Why go to space?

Why go to space?

Astronomers' point of view! (Not including remote sensing, space weather & solar system science)

Atmospheric effects + interference

Observational considerations

We want to see fainter objects at greater distances at all wavelengths

www.esa.int

Far-infrared

X-rays

European Space Agency -

Astronomical satellites come in many flavours

Planck

- Cosmic microwave background (CMB) survey mission
- Frequencies 30 857 GHz (9)

70 GHz receivers

 Designed and built in Finland by Millilab, DA Design (Ylinen, Elektrobit Microwave), Metsähovi

Planck all-sky foreground maps

Planck

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency -- ESA -with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Alpha Magnetic Spectrometer AMS

- Measures antimatter (antihelium)
 - first on space shuttle Discovery in 1998 (AMS-01)
 - then on International Space Station 2011 (AMS-02)

Gamma-ray satellites

- Compton Gamma-Ray Observatory (1991)
 - Energetic Gamma Ray
 Experiment Telescope
 (EGRET) instrument
- Fermi Gamma-ray
 Space Telescope (2008)
 - Large Area Telescope (LAT) instrument

CGRO data

vertical lines

+ Metsähovi data (points & curve)

Fermi data

Metsähovi + Fermi lightcurves

Radio and gamma-ray flares Marscher et al., Nature 2008

🧶 🙆

1992.0— 1993.0—

1995.0 -

http://www.bu.edu/blazars/

5 milliarcseconds

Future missions

esa James Webb Space Telescope JWST

Infrared observatory (2021)

uropean Space Agency

FIRST GALAXIE bb Space Telescope is an international collaboration of NASA, ESA and the Canadian Space

Gravitational waves

• LISA Pathfinder (2015), LISA (2034)

Exoplanets: >4200 confirmed so far

• TESS (2018), CHEOPS (2019), PLATO (2026)

Beta Pictoris b (exoplanet) Beta Pictoris (star)

"Dark universe"

• Euclid (2022)

