
Public Key Infrastructure & TLS

Tuomas Aura
CS-C3130 Information security

Aalto University, autumn 2020

Outline

▪ X.509 certificates and PKI

▪ Web PKI

▪ Transport Layer Security (TLS)

2

X.509 CERTIFICATES

3

Key distribution problem

4

Alice

...

 ---SIG---

Bob
Signed message

My key pair
<PK,SK>

What is
Bob s PK?

Key distribution problem

▪ How to find out someone’s authentic public key?

▪ Solution: an authority issues identity certificates that bind public
keys to names

▪ Certificate is a message signed by the issuer, containing the
subject’s name (or identifier) and the subject’s public key

Certificate = Signissuer (Name, PKsubject, validity_period)

5

!

Certification authority (CA)

▪ Who would the issue the certificates?
The issuer is typically called certification authority (CA)

▪ Is it an authority or a trusted third party (TTP)?

▪ Will everyone trust/obey the same authority?

▪ CA public key is needed for verifying the certificates.
How does everyone know it?

6

Key distribution problem solved with certificate

7

Alice

...

 ---SIG--- CERT

Bob
3. Signed message + Certificate

CA

CERT

2. Certificate
enrollment

1. Pre-installed
CA public key

Now I know
Bob s PK

My key pair
<PK,SK>

X.509 PKI

▪ Public-key infrastructure (PKI):
– ITU-T/ISO X.509 standard, IETF RFC 5280

▪ X.509 certificates are identity certificates: bind they bind a
principal name to a public key

▪ Certification authority (CA) issues certificates

▪ Users, computers and services are end entities

▪ CAs and end entities are both principals
– Each principal has a key pair (public and private signature key)

▪ CA can delegate its authority by issuing a CA
certificate → CA hierarchy

8

9

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

35:26:d0:83:be:8f:16:bc:00:00:00:00:50:dc:67:68

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = "Entrust, Inc.", OU = See www.entrust.net/legal-terms,

OU = "(c) 2012 Entrust, Inc. - for authorized use only", CN = Entrust Certification Authority - L1K

Validity

Not Before: May 2 09:48:18 2017 GMT

Not After : May 2 10:18:16 2020 GMT

Subject: C = FI, L = Helsinki, O = Eduskunta, CN = www.eduskunta.fi

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:b0:e2:99:41:56:8f:d2:fc:af:ae:8f:f7:e6:1f: 35:71:a1:f3:ea:bf:c7:e0:a3:14:96:f7:76:bb:90:

00:71:a5:3d:5b:61:34:fc:12:80:df:4f:2b:d3:31: c4:83:73:f6:87:6b:9d:45:f5:f5:35:3d:0c:f9:f3:

8b:74:e5:17:8f:09:4d:e8:8d:40:f5:83:52:3b:a6: 47:a6:b7:c1:7e:a9:70:3b:4e:a8:32:5e:b9:6e:7f:

e3:53:0a:71:60:c5:1e:db:7d:b1:42:a4:fc:24:f7: c9:25:6f:04:16:ec:b1:c5:04:c0:d9:93:01:58:61:

3c:fb:30:e3:ee:58:3c:89:9c:f7:5f:ee:0a:5b:e7: 31:ae:ee:35:7f:93:f6:57:95:20:38:23:81:0c:b6:

86:02:90:06:2c:0b:59:18:94:89:d3:1d:df:bd:9b: 68:d3:0a:ed:3f:fc:1f:96:ad:11:b2:d7:f7:fe:86:

c6:ef:80:c1:00:57:6a:97:bf:b7:75:2e:ed:08:ab: 28:c1:09:21:39:14:39:da:dd:be:ab:c7:d5:1b:bd:

76:a8:66:75:78:59:fe:37:08:c5:40:36:93:03:09: 2b:3a:02:08:71:01:78:db:05:46:d7:b9:9f:dd:ef:

98:af:cd:70:19:9c:a0:72:77:3f:1b:4e:f0:56:de: e0:6f

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication

X509v3 CRL Distribution Points:

Full Name:

URI:http://crl.entrust.net/level1k.crl

X509v3 Certificate Policies:

Policy: 2.16.840.1.114028.10.1.5

CPS: http://www.entrust.net/rpa

Policy: 2.23.140.1.2.2

Authority Information Access:

OCSP - URI:http://ocsp.entrust.net

CA Issuers - URI:http://aia.entrust.net/l1k-chain256.cer

X.509 certificate
example
Save certificate into a file and pretty print:
% openssl x509 -in cert.pem -noout -text

