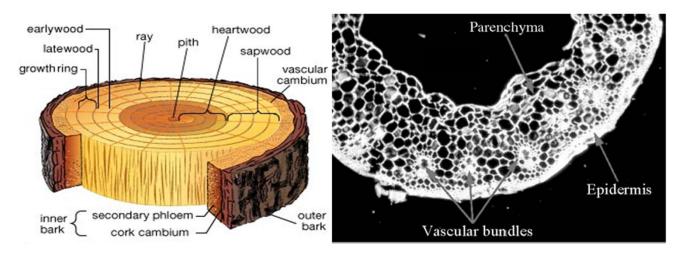
Herbaceous vs. woody plants

Strength distribution

(a) Woody plant

(b) Herbaceous plant

Strength provided by fibres all over the xylem


Much of the strength provided by epidermis (cellulose+silica) and fibres

Herbaceous vs. woody plants

Water transport

(a) Woody plant

(b) Herbaceous plant

Water transport occurs through xylem fibres

Water transport occurs mainly through vascular bundles

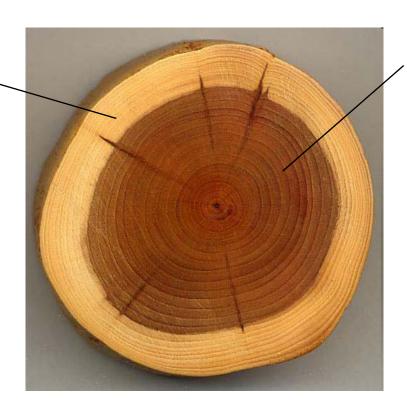
Common plants in fibre technology

Woody plants:

- Trees
- Shrubs

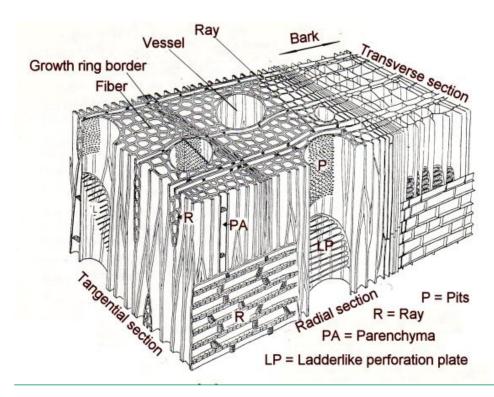
Herbaceous plants:

- Flax
- Cotton
- Jute
- Kenaf
- Bamboo
- Ramie
- Sisal


Wood structure and plant cell types

Heartwood and sapwood

SAPWOOD '


- conducts water and minerals nutrients
- has (also) living tissue
- → active tissue

HEARTWOOD

- does not take part in water conduction
- high extractives content
- → inactive tissue
- protects wood against rot or insect decay

Fibres, vessels, parenchyma cells

Fibres: strength, water transport

Vessels: water and nutrition

transport

Parenchyma: storage of water

and nutrition

Softwood vs. hardwood

Softwood: from coniferous trees (evergreens, ones that have needles)

Hardwood: from deciduous trees (ones that have leaves)

Softwood vs. hardwood

SOFTWOOD

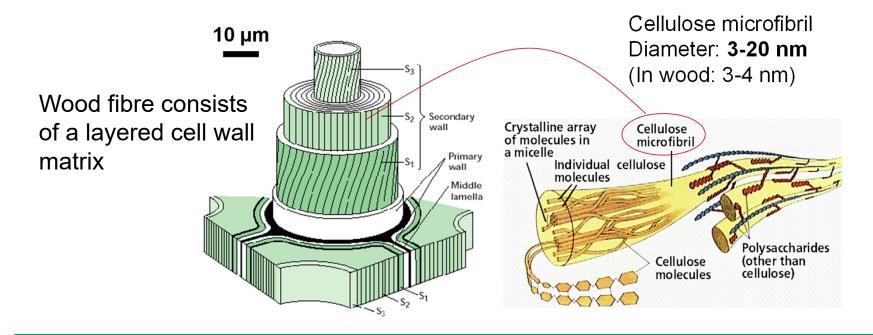
EARLYWOOD AND LATEWOOD DISTINCTION

~90% OF WOOD CELLS ARE TRACHEIDS (FIBRES)

