
Access control in operating systems

Tuomas Aura
CS-C3130 Information security

Aalto University, Autumn 2020

Outline

▪ Access control models in operating systems:

1. Windows access control

2. Unix permissions

3. Other systems

2

Acknowledgements: This lecture has evolved from a
joint course with Dieter Gollmann

WINDOWS ACCESS CONTROL

3

Object
= file, Registry

key, printer, etc.

Windows security model

4

Security
descriptor

Owner
Discretionary access
control list

Subject
= process or thread

Runs as the
principal User

Access token
User
Other principals
Privileges

The process’s access
token is compared to
the object’s DACL
when creating a
handle to the object.

* *

Privilege

*

1
1

1
1

Permission
= read, write, etc.

Action on the
object

* *

Principal
= user, machine,
group
Identifier by SID

Local machine* 24 1

1 *

DACL maps principals
to permissions

DACL

* *

1 *

Windows Security Model (recap)

▪ Principals = users, machines, groups,…
– Something that can be authenticated

▪ Objects = files, Registry keys, printers, …
– Each object has a discretionary access control list (DACL)

▪ Subjects = processes or threads
– Process (or thread) runs as a principal

– Each process (or thread) has an access token

▪ When is a process allowed to access an object?
– The object’s DACL is compared with the process’s access token when

creating a handle to the object

5

Security indentifier

▪ Principal names: machine\principal or domain\principal

T30500-LR064\Tuomas, AALTO\aura

▪ Principal has a unique security identifier (SID)

S-1-5-21-961468069-954667678-1722769278-1002

▪ Name can be changed; SID is permanent

– Causes issues when moving an NTFS disk between computers;
machine-scoped SIDs are not recognized

6

SID examples

▪ User SIDs (from one computer):

S-1-5-21-961468069-954667678-1722769278-1002 = Alice

S-1-5-21-961468069-954667678-1722769278-500 = Administrator

▪ How Windows creates unique user SIDs:
S-1-5 + machine or domain id + relative id

▪ There are some well-known SIDs:

S-1-1-0 = Everyone, S-1-5-18 = Local System,
S-1-5-domain-513 = Domain Users, S-1-3-0 Creator/Owner

7

Where principals live

▪ Windows computer has a Local Security Authority (LSA), which
stores local users and local groups (=aliases) in a hierarchical
database called Registry

T30500-LR064\Tuomas

▪ Windows domain has a Domain Controller (DC), which stores
domain users, domain computers (=machines) and groups
centrally in a hierarchical database called Active Directory (AD)
– Names: domain\principal or principal@domain

AALTO\aura, aura@org.aalto.fi

8

Windows domain

▪ A Windows Server can become a Domain Controller (DC)

– Other machines can join the domain

▪ DC provides authentication services to other machines

– Domain user can log into any domain-joined machine

– Kerberos protocol used for distributed authentication

▪ DC can deploy policies (group policy) to the domain-joined
computers

▪ In large organizations, domains can form a hierarchy

9

Extra
material

How to see them
▪ Show local users and local groups i.e. aliases on your computer:

> net user

> net user tuomas

> net localgroup

> net localgroup Administrators

▪ SIDs with SysInternals psgetsid.exe:

> psgetsid (machine SID)
> psgetsid tuomas

> psgetsid tuomas.aura@iki.fi (linked Microsoft ID)
> psgetsid Administrators (local administrators group SID)
> psgetsid MicrosoftAccount\tuomas.aura@iki.fi (Microsoft account global SID)

▪ For a UI view of the groups and users, run compmgmt.msc, see System Tools / Local user and Groups

▪ For the actual storage, run regedit.exe, see under HKEY_USERS

▪ Privileges: Run secpol.msc, see Local Policies / User Rights Assignment

▪ Domain users, groups (must run on a computer that belongs to a domain, e.g. vdi.aalto.fi):
> net user /domain (very slow if it is a large domain!)
> net user aura /domain

> net group /domain

> net group aut-prof-sci /domain

> psgetsid aalto

> psgetsid aalto\aura

SysInternals: https://technet.microsoft.com/en-us/sysinternals/bb795533
10

https://technet.microsoft.com/en-us/sysinternals/bb795533

Object
= file, Registry

key, printer, etc.

Windows security model

11

Security
descriptor

Owner
Discretionary access
control list

Subject
= process or thread

Runs as the
principal User

Access token
User
Other principals
Privileges

The process’s access
token is compared to
the object’s DACL
when creating a
handle to the object.

* *

Privilege

*

1
1

1
1

Permission
= read, write, etc.