Subject name

Subject public key

Issuer info

Validity dates

Key usage

Revocation list URL

10

e3:53:0a:71:60:c5:1e:db:7d:b1:42:a4:fc:24:f7: c9:25:6f:04:16:ec:b1:c5:04:c0:d9:93:01:58:61:

3c:fb:30:e3:ee:58:3c:89:9c:f7:5f:ee:0a:5b:e7: 31:ae:ee:35:7f:93:f6:57:95:20:38:23:81:0c:b6:

86:02:90:06:2c:0b:59:18:94:89:d3:1d:df:bd:9b: 68:d3:0a:ed:3f:fc:1f:96:ad:11:b2:d7:f7:fe:86:

c6:ef:80:c1:00:57:6a:97:bf:b7:75:2e:ed:08:ab: 28:c1:09:21:39:14:39:da:dd:be:ab:c7:d5:1b:bd:

76:a8:66:75:78:59:fe:37:08:c5:40:36:93:03:09: 2b:3a:02:08:71:01:78:db:05:46:d7:b9:9f:dd:ef:

98:af:cd:70:19:9c:a0:72:77:3f:1b:4e:f0:56:de: e0:6f

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication

X509v3 CRL Distribution Points:

Full Name:

URI:http://crl.entrust.net/level1k.crl

X509v3 Certificate Policies:

Policy: 2.16.840.1.114028.10.1.5

CPS: http://www.entrust.net/rpa

Policy: 2.23.140.1.2.2

Authority Information Access:

OCSP - URI:http://ocsp.entrust.net

CA Issuers - URI:http://aia.entrust.net/l1k-chain256.cer

X509v3 Subject Alternative Name:

DNS:www.eduskunta.fi, DNS:eduskunta.fi, DNS:www.riksdagen.fi, DNS:www.parliament.fi, DNS:riksdagen.fi

X509v3 Authority Key Identifier:

keyid:82:A2:70:74:DD:BC:53:3F:CF:7B:D4:F7:CD:7F:A7:60:C6:0A:4C:BF

X509v3 Subject Key Identifier:

D6:2B:E6:54:52:A1:CE:DC:AE:01:13:FC:1D:BE:14:62:F6:F8:68:3C

X509v3 Basic Constraints:

CA:FALSE

Signature Algorithm: sha256WithRSAEncryption

d8:36:b8:b5:8a:3f:f0:cd:fe:f3:b1:d2:86:a4:8c:d8:34:53: a5:6d:38:9e:67:e5:ba:9d:b6:61:c2:aa:79:b8:56:5b:67:eb:

32:75:00:e3:7b:a4:ee:c6:ce:9a:db:5c:ce:59:aa:45:cd:5a: 73:86:f9:cd:33:f8:f4:1a:9e:8a:ef:25:ff:45:71:40:2d:d7:

d6:9e:97:48:9d:70:91:2e:3c:0b:df:d3:b6:0e:ba:66:87:e0: f8:97:1a:3d:2a:38:1b:6c:fb:be:ca:e6:98:d2:e3:02:ba:29:

04:e5:13:aa:c7:42:35:3f:a7:ca:17:15:fa:05:ad:62:11:45: 4d:3e:c9:c2:2a:c2:67:31:64:95:88:e3:d3:d8:c8:9f:76:77:

8e:f7:91:c8:53:bf:c5:9d:b2:7f:4c:37:74:7e:4e:a5:96:74: e2:3f:94:58:01:8a:91:ac:84:c9:93:f5:b1:25:aa:9f:1a:34:

07:23:03:31:4c:26:01:ab:fa:a7:f8:ff:6e:83:ff:a1:69:7c: 2a:2a:0a:e0:ae:06:69:0e:de:52:db:95:79:0d:6c:f3:d6:d5:

60:aa:26:83:3f:47:09:d8:9e:f6:03:f1:29:bd:b6:33:8e:7c: d1:e6:0f:82:cd:18:59:c6:4f:fb:8f:ba:45:a7:ab:5b:6a:2b:

fa:93:46:21

X.509 certificate
example
Save certificate into a file and pretty print:
% openssl x509 -in cert.pem -noout -text

Key usage

CA signature

Revocation list URL

Subject alternative names

CA or end-entity?

