

Cellulose: regenerated fibres

CHEM-E2140 - Cellulose Based Fibres Michael Hummel

Learning outcomes

After this lecture you know

- 4 different spinning principles
- the key-properties of biobased man-made fibers
- basics of yarn spinning
- the difference between viscose and Lyocell
- principles and applications of the loncell[™] process
- problems associated with chemical cotton recycling

Man-made fiber from natural polymers

Cellulose	
Cellulose acetate	CA
Cellulose triacetate	CTA
Cellulose nitrate	CN
Rayon fibers:	
Cupro	CUP
Viscose	CV
Modal	CMD
Lyocell	CLY

Other natural polymers	
Alginate	ALG
Elastodiene	ED

Fiber production 2017

Natural Natural polymers Cotton: 25.6 Mt Wool: 1.17 Mt Viscose: 5.5 Mt Jute: 3.1 Mt Acetate: 0.85 Mt • Coir: 0.50 Mt Tencel: 0.2 Mt Sisal: 0.30 Mt Hemp: 0.27 Mt

Man-made

Synthetic polymers

Cellulose staple fiber: 6.6 Mt Polyester

Cellulose filament: 0.35 Mt

- staple fiber: 15.4 Mt
- filament: 38.2 Mt Acrylic
- staple fiber: 1.7 Mt Polyamid
- filament: 5.2 Mt
- Carbon fiber 0.1 Mt

5

Growth in textile demand

The Spinnova Fibre is an answer to the Man-made Cellulose Fibres 🔍 growing global population increases food and clothes demand that cannot be fulfilled with current food production or textile fibres. Cotton a Synthetic Fibres a Wool, 1% a 1900 1950 2000 2015 2030

https://spinnova.com/us/megatrends/

Spinning technologies

Man-made cellulosic fibers

Staple fibre vs. continuous filaments

short length fibres, which are twisted together (spun) to form a coherent yarn

The average length of a spinnable fiber is called *Staple Length*.

It influences:

- Spinning limit
- Yarn evenness
- Handle of the product
- Luster of the product
- Yarn hairiness
- Productivity

Staple fibre vs. continuous filaments

"endless" filament

Multifilament consists of monofilaments

Filament number: From 100 to a few 1000

Fiber thickness

Thickness is expresses as Linear Density = Mass per length = Titre

Unit

- 1 tex = 1 g fiber / 1000m
- 1 dtex = 1 g fibre / 10000 m

Fiber thickness

Linear Density (fiber fineness) Mass per unit length (= titre) 1 dtex = g fibre / 10000 m

Circular cross section

Area A is related to diameter D: Linear density c:

c... tex

D...mm

$$A = \frac{\pi D^2}{4}$$

$$c = A\rho = \frac{\pi \rho D^2}{4}$$

$$D = 2 \cdot \sqrt{\frac{c}{\pi \cdot \rho}}$$

Diameter of a 1.3 dtex fibre?

ρ

 ρg/cm³

$$\left(\frac{0.13 \ g}{1000 \ m} \cdot \frac{1}{\pi} \cdot \frac{10^{-6} m^3}{1.53 \ g}\right)^{0.5} \cdot 2 = 10.5 \cdot 10^{-6} m = 10.5 \ \mu m$$

Aalto University School of Chemical Engineering

Effect of Draw ratio on Fibre Diameter

- Fibre diameter is strongly related to draw ratio

Mortimer, S. A and Péguy, A. A. (1996), Cell. Chem. Technol, 30, 117

S. J. Eichhorn, K. Kong. 229th ACS National meeting March 13 - 17, 2005

Stress-Strain Curves

Tensile deformation of dry cellulose fibres

15

Stage I:

Internal energy elasticity: Extension of fibrillar&molecular structure without disrupting H-bonds between fibrils.