Action on the
object

* *

Principal
= user, machine,
group
Identifier by SID

Local machine* 24 1

1 *

DACL maps principals
to permissions

DACL

* *

1 *

Access token

▪ Process has an access token (=security token), which contains:

– Login user account SID (the process runs as this user)

– SIDs of all groups where the login user is a member (recursively!)

– All privileges assigned to these groups on the local computer

▪ Token never changes after it has been created

– Better reliability and efficiency but slower revocation of access rights

▪ Child process gets a copy of the parent’s token

– Child’s token can be restricted, disabling some SIDs

12

Object
= file, Registry

key, printer, etc.

Windows security model

13

Security
descriptor

Owner
Discretionary access
control list

Subject
= process or thread

Runs as the
principal User

Access token
User
Other principals
Privileges

The process’s access
token is compared to
the object’s DACL
when creating a
handle to the object.

* *

Privilege

*

1
1

1
1

Permission
= read, write, etc.

Action on the
object

* *

Principal
= user, machine,
group
Identifier by SID

Local machine* 24 1

1 *

DACL maps principals
to permissions

DACL

* *

1 *

Privileges

▪ Privileges are special rights on the local machine

– Backup, audit security log, take ownership, trusted for delegation,
debugging, performance profiling, shutdown, …

14

Restricted token

▪ Inherited access token may be too powerful

▪ Process can assign restricted tokens to its child processes or
threads

– remove privileges

– disable groups: change SIDs to “deny-only” mode; they are not
deleted but marked as USE_FOR_DENY_ONLY

– add restricted SIDs: a second list of SIDs that is also compared against
DACLs

▪ Typically used in services, rarely in desktop apps

15

Extra
material

Creating subjects at logon

▪ The machine is always running a logon process (winlogon.exe) as
the principal SYSTEM

▪ When a user logs on to a machine:
– the logon process asks for user credentials (e.g. password) and presents

them to the LSA

– the LSA (lsass.exe) verifies the credentials

– the logon process starts a shell (explorer.exe) running as the user
(=principal) and in a new logon session

▪ Shell spawns processes to the same logon session

▪ Logging off destroys the logon session and all processes in it
– Note: Windows has no equivalent of disown/nohup. To leave a program running in the

background, create a service.

16

Extra
material

Creating more subjects

▪ A process can spawn a new local process (subject) by calling
e.g. CreateProcess

– Each process has its own access token

– New process gets a copy of its parent’s token

– Threads can be given their own tokens, so that they become
independent subjects

▪ User’s network credentials (e.g. password or Kerberos ticket)
are cached in the logon session

→ Process can create network logon sessions for the local login user
user at other machines

17

Extra
material

How to see them
Access tokens:

1. Run Process Explorer procexp.exe from SysInternals

2. Click on a process, see Properties/Security tab for the access token

3. Note the SIDs and privileges on the process

4. The token itself is also an object (see next slides). Click on Permissions to see its DACL

SysInternals: https://technet.microsoft.com/en-us/sysinternals/bb795533

18

https://technet.microsoft.com/en-us/sysinternals/bb795533

Object
= file, Registry

key, printer, etc.

Windows security model

19

Security
descriptor

Owner
Discretionary access
control list

Subject
= process or thread

Runs as the
principal User

Access token
User
Other principals
Privileges

The process’s access
token is compared to
the object’s DACL
when creating a
handle to the object.

* *

Privilege

*

1
1

1
1

Permission
= read, write, etc.

Action on the
object

* *

Principal
= user, machine,
group
Identifier by SID

Local machine* 24 1

1 *

DACL maps principals
to permissions

DACL

* *

1 *

Objects

▪ Objects: files, folders, Registry and AD objects, processes...

– Some objects are containers for other objects → hierarchy

▪ Object has a security descriptor, which includes the
discretionary access control list (DACL)

▪ Object also has an owner (identified by SID), who has the
implicit right to read and write the DACL

20

Permissions

▪ Permissions are actions that apply to an object

▪ Generic and standard permissions are defined for all objects: Read,
Write, Execute, All, Delete, WriteDACL, …
– although different names are used for different object classes

(e.g. Read for file and List for directory)

▪ Each object class has object-specific permissions:
Append (for file), AddSubDir (for folder), CreateThread (for
process), …

▪ Permissions are encoded as a 32-bit mask for fast checking

21

Access control list (DACL)

▪ DACL is a list of access control entries (ACE)

22

ACE1 + Diego Full Control

ACE2 + Lecturers Read, Write

ACE3 + EVERYONE Read

PermissionsSID

Negative ACEs

▪ Negative ACEs are placed before positive ones

– DACL above grants read but no write access to the user
Tuomaura

23

ACE1 – Tuomaura Write

ACE2 + Diego Full Control

ACE3 + Lecturers Read, Write

ACE4 + EVERYONE Read

PermissionsSID

Negative ACEs are rarely used in practice.
Avoid in the course exercise!