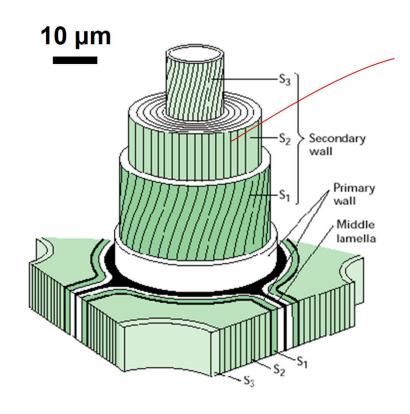
HARDWOOD

NO CLEAR DISTINCTION

WIDER VARIETY OF WOOD CELLS
- ONLY 30-70% FIBRES

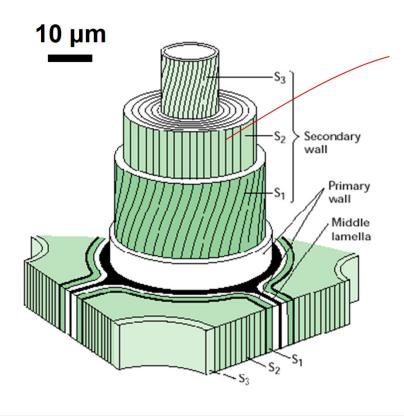

WIDER CHEMICAL DIVERSITY

Ultrastructure of plant fibres



Wood fibre

Wood fibres, like many other plants fibres, contain a secondary wall that yields exceptional strength to the fibre



Wood fibre

Wood fibre cell wall consists of semicrystalline cellulose microfibrils with amorphous lignin and hemicellulose in between.

Wood fibre

- Cellulose microfibrils are oriented in the secondary wall and arbitrarily aligned in the middle lamella
- The "fibril angle" affects the tensile strength of fibres a great deal

Chemical composition of fibres: the lowest hierarchical level

Cellulose: main structural element

- Poly (1,4-β-D-glucopyranose)
- Linear homopolymer
- Forms semi-crystalline microfibrils
- Recalcitrant
- Insoluble

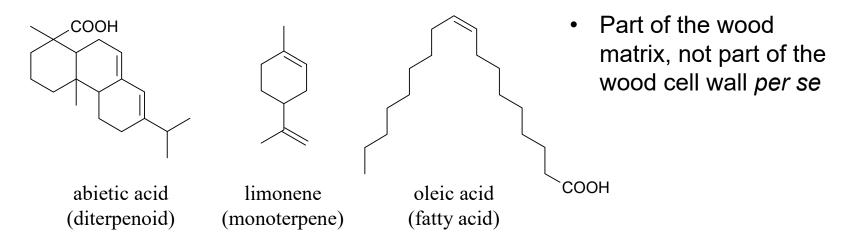
Lignin

O-Lignin

ÓМе

- Non-linear polyphenol
- Structurally extremely diverse
- Glues fibres together as the main component in middle lamella
- Hydrophobic: controls the amount of water inside the cell wall
- Responsible for the brown colour of wood (pulping and papermaking aim at removing lignin as completely as possible)

Hemicellulose


Example from a structure of arabinoglucuronoxylan, a common hemicellulose in conifers

$$\begin{array}{c} \text{HOH}_2\text{C} \\ \text{OH} \\$$

Hemicelluloses are heteropolysaccharides with low DP (<200) and they form amorphous structures in the cell wall