11

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

35:26:d0:83:be:8f:16:bc:00:00:00:00:50:dc:67:68

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = "Entrust, Inc.", OU = See www.entrust.net/legal-terms,

OU = "(c) 2012 Entrust, Inc. - for authorized use only", CN = Entrust Certification Authority - L1K

Validity

Not Before: May 2 09:48:18 2017 GMT

Not After : May 2 10:18:16 2020 GMT

Subject: C = FI, L = Helsinki, O = Eduskunta, CN = www.eduskunta.fi

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:b0:e2:99:41:56:8f:d2:fc:af:ae:8f:f7:e6:1f: 35:71:a1:f3:ea:bf:c7:e0:a3:14:96:f7:76:bb:90:

00:71:a5:3d:5b:61:34:fc:12:80:df:4f:2b:d3:31: c4:83:73:f6:87:6b:9d:45:f5:f5:35:3d:0c:f9:f3:

8b:74:e5:17:8f:09:4d:e8:8d:40:f5:83:52:3b:a6: 47:a6:b7:c1:7e:a9:70:3b:4e:a8:32:5e:b9:6e:7f:

e3:53:0a:71:60:c5:1e:db:7d:b1:42:a4:fc:24:f7: c9:25:6f:04:16:ec:b1:c5:04:c0:d9:93:01:58:61:

3c:fb:30:e3:ee:58:3c:89:9c:f7:5f:ee:0a:5b:e7: 31:ae:ee:35:7f:93:f6:57:95:20:38:23:81:0c:b6:

86:02:90:06:2c:0b:59:18:94:89:d3:1d:df:bd:9b: 68:d3:0a:ed:3f:fc:1f:96:ad:11:b2:d7:f7:fe:86:

c6:ef:80:c1:00:57:6a:97:bf:b7:75:2e:ed:08:ab: 28:c1:09:21:39:14:39:da:dd:be:ab:c7:d5:1b:bd:

76:a8:66:75:78:59:fe:37:08:c5:40:36:93:03:09: 2b:3a:02:08:71:01:78:db:05:46:d7:b9:9f:dd:ef:

98:af:cd:70:19:9c:a0:72:77:3f:1b:4e:f0:56:de: e0:6f

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication

X509v3 CRL Distribution Points:

Full Name:

URI:http://crl.entrust.net/level1k.crl

X509v3 Certificate Policies:

Policy: 2.16.840.1.114028.10.1.5

CPS: http://www.entrust.net/rpa

Policy: 2.23.140.1.2.2

Authority Information Access:

OCSP - URI:http://ocsp.entrust.net

CA Issuers - URI:http://aia.entrust.net/l1k-chain256.cer

X.509 certificate
example
Save certificate into a file and pretty print:
% openssl x509 -in cert.pem -noout -text

Subject name

Subject public key

Issuer info

Validity dates

Key usage

Revocation list URL

Subject: C = FI, L = Helsinki, O = Eduskunta, CN = www.eduskunta.fi

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication

X509v3 CRL Distribution Points:

Full Name:

URI:http://crl.entrust.net/level1k.crl

12

e3:53:0a:71:60:c5:1e:db:7d:b1:42:a4:fc:24:f7: c9:25:6f:04:16:ec:b1:c5:04:c0:d9:93:01:58:61:

3c:fb:30:e3:ee:58:3c:89:9c:f7:5f:ee:0a:5b:e7: 31:ae:ee:35:7f:93:f6:57:95:20:38:23:81:0c:b6:

86:02:90:06:2c:0b:59:18:94:89:d3:1d:df:bd:9b: 68:d3:0a:ed:3f:fc:1f:96:ad:11:b2:d7:f7:fe:86:

c6:ef:80:c1:00:57:6a:97:bf:b7:75:2e:ed:08:ab: 28:c1:09:21:39:14:39:da:dd:be:ab:c7:d5:1b:bd:

76:a8:66:75:78:59:fe:37:08:c5:40:36:93:03:09: 2b:3a:02:08:71:01:78:db:05:46:d7:b9:9f:dd:ef:

98:af:cd:70:19:9c:a0:72:77:3f:1b:4e:f0:56:de: e0:6f

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication

X509v3 CRL Distribution Points:

Full Name:

URI:http://crl.entrust.net/level1k.crl

X509v3 Certificate Policies:

Policy: 2.16.840.1.114028.10.1.5

CPS: http://www.entrust.net/rpa

Policy: 2.23.140.1.2.2

Authority Information Access:

OCSP - URI:http://ocsp.entrust.net

CA Issuers - URI:http://aia.entrust.net/l1k-chain256.cer

X509v3 Subject Alternative Name:

DNS:www.eduskunta.fi, DNS:eduskunta.fi, DNS:www.riksdagen.fi, DNS:www.parliament.fi, DNS:riksdagen.fi