Access control entry (ACE)

▪ ACE format:

24

Type: positive or negative (grant or deny)

Permissions: actions to grant to deny

Principal (SID): who the ACE applies to

Flags

Object Type

Inherited Object Type

How to see them
▪ Right-click on a file;

select Properties/
Security

▪ Note: Windows DACLs only exist in
NTFS, not in FAT or other file systems

▪ Click on Advanced
for a more
complete view of
the entire security
descriptor

25

Permissions in

the selected ACE

DACL

(list of ACEs)

Access check algorithm

▪ Process requests permissions when creating a handle to the object

HFILE hf = OpenFile("D:\\file.txt", &buffer, OF_READWRITE);

▪ Privileges or implicit owner permissions may alone be sufficient

▪ Otherwise, Windows checks the DACL as follows:

– Look for ACEs that match both (1) any SID in the subject’s access token and
(2) any desired access right

– If a negative ACE matches, deny access

– If positive ACEs are found for all requested permissions, grant access

– If the end of DACL is reached, deny access

26

Performance and reliability
▪ Group memberships and privileges are determined at logon

– User’s group SIDs are cached in the token of the login process and copied
to sub-processes

– Token unchanged even when a group or privilege is revoked from the user

▪ Desired access is compared against the token and DACL when
creating a handle to the object – not at access time
– Changing file DACL does not affect open file handles

▪ Consequences:
– Better performance because of fewer checks
– Better reliability because a process knows in advance whether it has

sufficient access rights for a task
– As a downside, no immediate revocation of access rights

27

Containers and ACE inheritance

▪ Container objects can have inheritable ACEs

▪ Inheritable ACEs are copied down the hierarchy

▪ Directly assigned ACEs override the inherited ones
28

Folder

File A File B

+ Diego Read, Write Flags: OBJECT_INHERIT

- Diego Write

+ Diego Read, Write

Flags: INHERITED_ACE

+ Diego Read, Write

Flags: INHERITED_ACE

Container hierarchy

29

Folder X

Folder Y Folder Z

+ Diego Read, Write Flags: OBJECT_INHERIT, INHERIT ONLY

- Diego Write

Flags: OBJECT_INHERIT

+ Diego Read, Write

Flags: INHERITED_ACE

INHERIT_ONLY,

OBJECT_INHERIT

+ Diego Read, Write

Flags: INHERITED_ ACE,

INHERIT ONLY, OBJECT_INHERIT

File A File B - Diego Write

Flags: INHERITED_ACE

+ Diego Read, Write

Flags: INHERITED_ACE

+ Diego Read, Write

Flags: INHERITED_ACE

ACE inheritance

Inheriting negative ACEs

▪ It is possible to override inherited negative ACEs because
inherited ACES are placed at the end of the list

30

Folder

File A File B

- Tuomaura Read Flags: OBJECT_INHERIT

+ Tuomaura Read

- Tuomaura Read

Flags: INHERITED_ACE

- Tuomaura Read

Flags: INHERITED_ACE

Extra
material

31

Flag: DACL_
PROTECTED

Blocking inheritance

Folder X

Folder Y Folder Z

+ Diego Read Flags: OBJECT_INHERIT

File A File B

+ Diego Read, Write

Flag: INHERITED_ACE

+ Diego Read

Flag: INHERITED_ ACE,

INHERIT_ONLY

Example: User’s profile folders
(e.g. C:\Users\aura) are
protected, so that other users
can read the file system above
but not my files.

Inheritance flags
▪ Flags on ACEs:

32

OBJECT_INHERIT_ACE ACE applies to leaf objects

CONTAINER_INHERIT_ACE ACE applies to container objects

NO_PROPAGATE_INHERIT_ACE Applies to immediate children only

INHERIT_ONLY_ACE Does not apply to the container itself

INHERITED_ACE The ACE has been inherited

SE_DACL_PROTECTED This object does not inherit from

containers above itself

(Inheritable ACEs can apply to leaf objects, to containers, or to both)

▪ Flags on DACLs:

Extra
material

Try to see these flags in the Windows user interface!

Advanced inheritance

▪ Inheritance simplifies system administration, but few users and
developers understand or use it

▪ Container hierarchies with inheritance:
NTFS file system, Registry, Active Directory

▪ Inheritable ACEs can apply only to leaf objects or only to
containers

▪ Inheritable ACEs can apply to all objects or only to a specific
object type

▪ Special CREATOR_OWNER SID in an ACE matches the object
owner

33

Extra
material

Performance and reliability

▪ Inherited ACEs are cached in sub-object DACLs to make access
control decisions faster

▪ Consequence:

– Changes in permissions on a folder are copied all the way down the
file-system hierarchy. This is why it takes very long, e.g. to give one
user access to another users’s home folder, or to Windows

34

How to see them
▪ DACL in UI: In Explorer, right-click on a file or folder and select Properties, Security tab. This is the DACL on the

object. Click on Advanced for a clearer view.