Extractives

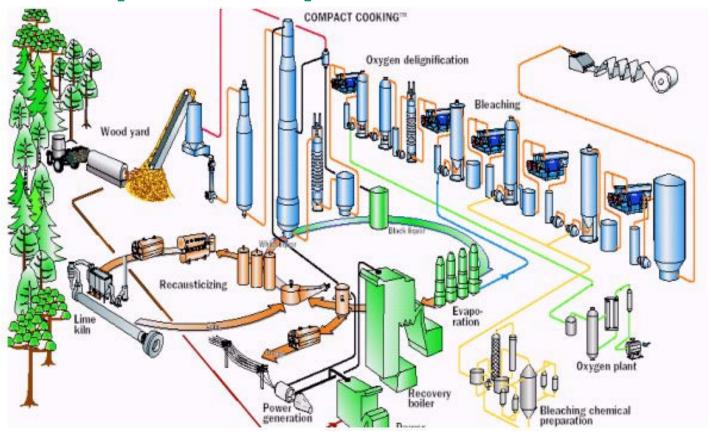
Some examples of common extractives

- Small molecular (not polymers) organic compounds that can be extracted with an organic solvent
- · Thousands of different extractives abound

Chemical composition of wood

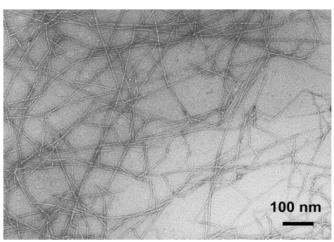
	Softwood	Hardwood
CELLULOSE	40 %	40-50 %
LIGNIN	27-33 %	19-25 %
HEMICELLULOSE	23-30 %	23-40 %
EXTRACTIVES	5-10 %	5-10 %

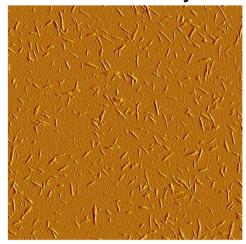
Isolation of fibres



Basic isolation methods

- In order to utilize fibres, they must be isolated from a plant matrix that confines them to a rigid template
- Wood fibres are generally isolated by:
 - Mechanical force (mechanical pulping)
 - Chemical means (chemical pulping)


Kraft process plant



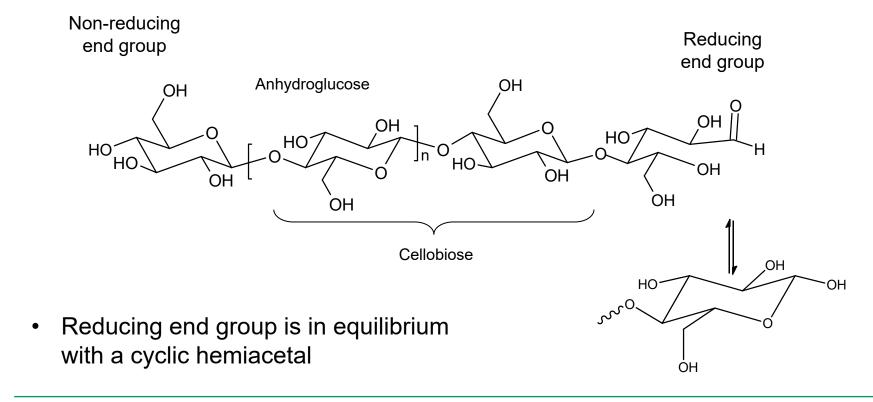
Note: isolation of nanocellulose

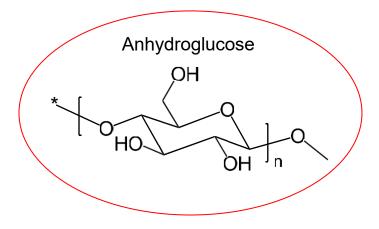
Cellulose nanofibrils

Cellulose nanocrystals

- At present, isolated plant fibres are further disintegrated to nanocellulose
- Nanocelluloses are also made mechanically and/or chemically
- Promising new materials in future applications

Summary on plant cells and cellulose

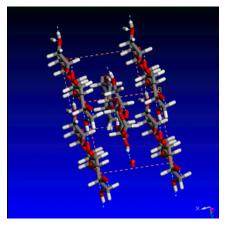

- Plant fibres stem from woody or herbaceous plants
- Tracheids (fibres), vessels, and parenchyma are the main types of plant cells
- Plant cell is a hierarchical construction made of cellulose, hemicellulose, and lignin
- Wood fibres are separated by either mechanical or chemical pulping
- Disintegration of wood fibres results in nanocellulose