Plastic deformation due to disruption of interfibrillar H-bonds close to PL

Stage II:

Orientation of fibrils unhindered by interconnecting H-bonds. Slower build-up of stress

Stage III:

Chain slippage and chain rupture

Yield Point

- Yield point as occuring at the stress given by the intersection of the tangent at the origin with the tangent having the least slope.
- At the yield point, elastic recovery becomes less complete for higher strains.
- Point at which permanent deformation starts

Tensile properties

$$\frac{30}{25}$$

$$\frac{25}{20}$$

$$\frac{25}{20}$$

$$\frac{20}{15}$$

$$\frac{10}{10}$$

$$\frac{10}{10}$$

$$\frac{10}{5}$$

$$\frac{10}{10}$$

$$\frac{10}{5}$$

$$\frac{10}{10}$$

$$\frac{10}{10}$$

$$\frac{10}{10}$$

$$\frac{10}{15}$$

$$\frac{10}{20}$$

$$\frac{10}{10}$$

$$\frac{10}{15}$$

$$\frac{10}{20}$$

$$\frac{10}{15}$$

$$\frac{10}{20}$$

$$\frac{10}{15}$$

$$\frac{10}{15}$$

$$\frac{10}{10}$$

$$\frac{10}{15}$$

$$\frac{10}{10}$$

$$\frac{10}{10}$$

$$\frac{10}{15}$$

$$\frac{10}{10}$$

$$\frac{10}{$$

(

-

24.9.2020 17

Stress-strain curves of Regenerated Cellulose Fibers

Structural vs. Mechanical Properties

- Mechanical properties such as fibre tenacity, FF_c, are determined by
 - the **DP**_n in relation to the size of
 - the elementary crystallites DP_{nL}
 - the degree of lateral order, $\mathbf{X}_{\mathbf{c}}$, and
 - the degree of orientation, **f**_c and **f**_{tot}.
- Krässig has shown a linear relationship between FF_c and $(1/DP_{nL} 1/DP_n) \cdot CrI \cdot f_r^2 \cdot 10^3$ valid for cellulose fibres including fortisan, polynosic and HWM.

Effect of molecular an structural characteristics

Short-chain molecules, DP < 100

Maximum strength properties (tensile strength times elongation) of regular visose fibres dependend on the amount of DP<100 fraction.

Continuous chain model

- Chains are oriented parallel to the symmetry axis and the orientation angle of this axis ϕ with the fiber axis shows a distribution $\rho(\phi)$
- Elastic tensile deformation is due to the chain elongation and the shear deformation.
- Chain modulus, e_c, purely elastic, shear deformation, g, is determined by intermolecular H-bonding (time dependent) and denotes the shear between adjacent chains.

$$\frac{1}{E} = \frac{1}{e_c} + \frac{\langle \sin^2 \phi \rangle_E}{2g}$$

 $\langle sin^2 \phi \rangle$ orientation parameter elastic, chain, shear moduli E, e_c, g tensile stress

σ

Ultimate strength of cellulose fibers

Cross section

Structure and Mechanical Properties

Fiber	Mechanical properties			Structural properties						
	σ _C	8 _C	F _w	DP_{v}	X _c	f _C	f _{tot}			
	GPa	%			%					
Viscose	0.38	20	0.50	430	28	0.62	0.41			
Modal	0.51	13	0.57	650	29	0.66	0.47			
Tencel™	0.60	15	0.90	900	41	0.85	0.59			
loncell™	0.85	10	0.92	900		0.96*	0.81*			
Bocell	1.30	7	0.85	650	59					
Fwratio wet-to-dry strengthxcWAXS degree of crystallinityfccrystalline orientation parameter (Hermans, 1946)ftottotal orientation parameter*different method										

$$f_a = \frac{f_t - (x_c \cdot f_c)}{(1 - x_c) \cdot 0.91}$$

T. Röder, P. Zipper (2003), Lenzing AG *H-P Fink (2014)

Tencel shows uniform water absorption over the whole fiber cross section

Visualization of water:

Solvent exchange procedure followed by isoprene polymerization and OsO₄ staining in aqueous solution: M. Abu-Rous et al. *Cellulose*, 13, 411-419 (2006)

 CC

Crystalline skin of **Modal** contains less water than the core

Uneven water distribution in **viscose**

Water Vapour Sorption

Nanofibrillar Structure of Lyocell Fibers

Nanofibrils act as a microscopic canal system that facilitates moisture absorption and transportation

Courtesy to Lenzing AG

Lyocell Fiber – NanoMultifilament

- Nonswelling hydrophilic crystalline microfibrils
- Swelling amorphous regions and interfibril capillaries

H. Firgo et al., Dornbirn 2003

Fibrillation of Lyocell Fibres

Tendency of Fibrillation

Mechanically treated Lyocell Triacrylamido-trihydrotriazin (Lenzing, A100)

Lyocell LF

Crimp

The crimp of a fibre increases the covering power (capacity to cohere) and is the prerequisite for the further processing to yarn and fabric.