X509v3 Authority Key Identifier:

keyid:82:A2:70:74:DD:BC:53:3F:CF:7B:D4:F7:CD:7F:A7:60:C6:0A:4C:BF

X509v3 Subject Key Identifier:

D6:2B:E6:54:52:A1:CE:DC:AE:01:13:FC:1D:BE:14:62:F6:F8:68:3C

X509v3 Basic Constraints:

CA:FALSE

Signature Algorithm: sha256WithRSAEncryption

d8:36:b8:b5:8a:3f:f0:cd:fe:f3:b1:d2:86:a4:8c:d8:34:53: a5:6d:38:9e:67:e5:ba:9d:b6:61:c2:aa:79:b8:56:5b:67:eb:

32:75:00:e3:7b:a4:ee:c6:ce:9a:db:5c:ce:59:aa:45:cd:5a: 73:86:f9:cd:33:f8:f4:1a:9e:8a:ef:25:ff:45:71:40:2d:d7:

d6:9e:97:48:9d:70:91:2e:3c:0b:df:d3:b6:0e:ba:66:87:e0: f8:97:1a:3d:2a:38:1b:6c:fb:be:ca:e6:98:d2:e3:02:ba:29:

04:e5:13:aa:c7:42:35:3f:a7:ca:17:15:fa:05:ad:62:11:45: 4d:3e:c9:c2:2a:c2:67:31:64:95:88:e3:d3:d8:c8:9f:76:77:

8e:f7:91:c8:53:bf:c5:9d:b2:7f:4c:37:74:7e:4e:a5:96:74: e2:3f:94:58:01:8a:91:ac:84:c9:93:f5:b1:25:aa:9f:1a:34:

07:23:03:31:4c:26:01:ab:fa:a7:f8:ff:6e:83:ff:a1:69:7c: 2a:2a:0a:e0:ae:06:69:0e:de:52:db:95:79:0d:6c:f3:d6:d5:

60:aa:26:83:3f:47:09:d8:9e:f6:03:f1:29:bd:b6:33:8e:7c: d1:e6:0f:82:cd:18:59:c6:4f:fb:8f:ba:45:a7:ab:5b:6a:2b:

fa:93:46:21

X.509 certificate
example
Save certificate into a file and pretty print:
% openssl x509 -in cert.pem -noout -text

Key usage

CA signature

Revocation list URL

Subject alternative names

CA or end-entity?

X509v3 Subject Alternative Name:

DNS:www.eduskunta.fi, DNS:eduskunta.fi, DNS:www.riksdagen.fi,

DNS:www.parliament.fi, DNS:riksdagen.fi

X509v3 Basic Constraints:

CA:FALSE

Viewing certificates with OpenSSL
Download the certificate chain

S=idp.aalto.fi && echo | openssl s_client -connect $S:443 -servername

$S -CApath /etc/ssl/certs/ -showcerts > chain.tmp

Parse the certificates into separate files

cat chain.tmp | awk '/-BEGIN CERTIFICATE-/ {b=1} {if (b) print >

"cert"(i+1)".pem"} /-END CERTIFICATE-/ {i++; b=0}'

Prettyprint the host certificate

openssl x509 -text -noout -in cert1.pem | less

Prettyprint the certificate chain

ls cert?.pem | xargs -n1 openssl x509 -text -noout -in > pretty.txt

Try some invalid certificates: https://badssl.com/

13

https://badssl.com/

X.509 certificate fields (1)
Mandatory fields:
▪ Version
▪ Serial number — together with Issuer, uniquely identifiers the

certificate
▪ Signature algorithm — for the signature on this certificate; usually

sha1RSA; includes any parameters
▪ Issuer — name (e.g. CN = Microsoft Corp Enterprise CA 2)
▪ Valid from — usually the time when issued
▪ Valid to — expiry time
▪ Subject — distinguished name of the subject
▪ Public key — public key of the subject

14

X.509 certificate fields (2)
Common extension fields:
▪ Key usage — bit field indicating usages for the subject key (digitalSignature,

nonRepudiation, keyEncipherment, dataEncipherment, keyAgreement, keyCertSign, cRLSign,
encipherOnly, decipherOnly)

▪ Subject alternative name — email address, DNS name, IP address, etc.
▪ Issuer alternative name
▪ Basic constraints — (1) is the subject a CA or an end entity, (2) maximum length of

delegation to sub-CAs after the subject
▪ Name constraints — limit the authority of the CA
▪ Certificate policies — list of OIDs to indicate policies for the certificate
▪ Policy constraints — certificate policies
▪ Extended key usage — list of OIDs for new usages, e.g. server authentication, client

authentication, code signing, email protection, EFS key, etc.
▪ CRL distribution point — where to get the CRL for this certificate, and who issues CRLs
▪ Authority info access — where to find information about the CA and its policies