Supramolecular structure of cellulose

Molecular structure of cellulose

Note on the molecular structure

- Often cellobiose is presented as the repeating unit (n/2) of cellulose
- In a cellulose crystal, the adjacent anhydroglucose units are twisted 180° with respect to each other
- → Therefore, cellobiose drawn this way is often presented as the repeating unit
- However, cellulose does not need to be inside a crystal (it can be, e.g., in solution)
- → Anhydroglucose is the actual repeating unit (monomer) of cellulose


Molecular vs. supramolecular structure

Molecular structure

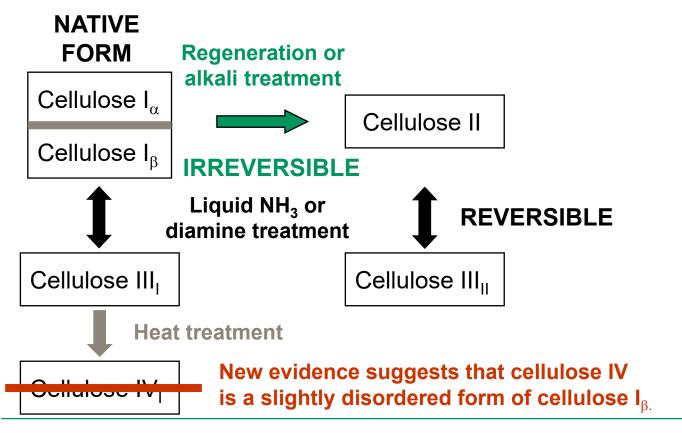
- $(1\rightarrow 4)$ - β -D-glucopyranose
- high native DP (~5000-15000)

Structure revealed: Freudenberg Liebigs Ann. Chem. 1928, 461, 130. Haworth Nature 1930, 126, 438.

Supramolecular structure

 individual cellulose chains linked together by intermolecular bonding

Structure revealed (cellulose I_{α} ja I_{β}): Nishiyama et al.


J. Am. Chem. Soc. 2002, 124, 9074.

J. Am. Chem. Soc. 2003, 125, 14300.

Crystalline forms (polymorphs) of cellulose

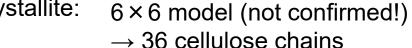
Cellulose polymorphs

Methods for measuring crystalline form and crystallinity of cellulose

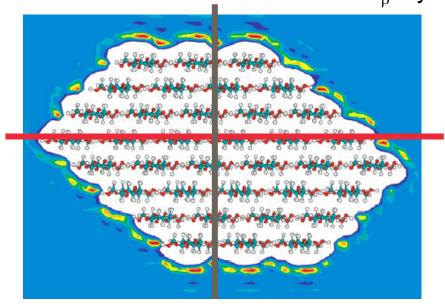
- X-ray diffraction
- Solid state Nuclear Magnetic Resonance (NMR) spectroscopy specifically: cross-polarization magic angle spinning (CP-MAS) ¹³C NMR

Most applied methods, generally regarded as the most reliable

- Electron diffraction
- Neutron scattering
- IR spectroscopy
- Raman spectroscopy

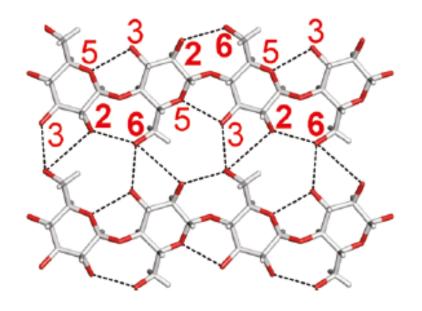

Native cellulose: cellulose I_{α} cellulose I_{β}

Cellulose I crystal


Cellulose chains form sheets which are connected with each other

Radial cross section of a cellulose I_{β} crystallite:

Within the sheets: hydrogen bonds

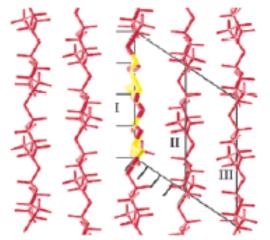

Between the sheets: van der Waals bonds

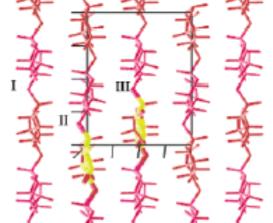
Cross sectional image taken from: Gross and Chu J. Phys. Chem. B 2010, 114, 13333.