▪ DACL from command line (incomplete and difficult to read output):

> icacls file.txt

> icacls mydir /T /C (recursive)

> icacls mydir /save output.txt /T /C

(complete information as SDDL)

▪ accesschk.exe from SysInternals for more readable output:

> accesschk Desktop\kitten.mp4 –l

> accesschk Desktop –dl

> accesschk Desktop/* -l

▪ accessenum.exe from SysInternals finds who has access to files in a given folder

SysInternals: https://technet.microsoft.com/en-us/sysinternals/bb795533

SDDL: https://msdn.microsoft.com/en-us/library/aa379567.aspx

35

https://technet.microsoft.com/en-us/sysinternals/bb795533
https://msdn.microsoft.com/en-us/library/aa379567.aspx

Object
= file, Registry

key, printer, etc.

Windows security model

36

Security
descriptor

Owner
Discretionary access
control list

Subject
= process or thread

Runs as the
principal User

Access token
User
Other principals
Privileges

The process’s access
token is compared to
the object’s DACL
when creating a
handle to the object.

* *

Privilege

*

1
1

1
1

Permission
= read, write, etc.

Action on the
object

* *

Principal
= user, machine,
group
Identifier by SID

Local machine* 24 1

1 *

DACL maps principals
to permissions

DACL

* *

1 *

WINDOWS ACCESS CONTROL
– MORE DETAILS

37

Minimum privilege
▪ Principle of least privilege: only run with admin rights when needed

▪ Windows user account control (UAC)
Interactive user has two security tokens:
1. Restricted token with Administrator group

denied (and medium integrity level)
2. Unrestricted token with all the Administrators

group rights (and high integrity level)

▪ Process elevation:
– Right click and select Run as Administrator
– In PowerShell (similar to Linux sudo):

> Start-Process -Verb runas notepad.exe

38

Controlled invocation?
▪ Controlled invocation: allow user to invoke operations that require system privileges, but in a

controlled way
▪ Windows does not have the equivalent of Linux SUID programs (see the Linux part of this lecture)

that run with root privileges but are invoked by ordinary users. Why?
– Home users belong to Administrators local group on their machine and can run a process as administrator if

needed (UAC)
– Software for non-admin users is written to not require elevated privileges
– Professional administration of Windows computers is done by domain admins; thus, controlled invocation

of local admin rights makes only limited sense
– Remote users (e.g. on another machine in the same domain) should be treated the same as locally logged-

on users, and that leads to a different architectural solution than SUID

▪ Windows service can run as admin and handle requests from applications
– The user application needs to communicate with the service: inter-process communication with Windows

Communication Foundation (WCF) and named pipes (NetNamedPipeBinding)
– Service can learn the client identity from WCF (see ServiceSecurityContext)
– More commonly, the service switches between the service user’s and the client user’s access rights by

impersonating the client
BUT, remember that if Microsoft wanted you to imitate SUID in Windows, they would have made it easier!

39

Windows integrity mechanism

▪ Security token has integrity level

▪ Security descriptor has mandatory label

– Levels: Untrusted, Low, Medium, High, System

– Policies associated with the label: NO_WRITE_UP, NO_READ_UP

– Implemented as SIDs: S-1-16-xxx in System ACL

– Process level is assigned based on its groups; object level is equal to
or lower than the creator process

https://msdn.microsoft.com/en-us/library/bb625963.aspx

40

https://msdn.microsoft.com/en-us/library/bb625963.aspx

Windows integrity applications

Mandatory integrity label is used to:

▪ Prevent untrusted software from sending window messages to
trusted software and to security dialogs
– User interface privilege isolation (UIPI)

▪ Sandbox particularly vulnerable processes:
– IE, Edge, web cache used to be low to prevents compromise of the

file system via browser vulnerabilities. (Chromium-based Edge seems
to use different app sandboxing techniques.)

– Q: How does IE write to Downloads? (runtimebroker.exe)

https://msdn.microsoft.com/en-us/library/bb625963.aspx

41

Extra
material

https://msdn.microsoft.com/en-us/library/bb625963.aspx

System ACL

▪ In addition to DACL, object has a SACL

▪ System ACL (SACL) specifies

– Integrity level

– Rules for generation of audit messages for granted and denied access
requests (see Event Viewer / Windows Logs / Security)

42

Yet another label: Zone Identifier

▪ Windows also labels files with Zone Identifier
0 My Computer

1 Local Intranet Zone

2 Trusted sites Zone

3 Internet Zone

4 Restricted Sites Zone

▪ Stored in an alternate data stream in NTFS

▪ Why not use the integrity level instead?