Viscose staple fibres receive a spontaneous crimp due to the skincore structure

Summary questions

- What does the titer tell us and how is it connected to the thickness of a fiber?
- Which units are used for tensile strength?
- What is the chain modulus of cellulose?
- Lyocell has higher orientation than viscose type fibers. This affects which properties? Positive and negative examples

Yarn production

Yarn Spinning

Ring: 20 m/min Compact: 20 m/min OE: 150 m/min Air jet: 450 m/min

lonic liquids

Ionic liquids (ILs)

Technology based on lonic liquids

[DBNH]OAc 1,5-diazabicyclo[4.3.0]non-5-enium acetate

∙⊕

[MTBH]OAc 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium acetate

24.9.2020 41

Aalto University School of Chemical Engineering O3-H-O5 intrachain O2-H-O6 intrachain O6-H-O3 interchain

Cho, H.M.; Gross, A; Chu J.-W. J. Am. Chem. Soc. 2011, doi 10.1021/ja2046155.

Liu, H.; Sale, K.L.; Simmons, B.A.; Singh, S. Phys. Chem. B 2011, 115, 10251–10258.

stable extrusion

Capillary breach

Melt fracture

Ionic liquid recycling

000

Aalto University School of Chemical Engineering

Standard spinning conditions

Dope from **novel cellulose solvent** shows stable spinning conditions at **much lower temperature** than dope from **NMMO**.

Standard spinning conditions

Molar Mass Distribution

Mechanical vs. structural properties

Sixta, H. et al. NPPRJ, 30(1), 2015, 43-57

Mechanical vs. structural properties

Spinning of anisotropic solutions to exploit the full strength potential of cellulose II: E_{max} : ~ 60 GPa (IC-F: 35) σ_{max} : ~ 2.1 GPa (IC-F: 0.9)

Sixta, H. et al. *NPPRJ*, 30(1), **2015**, 43-57 Northolt, M.G. Lenzinger Berichte, (**1985**), 59, 71-79. De Vries. Appl. Sci. Res. A3, 111 (**1952**).

Fiber properties

	Viscose	Lyocell	loncell	
Titre [dtex]	1.4 (ca. 10 µm)	1.3	1.3	
Tenacity cond. [cN/tex]	23.9 (ca. 360 MPa)	40.2 (ca. 600 MPa)	51 (ca. 765 MPa)	
Elongation cond. [%]	20.1	13.0	13.0	
Tenacity wet [cN/tex]	12.5 (ca. 187 MPa)	37.5 (ca. 560 MPa)	48.0 (ca. 720 MPa)	
Elongation wet [%]	22.0	18.4	15.0	
Hermans' orientation factor	ca.0.40	ca.0.70	Ca. 0.71	

Röder *et al. Lenzinger Berichte,* **2009,** 87, 98-105; Gindl *et al. Polymer,* **2008,** 49, 792-799.

24.9.2020 54

Pure cellulose

- Pre-hydrolysis kraft pulp
- (birch, eucalpytus)
- Old cotton textiles

- Added xylan
- Kraft pulp
- Office waste paper
- Kraft cooked cardboard

Cellulose & hemicellulose

Cellulose

& lignin

Added organosolv lignin

- Added xylan and lignin Cardboard
- Kraft pulp with low intensity cooking

Cellulose & hemicellulose & lignin

24.9.2020 56

Non-cellulosic consitutents

Yarns from lignin containing fibers

		Draw	Titer	Elongation	Tenacity
		ratio	(dtex)	(%)	(cN/tex)
fibers	board B2	12.7	1.50	8.99	39.66
	pulp+ 15 wt% lignin	12.4	1.69	10.35	40.56
					~~
yarn	board B2		50.7	5.98	20.55
	pulp+ 15 wt% lignin		66.7	7.01	17.73

Fabrics from lignin containing yarns

- The yarns were knitted. The natural color of the fibers were used to create patterns.
- Further, the fibers showed good dyeability, allowing for the production of colorful garments without any bleaching step.