Cellulose I: hydrogen bonding

Sheet in cellulose I

Main hydrogen bonds:


- 3→5 intramolecular bond lends rigidity to the cellulose chain
- 2→6 intramolecular bond
- 3→6 intermolecular bond keeps the sheets together


NOTE: Cellulose chains in cellulose I crystals run parallel

Distinction between I_{α} and I_{β}

Two forms of native crystalline cellulose exist: I_{α} and I_{β} .

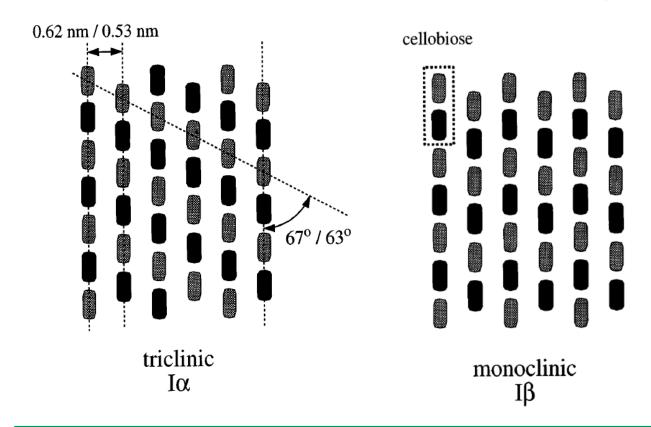
Atalla and Vanderhart Science 1984, 223, 283.

Crystallographic details in 1Å resolution (cellulose I_{α} ja I_{β}):

Nishiyama et al.

J. Am. Chem. Soc. **2002**, 124, 9074. J. Am. Chem. Soc. **2003**, 125, 14300.

I_{α} : one chain triclinic

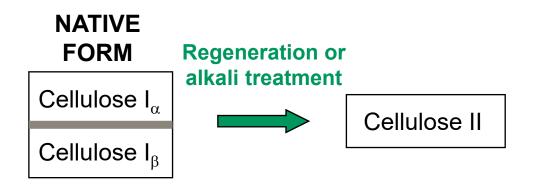

dominant in, e.g.,
 bacterial cellulose
 and algae

I_{β} : two chain monoclinic

dominant in higher plants (e.g. wood, cotton)

Distinction between I_{α} and I_{β}

Distinction between I_{α} and I_{β}


- Cellulose I_{β} is the predominant form in higher plants (wood, cotton etc.) and tunicate (cellulose in tunicate animals)
- Cellulose I_{α} is the predominant form in algae and in cellulose emitted by microbes (bacterial cellulose)

NOTE: Cellulose I_{α} and cellulose I_{β} ALWAYS coexists with each other in nature, usually within the same microfibril.

Regenerated cellulose: cellulose II

Emergence of cellulose II

"Man-made" form of cellulose
Preparation by: - dissolving the cellulose / regeneration
- swelling in concentrated alkali (e.g. > 10% NaOH)

Silk-like texture of cellulose II materials means that they are widely applied in textile industry.

Distinction between cellulose I and II

Cellulose I

Cellulose II

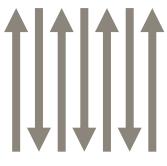
Note: hydrogens have been omitted to enhance clarity

Hydrogen bonding patterns within the sheets are different.