– User needs more information to decide about upgrading the file

43

How to see them
▪ Restricted token:

1. Run Process Explorer procexp.exe from SysInternals

2. See a normal process like powerpnt.exe. The token is restricted: Administrators group is denied.

3. Run powershell.exe as Administrator and compare the process token.

▪ Integrity level on processes:

1. Run Process Explorer procexp.exe from SysInternals

2. Find the Mandatory Label on IE/Edge (click on a process, see Properties/Security tab for the access token, and browser the ACEs)

3. Find also runtimebroker.exe, which mediates access to the file system from processes that are on low integrity level

▪ Integrity level on objects with accesschk.exe from SysInternals:

> accesschk C:\Users\tuoma\appdata -v

▪ Zone indetifiers: try this in Windows PowerShell:

> cd c:\Users\myself\Downloads

> get-item -path .\photo.jpg -stream *

> get-content -path .\photo.jpg -stream Zone.Identifier

SysInternals: https://technet.microsoft.com/en-us/sysinternals/bb795533

44

https://technet.microsoft.com/en-us/sysinternals/bb795533

UNIX PERMISSIONS

45

Unix / Linux permissions are a
a very old topic and there are
good online tutorials. Please read
them, not just the slides

Principals

▪ The principals in Unix are users and groups

▪ Users have username and user identifier (UID)

▪ Groups have group name and group identifier (GID)

▪ UID and GID are usually 16-bit numbers, now 32 bits in Linux

0 = root

19057 = aura

▪ Both names and identifiers are permanent; difficult to change

– UID values often differ from system to system

46

root:*:0:0:root:/root:/bin/bash

daemon:*:1:1:daemon:/usr/sbin:/usr/sbin/nologin

www-data:*:33:33:www-data:/var/www:/usr/sbin/nologin

backup:*:34:34:backup:/var/backups:/usr/sbin/nologin

syslog:*:104:110::/home/syslog:/usr/sbin/nologin

sshd:*:109:65534::/run/sshd:/usr/sbin/nologin

alice:Ux6R8ZTZNKWFc:1001:100:Alice,,,:/home/alice:/bin/bash

bob:x:1002:100:Bob,,,:/home/bob:/bin/bash

carol:x:1003:100:Carol,,,:/home/carol:/usr/bin/dash

david:x:1004:100:David,,,:/home/david:/usr/bin/bash

emily:x:1005:100:Emily,,,:/home/emily:/bin/bash

User accounts in /etc/passwd

47

Real name

No
password

Primary group
identifier GID

User identifier
UID

Username

Home
directory

Shell for
interactive

loginPassword
hash

Password
hash in

/etc/shadow

Interactive
login

disabled

Superuser
account

Account for
sshd daemon

bob:!6VjxFJObOqfdvwxpY$wBqRrLqIHMheExrWPUqBgLBXvPTllPpOizT3Qgv4ORYuaIwNrc8qp

YHwPDfNV2uLHjiP50CBkTnQ9kXWrAsPc0:18499:0:99999:7:::

carol:6hCDYfkkPp8Sy70pn$3j1gpbGioEy1n2DsxgYO.XcJrwc8sRunXWz0VsJUjuyWuYDH94aF

wCG6wZrWjkIRpx7QDnef9fSX0HPpV/.qd.:18499:0:99999:7:::

david:6zWdvkaaELhbTtIe8$LtbsO5z19zsVSO.yPYtt8TcGQsIlDCrzWy/OhqBh9rmYsd2bDfrR

h3Rct4N3swixiyJylzxJzAoIVNpKSik5k/:18499:0:99999:7:::

emily:6P5bsih3zlcoVro72$Vl4ZQZkeSESvWf7ripWskb5FVWDfag9.VXdFnGfYyobF3aDhuinh

troJYiYZT2lSqv/iJ4VVpdg3eUTBo9YZB1:18499:0:99999:7:::

Shadow passwords
▪ Password hashes traditionally stored in the world-readable file /etc/passwd, hashed

with crypt(3), which is based on DES

▪ Modern Linux systems store passwords in /etc/shadow, which is read-protected,
hashed with a modern hash function such as SHA512

48

Last changed dateHash value
Random

salt
Hash algorithm

(SHA-512)
Expiration info

sudo:x:27:bob,carol

games:x:60:

users:x:100:

cdrom:x:24:bob

audio:x:29:bob

alice:x:1001:alice

bob:x:1002:bob

carol:x:1003:carol

david:x:1004:david

emily:x:1005:emily

project:x:1006:bob,carol,david

Groups in /etc/group
▪ User’s primary group in /etc/passwd (often users, staff, or personal group)

▪ Secondary group memberships in /etc/groups

49

Secondary
members

Group
identifier GID

Groupname
Admin users

User’s personal
group

All users

Groups for the
interactive
user on the

console

In Linux, user can belong to many groups at the same time, and only superuser can add
groups and members. Other Unix OSs may be different.