15

PUBLIC-KEY INFRASTRUCTURE (PKI)

16

X.509 CA hierarchy

▪ One root CA

▪ Each CA can delegate
its authority to sub-CAs

▪ All end-entities trust all
CAs to be honest and
competent

17

Alice

Contoso
Dev CA

Contoso
Sales Asia CA

CA
cert

Bob

Charlie

David

Contoso
Root CA

CA
cert

Contoso
Sales Europe CA

Contoso
Sales CA

CA
cert

CA
cert

certcert cert

cert

Certificate chain

▪ Alice’s certificate chain (or path):

– Root CA public key

– 2 CA certificates for sub-CAs

– Alice’s end-entity certificate

▪ Root of trust:
– everyone knows and

trusts the root CA’s
public key

18

Alice

Contoso
Dev CA

Contoso
Sales Asia CA

CA
cert

Bob

Charlie

David

Contoso
Root CA

CA
cert

Contoso
Sales Europe CA

Contoso
Sales CA

CA
cert

CA
cert

certcert cert

cert

Root CA
public key

Self-signed root certificate

▪ Self-signed certificate

– Issuer and subject keys
are the same

– Often included in the
certificate chain

– Not really a certificate;
just a way to store and
communicate the root
CA public key

19

Alice

Contoso
Dev CA

Contoso
Sales Asia CA

CA
cert

Bob

Charlie

David

Contoso
Root CA

CA
cert

Contoso
Sales Europe CA

Contoso
Sales CA

CA
cert

CA
cert

certcert cert

cert

CA
cert

Real-world PKIs
Original X.500 idea: one global CA hierarchy to certify all countries,
organizations, users, computer and services

Reality: many application ja organization specific PKIs

▪ Web PKI for certifying web servers
– Many commercial and free root CAs, e.g. Verisign, Telia, Let’s Encrypt

▪ S/MIME for signed (and encrypted) email
– Commercial CAs certify organizational CAs for cross-organization email

▪ Smart-card PKIs
– Bank cards, national identity cards

▪ Organizational PKIs
– Windows domain users, computers and services; user login with

smartcard; internal web pages; VPN and Wi-Fi access; S/MIME email;
Adobe document signing PDF documents

20

Name and identity

▪ With the help of certificates, it is possible to authenticate the name
or identifier of an entity (e.g. person, web server)

▪ But what is the right name for an entity?
– wwwlogin.tkk.fi, idp.aalto.fi, leakybox.cse.tkk.fi

– George Bush, George W. Bush, George H. W. Bush

– tuomas.aura@aalto.fi, aaura@hut.fi, taura@cse.tkk.fi, aura@cse.tkk.fi

▪ Who decides who owns the name?
– @aalto.fi email addresses, DNS names, Facebook username

▪ Does knowing the name imply trust?
– Is it safe to buy a used bicycle from trustedbikes.fi?

– Should they verify the customer’s name before shipping?

21

CERTIFICATE REVOCATION: CRL AND OCSP

22

Need for certificate revocation

▪ When might CA need to revoke (i.e. cancel) a certificate?

– If the conditions for issuing the certificate no longer hold:
e.g. employee leaves, student graduates, or computer is
decommissioned

– If the certificate was originally issued in error

– If the subject private key has been compromised

– When upgrading cryptographic algorithms

▪ Certificate can be verified offline, but revocation
requires online checks

23

!

Revocation list

▪ Certificate revocation list (CRL) = signed list of revoked certificate
serial numbers and a timestamp

▪ Who issues the CRL? How to find it?
– CRL distribution point and issuer may be specified in each certificate

– By default, CRL is signed by the same CA that issued the certificate

▪ Certificate verifier downloads the CRL (or delta) and caches it
– If CRL server is offline, the certificate verification fails

▪ Expired certificates can be removed from the CRL

▪ In X.509, only certificates are revoked, not keys

24

25

X.509 CRL fields

▪ Signature algorithm

▪ Issuer — name

▪ This update — time

▪ Next update — time

For each revoked certificate:

– Serial number

– Revocation date — (how would you use this information?)

– Extensions — reason code etc.