Distinction between cellulose I and II

Cellulose chain has a direction:

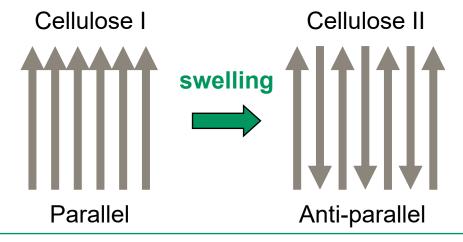
Non-reducing end


Reducing end

Cellulose I

Parallel

Cellulose II

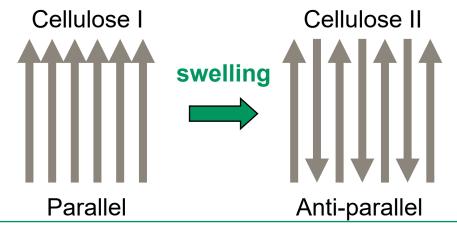


Anti-parallel

Dilemma of anti-parallel cellulose II

Cellulose II preparation by: (a) dissolving the cellulose / regeneration (b) swelling in concentrated alkali

How is it possible for the cellulose chains to transform from parallel to anti-parallel without dissolution?

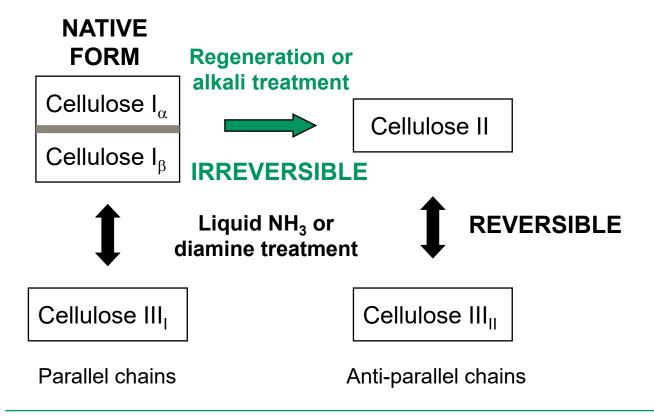


Dilemma of anti-parallel cellulose II

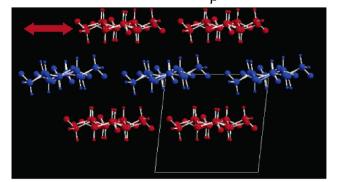
- Cellulose crystals in parallel microfibrils run in opposite direction
- NaOH swells the crystals
- Anti-parallel arrangement is thermodynamically more favourable than parallel arrangement

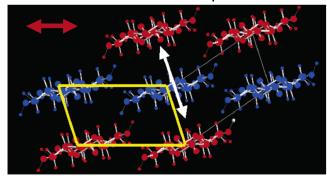
→ HYPOTHESIS:

Cellulose chains in parallel microfibrils intermingle and form new antiparallel crystals



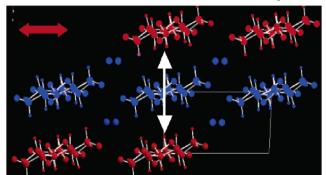
Cellulose III


Conversion to cellulose III



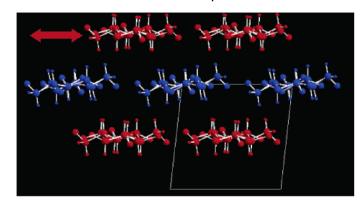
Conversion: cellulose $I_{\beta} \rightarrow$ cellulose III