Superuser

▪ The superuser is a special privileged principal with UID zero
and the user name root

▪ All security checks are turned off for the superuser

– Only minor limitations:

• The superuser cannot write to a read-only file system but can remount it as
writeable

• The superuser cannot decrypt passwords (because they are hash values) but
can reset them

▪ The superuser can become any other user

50

Subjects

▪ Subjects in Unix are processes with a process ID (PID)

– Processes can create new processes with fork(2)

▪ Processes have a real UID/GID

– Inherited from the parent process

– Typically the UID/GID of the user logged in

▪ Processes also have an effective UID/GID

51

Objects

▪ Objects of access control are files, directories and devices

– Organized in a tree-structured file system

▪ Inode data structure stores information about the object’s
owner user and group, and permissions

▪ Directory is a file containing file names and pointers to inodes

– Filename is stored in the directory, not in inode, so that many names
can be linked to the same inode

52

File metadata

▪ Owner and root can change permissions (chmod);
root can change the file owner and group (chown)

▪ Owner can change the file group to of one of their own groups (chgrp)
53

$ ls -l

-rw-r--r-- 1 alice users 163737 Aug 26 11:56 crypto.txt

-rwxr-xr-x 1 alice users 163737 Aug 26 11:56 doit.sh

drwx------ 1 alice users 512 Aug 26 11:57 slides

File type:
- file
d directory
l symbolic link
p FIFO pipe
s socket
b block device
c character device

Link counter:
the number of
directory
entries pointing
to the inode

Owner:
usually the
user that
created the
file

Group:
new file usually
belongs to its
creator’s
primary group

File size,
modification
time, filename

Permissions
for owner,
group, other

r read
w write
x execute, cd

File permissions

▪ Permission bits are grouped in three triples that define read, write, and
execute access for owner, group, and other (i.e. world)

▪ rw-r--r-- read and write access for owner, read access for group
and other

▪ rwxr-xr-x read, write and execute access for owner, read and
execute for other

▪ rwx------ read, write and execute (cd) access for owner only

– For directory, x means ability to cd to the directory

54

File metadata

▪ Owner and root can change permissions (chmod);
root can change the file owner and group (chown)

▪ Owner can change the file group to of one of their own groups (chgrp)
55

$ ls -l

-rw-r--r-- 1 alice users 163737 Aug 26 11:56 crypto.txt

-rwxr-xr-x 1 alice users 163737 Aug 26 11:56 doit.sh

drwx------ 1 alice users 512 Aug 26 11:57 slides

File type:
- file
d directory
l symbolic link
p FIFO pipe
s socket
b block device
c character device

Link counter:
the number of
directory
entries pointing
to the inode

Owner:
usually the
user that
created the
file

Group:
new file usually
belongs to its
creator’s
primary group

File size,
modification
time, filename

Permissions
for owner,
group, other

r read
w write
x execute, cd

Access control decisions

▪ Access control uses the effective UID/GID:

– If the process’s effective UID = file owner, check owner permissions

– Otherwise, if process’s effective GID = file owner, check group
permissions

– Otherwise, check other (=world) permissions

▪ The owner can always change the permissions (discretionary
access control)

56

SUID and SGID programs

▪ Controlled invocation: normal user can invoke operations that
require superuser privileges, in a controlled way

▪ SUID programs run with effective UID of the owner of the
executable file

– Execute permission of the owner is shown as s instead of x:

-rwsr-xr-x 1 root root 68208 May 28 09:37 /usr/bin/passwd

▪ SGID programs run with effective GID of the owner of the
executable file

– Execute permission of the group is shown as s instead of x

57

Example

58

Process Real UID Effective UID Real GID Effective GID
/bin/login root root root root

User alice logs in; the login process verifies the password and, with its superuser rights,
changes its UID and GID by calling setuid(2), setguid(2):

/bin/login alice alice users users

The login process executes the user’s login shell:

/usr/bin/bash alice alice users users

From the shell, the user executes a command, e.g. ls

/bin/ls alice alice users users

The user executes command passwd to change his password:

/usr/bin/passwd alice root staff staff

SUID to root
▪ When root owns an executable file and the SUID bit is set, the process will get

superuser status during execution
▪ Important SUID programs:

/usr/bin/passwd change password
/usr/bin/at batch job submission
/usr/bin/sudo execute with another UID

▪ Only processes running as root can listen at the privileged TCP or UDP ports
0..1023

▪ SUID programs need to be written very carefully so that they only do what is
intended (e.g. no injection attacks or buffer overruns)

▪ Principle of least privilege:
– Define a new user and group for each service, e.g. print or database daemon
– Process can use functions seteuid(2) and setegid(2)to toggle between

privileged and non-privileged identifiers

59

Permissions for directories

▪ Read permission: to find which files are in the directory (ls)

▪ Write permission: to add files and delete (unlink) files

▪ Execute permission: to make the directory the current
directory (cd) and for opening files inside the directory

▪ Every user has a home directory; what are the correct
permissions for the home directory?

60

Special modes for a directory
▪ Sticky bit on an executable file historically indicated that the

process should not be swapped to disk
▪ Sticky bit on a directory restricts the deletion of files in the

directory only to the file owners (and root)
– Job queues for printing etc. are implemented as a world-writable

directories; anyone can add a file but not delete the files of others
ls -ld /tmp

▪ SGID bit on a directory means that new files inherit their group
from the directory, not from the user who creates the file
– Avoid running the print daemon as root: create a special group for the

print daemon process and the print queue directory
– Implement project directory where members can share files

61

Octal representation

▪ File permissions can also be specified as octal numbers
▪ Examples: rw-r--r-- is equivalent to 644; rwxrwxrwx is

equivalent to 777
▪ Conversion table:

0040 read by group 4000 set UID on execution
0020 write by group 2000 set GID on execution
0010 execute by group 1000 set sticky bit
0004 read by other 0400 read by owner
0002 write by other 0200 write by owner
0001 execute by other 0100 execute by owner

62

Default permissions: umask

▪ Unix utilities typically use default permissions 666 for a new data
file and 777 for a new executable file

▪ Permissions can be restricted with umask: a three-digit octal
number specifying the rights that should be withheld

File permissions = default permissions AND (NOT umask)

▪ Sensible umask values:
– 022: all permissions for owner, read and execute for group and other

– 037: all permissions for owner, read permission for group, none for other

– 077: all permissions for owner, none for group and other

▪ Example: default permissions 666, umask 077 → permissions for
new file 0600

63

POSIX standard

▪ Unix permissions were standardized by IEEE as part of the
POSIX standards (DOI 10.1109/IEEESTD.1992.106983)

– Fairly universal across Unix systems

▪ Unix versions have subtle differences

64

http://dx.doi.org/10.1109/IEEESTD.1992.106983

Unix permissions - discussion

▪ Limitations and advantages?

– Files have only one owner and one group

– Complex policies, e.g. access to several groups, are impractical to
implement

– Superuser needed for maintaining groups

– All access rights (e.g. shutdown, create user) must be mapped to file
access and to read, write and execute permissions

– Relatively simple and widely understood

– Relatively easy to check the protection state

▪ Are Unix file permissions a kind of ACL?

65

OTHER SYSTEMS

66

Access control lists in Unix

Most Unix systems support one of:

▪ Posix ACL (see POSIX 1003.1e Draft 17)

– Standardization abandoned but widely implemented

▪ Network File System NFSv4 ACL (RFC 3550, section 5.11)

– Similar to Windows ACL with minor differences

▪ Linux:

– File systems (EXT3, EXT4, XFS) support POSIX ACL

– NFS client and server map between POSIX and NFSv4 ACLs

67

http://wt.tuxomania.net/publications/posix.1e/
http://tools.ietf.org/html/rfc3530#section-5.11

ACLs in Mac OS X
▪ Mac OS X implements both POSIX permissions and NFSv4 ACL

– Similar to Windows ACLs

▪ Most files and folders only have permissions and no ACL; when you give
permissions to more than one user or group, the ACL is created

▪ Negative entries are used to prevent accidental deletion of important folders:

$ ls -led Movies

drwx------+ 2 aura staff 68 14 Syy 20:45 Movies

0: group:everyone deny delete

$ rm -r Movies

rm: Movies: Permission denied

$ chmod +a# 0 "aura allow delete" Movies

$ rm -r Movies

68

Security-Enhanced Linux (SELinux)

▪ Mandatory access control for Linux servers

– Originally developed by NSA; goal is security certification

▪ Policy that cannot be changed by users

– Modular policy language; complex policy definitions

– Policy is compiled and installed by admin, not changed often

69

Extra
material

SELinux access-control model

Hybrid access-control model that combines:

1. Type enforcement:
subjects and objects have a type; rules based on the type

2. Multi-level security (e.g. Bell-LaPadula):
level = sensitivity + category

3. Role-based access control (RBAC) – rarely used

▪ Each subject and object is labelled with security context:
user:role:type:level

70

Extra
material

SELinux discussion

▪ SELinux is mainly used to lock down a server in case it has software
vulnerabilities or Trojans

– Types or categories are used for sandboxing processes

▪ Developing and maintaining a new SELinux policy is a lot of work!