▪ Signature

OCSP

▪ Online certificate status protocol (OCSP)

– Request-response protocol for checking certificate status from issuer

– Timestamp and optional nonce for response freshness

C → CA: certificate-id, NC

CA → C: SignCA(certificate-id, certificate status, T, [NC])

▪ CRL vs OSCP

– OCSP implementation simpler and messages shorter

– OCSP server learns which web pages the client is accessing

26

WEB PKI

27

Web PKI

28

<PK,SK>Trusted
CA list

in OS or browser

3. Key exchange authenticated
with certificate (TLS handshake)

1. CA self-signed
certificate

Alice

software install time

Every 3, 12 or 24
months

once per TLS session

3b. CRL

daily when needed

Cert
chain

Cert
chain

Cert
chain

2. Certificate
enrollment
or update

Commercial
or free CA

bobs-server.example.com

Web PKI

1. Root CA’s self-signed certificate
– Issued by the root CA to itself; essentially just the CA public key

2. Root CA issues a CA certificate to a sub-CA
– Typically one sub-CAs in the chain (why?)

3. Sub-CA issues end-entity certificate to a web server

29

Problems with revocation in web PKI

▪ Web clients typically
ignore CRL or OCSP,
especially if the server
does not respond

▪ If a sub-CA is
compromised, it
won’t be detected
and, thus, won’t be
revoked

30

 Charlie
PKX

Contoso
Dev CA

Charlie
PKC

Contoso
Root CA

CA
cert

cert cert

Compromised
sub-CA issues

false certificates

2. Alice receives
Charlie s certificate
in a key exchange

Alice

Certificate Transparency (CT)

31

 Charlie
PKX

Contoso
Dev CA

Charlie
PKC

Contoso
Root CA

CA
cert

cert cert

Certificate Log

Contoso Dev CA: Pkdev

Bob: PKB

David: PKD

Charlie: PKC

...

Charlie: PKX

1. Honest CAs add all issued
certificates to the log

3. Alice checks
the certificate

is in the log

Compromised
sub-CA issues

false certificates

2. Alice receives
Charlie s certificate
in a key exchange

Alice

4. Anyone (CAs, Charlie, ...)
can check the log for

suspicious certificates

32

Identify proofing in web PKI

▪ Identity proofing = checking subject identity before certification

▪ Commercial web certificates:

– Typically, email to registered domain owner verifies the ownership

– Extended validation certificates had a stronger identify proofing
process – but discontinued because users do not notice the difference

▪ Let’s Encrypt uses the ACME protocol for automated certificate
management:

– Before issuing the certificates, CA challenges the server admins
to prove that they control the web server or DNS zone

$ host -t TXT _acme-challenge.vikaa.fi

_acme-challenge.vikaa.fi descriptive text "a8LUKy+IQzdsc2wjDCAvFS6tTmckUF8PImWNEKubrbI"

33

Cost of web certificates

▪ Commercial certificates used to cost hundreds of euros per
year, more for wildcard names

▪ Google and others have pushed for everyone to use TLS, but
the cost was too high

▪ Let’s Encrypt CA, run by a non-profit organization, issues free
certificates

SETTING UP YOUR OWN PKI

34

Setting up your own PKI

▪ Creating a root CA :

– Anyone can set up a CA with OpenSSL or commercial software

– Windows root domain controller can be a CA for the domain

– Commercial PKI products and services exist for enterprises

▪ It will be a closed, private PKI:

– Commercial CAs will not certify your sub-CA (why?)

– You cannot ask users outside your own organization to
install your root key to their web browsers (why?)

35

Setting up your own PKI

▪ The real costs:

– Distributing the root key (root CA’s self-signed certificate) to all who
need to verify certificates, e.g. all web browsers

– Certificate enrolment —issuing certificates for each web site, user,
computer, mobile device etc. that needs them

– Administering a secure CA and CRL/OCSP server

36

!

Experience: PKI at home
▪ Used OpenSSL to set up a PKI for my home network

– TLS server certificates for web UI and APIs in the SDN controller, NAS, printer
– Wireless network access with WPA2-Enterpise
– 802.1X (RADIUS) access control for some Ethernet ports

▪ OpenSSL command line is not easy to master, but scripting helps
– No CRL or OCSP; in emergency, need to reissue all certificates

▪ Lack of support in consumer hardware:
– Some devices do not support TLS or RADIUS; some only use self-signed certificates
– RADIUS server in my router only supports PEAP and no EAP-TLS

▪ Debugging access issues is hard; insufficient logging of failures and their reasons
▪ Guest access became a major headache:

– Guests must install my root CA certificate to their trusted list; is that safe?
– Guests and family members may not have root access to their work laptops
– The root certificate has a name constraint, but few understand its meaning

37

TRANSPORT LAYER SECURITY (TLS 1.2)

38

Secure web site (https)