EUKOPEAN PAPER RECYCLING AWARDS 2015

Ma Y. et al. Green Chem. 2018, 20, 160-169

Textile fibers from waste paper and cardboard

Ma et al. Green Chem. 2018, 20, 160-169

ten synny. Miettinen korostaa, että osa-

jää välistä, matkustaja pääsee perille seuraavalla saman linjan bussilla tai jollain toisella bussilinjalla. Korvausvelvoitetta ei si-

dot ovat tärkeitä liikenteen suunnittelulle. Rihtmiemen mukaan on epäselvää, miten HSL fällesuigua selvää, miten HSL fällesuigua liikenteen sellisen anontanasiata

Lainsäädantoa t vielä alan yhteisil säännöillä, joita vin ip V rojektissa

Unbleached wood pulp

Textile fibers from cotton waste

Aalto University School of Chemical Engineering

The global apparel market is valued at 3 trillion dollars (=2% of world's GDP).

Almost 75% of the world's fashion market is concentrated in Europe, USA, China and Japan.

Over 70% of the world's population use second hand clothes.

Aalto University School of Chemical Engineering

Photo source: flickr.com. Ciarademp: Clothes marke

Waste statistics

The clothing and textile industry is the second largest polluter in the world

Textile waste: USA: 15.1 million tons, EU 5.8 million tons

Around 30 – 40 kg per person each year

Recycling rate 15 – 25%

http://www.newsweek.com/2016/09/09/old-clothes-fashion-waste-crisis-494824.html

Global Change Award

photo: Essi Karell

Aalto University School of Chemical Engineering

PLACE FR SA LOT

Aalto University School of Chemical

Engineering

Wedin et al. Text. Res. J. 2019, 89, 5067-5075

Color Translation of Cotton Waste

versity Chemical ng

Textile colors – VAT dyes

Indigo

HO Н ÓΗ

Leuco indigo

Red.

Ox.

Chavan, R.B. Denim, Woodhead Publishing 2015, 37-67. DOI: 10.1016/B978-0-85709-843-6.00003-2 24.9.2020 Haslinger S. et al. Green Chem. 2019, DOI: 10.1039/C9GC02776A

Textile colors – reactive dyes

Color translation

		Waste fabric			Recycled regenerated fibers		
Samples	L*	a*	b*	L*	a*	b*	ΔE
Indanthren Blue BC	69.0±0.3	-4.9±0.3	-22.2±1.1	56.6±1.1	-6.6±0.1	-14.0±0.3	14.9
Indanthren Red FBB	40.5±1	49.1±0.6	6.9±0.4	39.5±0.8	38.1±0.7	12.9±0.3	12.6
Indanthren Green FBB	37.0±0.5	-46.9±0.4	-1.4±0.1	34.5±0.4	-38.4±0.1	-0.9±0.1	8.8
Remazol Black	18.7±0.3	-5.0±0.1	-16.2±0.2	35.6±1.2	15.6±0.3	6.2±0.2	25.6
Remazol Blue	43.0±0.6	-1.8±0.1	-39.7±0.3	56.9±3.1	0.7±0.7	-20.7±0.4	23.6
Levafix Blue	37.5±0.9	-1.5±0.1	-31.97±0.3	35.3±1.4	-3.5±0.5	-23.3±0.6	9.2

CIELAB coordinates

$$\Delta E = \sqrt{(\Delta L *)^2 + (\Delta a *)^2 + (\Delta b *)^2}$$

Summary questions

- Name 3 types of yarn spinning.
- What is an ionic liquid?
- What are the advantages of ionic liquids as fiber spinning solvent?
- What are the disadvantages of ionic liquids as fiber spinning solvent?
- What kind of fibers can be produced with the loncell[™] process?