– Original NSA reference policy is not usable

– Tresys reference policy has commercial support

– Red Hat Enterprise Linux tries to provide policies for common services

– There are tools for policy validation and for learning policies by observing
the system in operation

▪ Android uses SELinux for app sandboxing

71

Extra
material

Mobile Operating Systems: Android, iOS

▪ Subjects are apps, objects are phone features and services

▪ Apps are given permissions (which are actually capabilities)

– E.g. read contacts, send SMS, read camera roll, read GPS

– User gives permissions at install time or on demand

– By default, apps can only access Internet and their own data

▪ Apps are isolated from each other

– Very limited data sharing between apps

– Cloud storage like Google Drive is used instead of local file system

▪ Universal Windows Platform (UWP) copies these ideas

72

Extra
material

SUMMARY

73

List of key concepts

▪ Principal, object, process, run as, SID, access token, privilege,
group, alias i.e. local group

▪ NTFS, Registry, Windows domain, DC, AD

▪ Security descriptor, DACL, ACE, positive and negative permissions,
container, object, ACE inheritance

▪ UAC, restricted token, controlled invocation, Windows service,
integrity level, zone identifier

▪ User, group, superuser i.e. root, process, real and effective UID and
GID, inode, permissions, umask, SUID and SGID program, sticky bit

▪ Posix and NFSv4 ACL, SELinux

74

Reading material

▪ Dieter Gollmann: Computer Security, 2nd ed., chapter 6–7; 3rd ed.
chapters 7–8

▪ Matt Bishop: Introduction to computer security, chapter 25

▪ Ross Anderson: Security Engineering, 2nd ed., chapter 4

▪ Online:
– Windows Developer Reference, MSDN: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa374876.aspx

– https://msdn.microsoft.com/en-us/library/windows/desktop/aa374702.aspx

– Microsoft Windows Security, Russinovich et al.,
sample chapter on Protecting Objects, :
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450&seqNum=3

– Wayne Pollock, Unix File and Directory Permissions and Modes
https://wpollock.com/AUnix1/FilePermissions.htm

75

https://msdn.microsoft.com/en-us/library/windows/desktop/aa374876.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374702.aspx
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450&seqNum=3
https://wpollock.com/AUnix1/FilePermissions.htm

Problems to think about: Windows
▪ How could Unix file permissions be expressed with Windows ACLs?
▪ Assume Fred is a member of the group Lecturers. Who gets access to an object with the DACLs:

1. [-,Fred,READ], [+, Lecturers,READ] ?
2. [-, Lecturers,READ], [+,Fred,READ] ?
3. [+,Fred,READ], [-, Lecturers,READ] ?
(Note: Negative ACEs are rarely used in reality. It is also a trick question.)

▪ When a new object is created, what goes into its security descriptor?
▪ Access tokens are objects themselves. How does access control for the tokens work?
▪ What is the time-of-check-to-time-of-use (TOCTTOU) issue? Where does this create potential

problems in the Windows file system?
▪ Changing permissions on a top-level folder in the NTFS file system is a slow operation. You can try by

creating new user and giving it read access to C:\ and all subfolders. This is actually a performance
optimization. Explain why.

76

Problems to think about: Linux/Unix
▪ Create a subdirectory in your home directory and put a file abc.txt in this subdirectory. Set

permission bits on the subdirectory so that the owner has only execute access. Try to
– list the subdirectory, display the contents of abc.txt, create a copy of abc.txt in the subdirectory, make the

subdirectory the current directory with cd

▪ Repeat the same experiment first with read permission and then with write permission on the
subdirectory. Try to understand what you observe.

▪ Find out how permissions are used to protect files on a web server, a shared temp directory, print
queue directory, or shared directory for a project group.

▪ Write and configure a SUID program in C that allows other users to write log messages to a file which
they otherwise cannot access. What if there is a buffer overflow vulnerability or other bugs in your
code?

▪ Consider a normal user mounting a disk (e.g. USB stick) that contains a SUID program. What threat
does it pose, and how has it been solved in Linux?

▪ Devices in Unix are mapped to special files under /dev. How does Linux protect a terminal device
(tty) from other users?

▪ Linux and other new Unix systems have a sudo group, and instead of logging in as root, the
members of this group can use the sudo command to exercise superuser powers. In what sense is
this similar to role-based access control?

77