39

HTTPS connections are
encrypted and
authenticated to
prevent sniffing and
spoofing

TLS in the protocol stack

▪ TLS implements cryptographic
encryption and authentication
for TCP connections

– Secure socket API for applications

▪ TLS 1.3 is the latest standard

– SSL was TLS’ historical
predecessor

▪ DTLS for UDP

40

Applications: HTTP

Transport layer: TCP

Network layer: IP

Data link layer

Socket API Secure socket API

Handshake and session

▪ Two stages of a typical network security protocol:

– Handshake = authenticated key exchange creates a shared session key

– Session protocol protects the confidentiality and integrity of the session
data with symmetric cryptography and the session key

▪ TLS handshake

– Client and server create a shared secret key with Diffie-Hellman

– Server authenticates to the client with a certificate chain and signature

– Client authentication optional, usually left to the application layer

▪ TLS session protocol uses symmetric encryption and HMAC
to protect the application data

41

!

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

42

This is the TLS handshake that creates shared
session keys for the server and client

Our goal: to understand how it works

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

43

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

44

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

45

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

46

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

47

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

48

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS_DHE_DSS handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS , g, n, gy mod n, SignS(NC, NS, g, n, gy mod n)

3. C → S: gx mod n
ChangeCipherSpec
MACmaster_secret(“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACmaster_secret("server finished“, all previous messages)

▪ Shared secret: gxy mod n

▪ master_secret = h(gxy mod n, “master secret”, NC, NS)

▪ ChangeCipherSpec turns on session protection with the new key

49

1. Negotiation
2. Diffie-Hellman
3. Nonces
4. Server certificates
5. Server signature
6. Key confirmation

TLS 1.3

▪ https://tls13.ulfheim.net/

▪ Support only the best known protocols and cryptographic
algorithms

– Ephemeral Diffie-Hellman

– Ephemeral elliptic curve Diffie-Hellman (ECDHE)

– AEAD authenticated encryption

▪ 1-RTT handshake

– Encrypted server certificate, but SNI still plaintext

▪ Fast session resumption with session tickets,
even 0-RTT

50

Extra
material

https://tls13.ulfheim.net/

Old RSA handshake

▪ The older RSA-based handshake protocol:

1. The server sends its certificate chain to the client (e.g. web
browser), so that the client learns the server name and its public
RSA key

2. The client generates random bytes, encrypts them with the servers
RSA key, and sends to the server

3. The session keys are created from these secret random bytes

51

Extra
material

Trust chain
▪ In the handshake, browser receives a certificate chain from the server

▪ Browser checks that the chain start with a (usually self-signed) certificate
that is in its trusted CA list

▪ Browser checks the certificate chain:
– Verifies the signature on each certificate using the subject public key of the

certificate above
– Checks that all but the last certificate are CA certificates
– Many other details, e.g. validity time, CRL/OCSP, key usage, constraints
– Checks that certificate appears in CT log

▪ If the certificate chain is valid, the last certificate binds together
the host name and public key of the server
– Public key is used for server authentication in the TLS handshake
– Host name shown to user in the browser address bar

52

!

Certificate checking details
Certificate verification is pretty complex and difficult to implement correctly:
1. Browser has a list of self-signed certificates for trusted root CAs, and it may have lists of certificates for trusted sub-CAs and servers.
2. In the TLS handshake, the browser may tell the server which root CAs it recognizes.
3. The browser receives a certificate chain from the server.
4. Browser checks the validity of the certificate chain backwards (“upwards”) from the end-entity-certificate towards the root:

A. There must be exactly one end-entity certificate at the bottom of the chain. The other certificates in the chain must be CA certificates.
B. Issuer of each certificate must match the subject of the CA certificate above it.
C. The browser verifies the signature of each certificate with the subject public key of the certificate above, i.e. from the issuer’s CA certificate.
D. Browser checks for certificate revocation from the OCSP server or CRL of if the certificate specifies these.
E. There may be constraints in the certificates, which must also be checked. Name constraint limits the authority of a CA to specific names, usually a

domain suffix. The name in the end-entity certificate must match all the name constraints in the certificate chain.
F. The browse must recognize and process all critical extension fields in the certificates, but it may ignore non-critical extensions. (For example, name

constraint and key usage are critical extensions, but CLR distribution point and Certificate Transparency timestamps are non-critical.)

If a trusted certificate is found, stop going up the chain and move to the next step. On the other hand, if the root of the chain is
reached and no trusted certificate is found, the chain verification fails.