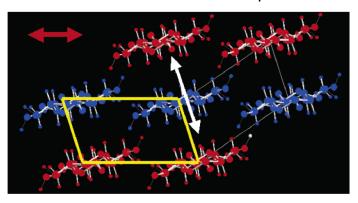
Cellulose I_B




Cellulose III_I

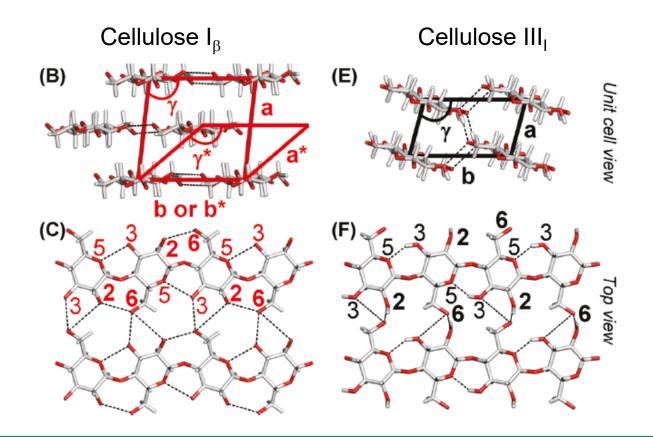
Ammonia-cellulose I complex




Distinction: cellulose I and cellulose III

Cellulose I_{β}

- Hydrogen bonds only between cellulose molecules within the sheets
- van der Waals bonds between the sheets


Cellulose III₁

 Hydrogen bonding also between the sheets

Distinction: cellulose I and cellulose III

Reversibility of cellulose III conversion

Cellulose III can be converted back to its starting material

Cellulose I_{α}

Cellulose I_{β}

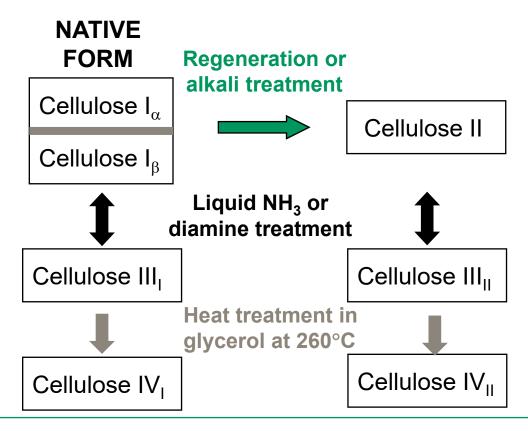
Cellulose III_I

Parallel chains

Cellulose II

Hydrothermal treatment at ~160°C or Thermal treatment at >200°C

Cellulose $\mathrm{III}_{\mathrm{II}}$


Anti-parallel chains

Cellulose IV

Conversion: cellulose III → cellulose IV

Conversion: cellulose III → cellulose IV – recent evidence

Recent evidence from FT-IR spectroscopy, solid state NMR spectroscopy, X-ray diffraction and diffraction simulations:

Wada et al. *Biomacromolecules* **2004**, *5*, 1385. Newman *Cellulose* **2008**, *15*, 769.

- Credible proof that cellulose IV_I is not a genuine allomorph
- Cellulose IV_{I} is seen as a distorted form of cellulose I_{β}

Some implications of the crystalline forms of cellulose

Elastic modulus

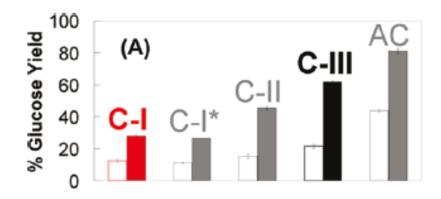
Form Elastic modulus

Cellulose I 138 GPa

Cellulose II 88 GPa

Cellulose III₁ 87 GPa

Cellulose III_{II} 58 GPa


The values are estimates for pure crystalline forms (based on XRD data)

→ Native cellulose I is decidedly stiffer and stronger than the "man-made" forms

Hydrolytic degradation: cellulose I vs. III

Glucose yield from enzymatic hydrolysis of different cellulose allomorphs

C-I: cellulose I C-I*: ammonia-cellulose complex

C-II: cellulose II C-III: cellulose III

AC: amorphous cellulose

Summary on cellulose polymorphs

- Cellulose exists in several crystalline polymorphs:
 - cellulose I_{α} and I_{β} (native forms)
 - cellulose II (prepared regeneration or alkaline treatment)
 - cellulose III_I and III_{II} (prepared by liquid ammonia treatment)
- Cellulose polymorphs are physically different and they differ in reactivity

NOTE: Cellulose is virtually never 100% crystalline; it is semi-crystalline. Semi-crystallinity will be a key issue in the next lecture.

