ELEC-E8116 Model Based Control Systems / solution 1

Problem 1:

Let $f(x)$ be a scalar-valued function of the vector x and let A be a square matrix with an appropriate dimension. By using a simple example, study what kind of a function $f(x)=x^{T} A x$ is. Prove that

$$
\frac{d(A x)}{d x}=A \quad \text { and } \quad \frac{d f(x)}{d x}=\underline{x}^{T}\left(A+A^{T}\right)
$$

when the gradient is considered to be a row vector (in the literature the gradient is sometimes regarded as a row vector and sometimes as a column vector).

Solution

General about differentiation of matrices: Let $x(t)=\left[x_{1}(t) x_{2}(t) \cdots x_{n}(t)\right]^{T}$ and
$A(t)=\left[\begin{array}{cccc}a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n 1}(t) & \cdots & \cdots & a_{n n}(t)\end{array}\right]$
Then $\quad \frac{d x(t)}{d t}=\dot{x}(t)=\left[\begin{array}{c}\dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n}(t)\end{array}\right] \quad \dot{A}(t)=\left[\begin{array}{cccc}\dot{c}_{11}(t) & \dot{a}_{12}(t) & \cdots & \dot{a}_{1 n}(t) \\ \dot{a}_{21}(t) & \dot{a}_{22}(t) & \cdots & \dot{a}_{2 n}(t) \\ \vdots & \vdots & \vdots & \vdots \\ \dot{a}_{n 1}(t) & \cdots & \cdots & \dot{a}_{n n}(t)\end{array}\right]$
If f is a scalar-valued function of the vector x, the gradient can be defined to be either a row- or a column vector. As a row vector $\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x}=\left[\begin{array}{llll}\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}}\end{array}\right]$.

For example $f(x)=x_{1}^{2}+2 x_{2}+x_{3} \Rightarrow \frac{\partial f}{\partial x}=\left[\begin{array}{lll}2 x_{1} & 2 & 1\end{array}\right]$

Let f be a multidimensional function $f=\left[\begin{array}{llll}f_{1}(x) & f_{2}(x) & \cdots & f_{m}(x)\end{array}\right]^{T}$, where $x(t)=\left[x_{1}(t) x_{2}(t) \cdots x_{n}(t)\right]^{T}$. Then the "derivative" has the dimension $m \times n$ and it is called the Jacobi matrix
$\frac{\partial f}{\partial x}=\left[\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\end{array}\right]$

To the problem: Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $A=\left[\begin{array}{ll}l_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. We obtain
$f(x)=x^{T} A x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2}$, which is a quadratic function.
In optimization the LQ-problem = linear system, quadratic cost.
Now $A x=\left[\begin{array}{l}a_{11} x_{1}+a_{12} x_{2} \\ a_{21} x_{1}+a_{22} x_{2}\end{array}\right]$ and the derivative is the Jacobi matrix
$\frac{d(A x)}{d x}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=A$. Note that the derivative with respect to the vector x has been written as a row vector. Now calculate the gradient of f and again consider it a row vector

$$
\frac{\partial f}{\partial x}=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 a_{11} x_{1}+\left(a_{12}+a_{21}\right) x_{2} & 2 a_{22} x_{2}+\left(a_{12}+a_{21}\right) x_{1}
\end{array}\right]
$$

On the other hand

$$
x^{T}\left(A+A^{T}\right)=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\left[\begin{array}{cc}
2 a_{11} & a_{12}+a_{21} \\
a_{12}+a_{21} & 2 a_{22}
\end{array}\right]=\left[\begin{array}{ll}
2 a_{11} x_{1}+\left(a_{12}+a_{21}\right) x_{2} & 2 a_{22} x_{2}+\left(a_{12}+a_{21}\right) x_{1}
\end{array}\right]\right.
$$

which is the same result. Hence $\frac{\partial}{\partial x}\left(x^{T} A x\right)=x^{T}\left(A+A^{T}\right)$ and $\frac{\partial}{\partial x}(A x)=A$

Problem 2

Now consider the gradient of $f(x)$ as a column vector. Show by a simple example that

$$
\frac{d(A x)}{d x}=A^{T} \quad \frac{d\left(x^{T} A x\right)}{d x}=\left(A+A^{T}\right) x
$$

Solution

Similar as in the previous problem. The result matrices are transposes to those in the previous problem.

Problem 3

Show that $x^{T}\left(A-A^{T}\right)_{x}=0$ holds, when x is a vector and A a square matrix with an appropriate dimension.

Solution

First some basic results from matrix calculus. With proper dimensions it holds
$A+B=B+A$
$A(B+C)=A B+A C$
$(A+B)^{T}=A^{T}+B^{T}$
$(A B)^{T}=B^{T} A^{T}$
$A^{-1} A=A A^{-1}=I \quad$ I is the identity matrix
$(A B)^{-1}=B^{-1} A^{-1}$
$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
Note that with matrices as a rule $A B \neq B A,(A+B)^{-1} \neq A^{-1}+B^{-1}$
Calculus with matrices in a symbolic form is essentially more difficult than with scalar quantities..

So, the claim is $x^{T} A x=x^{T} A^{T} x$. But this is a scalar, and its value does not change when the transpose is taken. But the matrix calculus rules hold anyway and therefore

$$
x^{T} A x=\left(x^{T} A x\right)^{T}=x^{T} A^{T} x \quad \text { as claimed. }
$$

Problem 4

Let the criterion to be minimized be given as

$$
J=\int_{0}^{T}\left\{x(t)^{\prime} P x(t)+u(t)^{\prime} Q u(t)\right\}_{d} d t
$$

where ' denotes the transpose. Show that the square matrices P and Q can always be chosen as symmetric matrices..

Solution

$$
\begin{array}{ll}
x^{\prime} P x=x^{\prime}\left(P+P^{\prime}-P^{\prime}\right) x=x^{\prime}\left(P+P^{\prime}\right) x-x^{\prime} P^{\prime} x=x^{\prime}\left(P+P^{\prime}\right) x-x^{\prime} P x & \text { (compare to the previous } \\
& \text { problem) }
\end{array}
$$

Hence $2 x^{\prime} P x=x^{\prime}\left(P+P^{\prime}\right) x \Rightarrow x^{\prime} P x=x^{\prime}\left(\frac{P+P^{\prime}}{2}\right) x$
But $P+P^{\prime}$ and also $\frac{P+P^{\prime}}{2}$ are symmetric matrices. They can always be used instead of an arbitrary P without changing the value of the expression. The same holds naturally for $u^{\prime} Q u$.

Problem 5

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be $n \times n, n \times m, m \times n, m \times m$ matrices. Prove the so-called matrixinverion lemma

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}
$$

where it is assumed that all inverse matrices exist.

Solution

At first sight the inversion lemma looks quite complicated. But is turns out to be valuable in many matrix calculations in control theory. A good example is, when the least-squares estimation algorithm is changed in a recursive form.

Let us start from the claim and multiply both sides with $A+B D C$

$$
\begin{aligned}
& I=(A+B D C)\left[A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}\right]= \\
& I-B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}+B D C A^{-1}-B D C A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}= \\
& I+B D C A^{-1}-B\left(I+D C A^{-1} B\right)\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}= \\
& I+B D C A^{-1}-B D\left(D^{-1}+C A^{-1} B\right)\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}= \\
& I+B D C A^{-1}-B D C A^{-1}= \\
& I
\end{aligned}
$$

and an identity followed, Ok. (Note that since we started from the claim we must go through equivalences in order the proof to be sound.)