5. Browser checks that the certificate has been issued for the right purpose: extended key usage field of the end-entity certificate must
specify TLS server authentication.

6. Browser checks that the host name in the browser’s address bar or requested ULR matches the subject name of the end-entity
certificate. (Subject name matching rules are pretty complex, too. There can be many names and wildcards in the certificate.)

7. Browser uses the subject key from the end-entity certificate to authenticate the server in the TLS handshake (authenticated key
exchange).

8. The session key created in the handshake is used to encrypt and authenticate data between the browser and server for the duration
of the TLS session.

→ This process proves that the web page shown in the browser comes from the server whose name is in the address bar.

53

!

Where is the root CA list?

▪ Windows 10:

– Manage user certificates /
Manage computer
certificates

– Some browsers maintain
their own list (e.g. Firefox)

▪ in Linux, the location
varies, e.g.
/usr/share/ca-

certificates/mozilla/

54

55

Certificate of
the web server
webmail3.tkk.fi

Issuer is
Sonera Class2 CA

Thanks to the trust chain, I
know that this server really
is webmail3.tkk.fi

How do I know that the
webmail server should have
the name webmail3?

Sonera root CA was not pre-
installed in the browser; so
I downloaded the self-signed
certificate from the web
(insecurely) and added it to
the list of trusted root CAs

What does TLS achieve?

(Old but enlightening example)

56

TLS session protocol

▪ After the handshake, data is protected with the session
protocol

▪ Data confidentiality is protected with symmetric encryption,
e.g. AES in CBC mode

▪ Data integrity is protected with message authentication codes
(MAC)

▪ Secret session keys for encryption and authentication in each
direction are derived from the master_secret

SUMMARY

57

Some lessons

▪ Cryptography turns a security problem into a key distribution
problem

▪ PKI turns a key distribution problem into a naming problem

– How do I know the name of the server/client/user that I need to
talk with?

– Does a name (or identifier) uniquely identify the intended entity?

– Who is the authority that assigns or certifies names?

58

Avoiding common mistakes
Some facts to avoid surprisingly common misconceptions:

▪ Certificate is NOT “encrypted with the CA private key”
– There is no encryption or secrets in the certificate
– The certificate is signed with the private key and verified with the public key

▪ Certificates are NOT retrieved from the CA on demand
– Instead, the subject stores the certificate chain for the validity period (e.g. one year) and

presents it to verifiers
– However, the verifier retrieves the certificate revocation list on demand and then caches

it (e.g. for a day), or the verifier queries the OCSP server on demand

▪ The certificate alone does NOT prove anyone’s identity
– Certificate is public information that can be copied
– Certificate + signature together can be used for authentication
– For example, a signed message with a certificate proves the identity of the sender, and

TLS with server certificate certificates proves the identity of the web server

59

!

List of key concepts

▪ Certificate, identity certificate, certification authority CA,
issuer, subject, validity, authority vs trusted third party TTP

▪ Public-key infrastructure PKI, X.509, CA hierarchy, certificate
chain or path, root CA, end entity, self-signed certificate, root
of trust

▪ Revocation, certificate revocation list CRL, OCSP, Certificate
Transparency

▪ Transport layer security TLS, SSL, secure socket API, security
protocol, secure connection, handshake, Diffie-Hellman,
session, trust chain

60

Exercises
▪ Set up your own CA with OpenSSL (or a commercial CA implementation if you have access

to one) and try to use it for protecting web access; what were the difficult steps?
▪ What are Extended Validation Ccertificates, how would they improve security, and why are

they out of fashion?
▪ Find several web and user certificates and compare the names and certification paths on

them
▪ Why do almost all web sites have certificate chains with a sub-CA, rather than using the root

CA directly to sign end-entity certificates?
▪ What information does the signature on the self-signed root certificate convey? Hint: there

is more than just the public key
▪ Previously, many website front pages were insecure (http) even though the password entry

and/or service access were secure (https)? What security problems did this cause?
▪ What TLS-related actions are required from the user when logging into a secure bank web

site?
▪ How should a browser creator select the default root CAs?
▪ What kind of compromises of CAs have been in the news?

61

Related reading

▪ Stallings and Brown: Computer security, principles and
practice, 4th ed., 22, 23.2-3

– other Stallings books have similar sections

▪ Certificate Transparency:
http://www.certificate-transparency.org/what-is-ct

▪ Survival guides - SSL/TLS and X.509 (SSL) Certificates:
http://www.zytrax.com/tech/survival/ssl.html

62

http://www.certificate-transparency.org/what-is-ct
http://www.zytrax.com/tech/survival/ssl.html

