

ALD, MLD & ALD/MLD

Maarit KARPPINEN

Inorganic Materials Chemistry Department of Chemistry & Materials Science Aalto University

> Surfaces & Films 4.11.2020

Atomic Layer Deposition (ALD) Thin-Film Technique

- Gaseous precursors
- Self-limiting surface reactions
- Conformal, homogeneous thin films with atomic-layer accuracy

Electroluminescent display

Instrumentarium/Finlux/Planar

Prototype ALD thin films

- ALD-Al₂O₃ (amorphous): barrier and protective coating
- ALD-HfO₂ (amorphous): high-k dielectrics
- ALD-ZnO (crystalline): semiconductor (e.g. thermoelectrics)
- ALD-TiO₂ (crystalline): e.g. photovoltaics

Atomic Layer Deposition of AI_2O_3 (AIO_x)

- Al-source (precursor):
- Oxygen source (co-reactant): H₂O
- Substrate:
- (1) Substrate surface is initially covered with hydroxyl (OH) groups

First trimethyl aluminum [TMA: $Al(CH_3)_3$] is pulsed into the reactor

 $AI(CH_3)_3$

Si

- (2) TMA reacts with the surface OH groups, producing methane (CH_4) as a byproduct
- (3) Reaction continues until the surface is passivated (= covered with a TMA layer)

TMA does not react with itself: this terminates the reaction to one layer

Excess TMA and methane molecules are pumped away (purged with an N₂ pulse)

- (4) Next, water vapour (H₂O) is pulsed into the reaction chamber
- (5) Water reacts with the surface methyl (CH₃) groups, forming AI-O bonds and surface OH groups

Again methane is the byproduct

Reaction continues until the surface is passivated

Again the reaction is self-limited to one new layer (as H₂O does not react with itself)

(6) Excess H₂O and CH₄ molecules are pumped away (purged with an N₂ pulse)

- One TMA pulse (+ N₂ purge) and one H₂O pulse (+ N₂ purge) form one ALD cycle, producing one layer of Al₂O₃ (of *ca*. 1 Å in thickness)
- Here the outcome of three ideal ALD cycles is shown
- Each cycle takes approximately 5 to 10 seconds

www.cambridgenanotech.com

Reaction-1: $(Si/AI)-OH(s) + AI(CH_3)_3(g) \rightarrow (Si/AI)-O-AI(CH_3)_2(s) + CH_4(g)$ Reaction-2: $(Si/AI)-O-AI(CH_3)_2(s) + 2H_2O(g) \rightarrow (Si/AI)-O-AI(OH)_2(s) + 2CH_4(g)$

Conformal coating

Pressure

CMOS transistor

smaller transistors \rightarrow lower gate voltage same electric fields \rightarrow thinner dielectric SiO2 \rightarrow HIGH-*k* DIELECTRICS

FILM GROWTH RATE: Growth per Cycle (GPC) [Å/cycle]

Atomic Layer Deposition (ALD)

Advantages of ALD

- Relatively inexpensive method
- Excellent repeatability
- Dense and pinhole-free films
- Accurate and simple thickness control
- Large area uniformity
- Easy doping
- Excellent conformality

- Low deposition temperature
- Gentle deposition process
- Organic/polymer films
- Inorganic/organic hybrid materials

COMMON METAL PRECURSORS in ALD

e.g. cyclopentadienyls

ALD precursors tested at HUT

GROUP

mons.wikimedia.org/w/index.php?curid=78838925

COMMON CO-REACTANTS (second precursor) in ALD

- Water H_2O (e.g. with TiCl₄, Al(CH₃)₃ or Zn(CH₂CH₃)₂) \rightarrow Oxides
- Ozone O_3 (e.g. with metal β -diketonates) \rightarrow **Oxides**
- Dihydrogensulfide H_2^{S} (e.g. with $ZnCI_2$) \rightarrow Sulfides
- Ammonia $NH_3 \rightarrow Nitrides$

LIPON BY ALD WITH TOYOTA

- Lithium phosphorous oxynitride Li_xPO_vN_z
- A promising solid-state electrolyte for thin-film Li-ion microbattery

 RBS-NRA
 Ionic cond.

 Li_{0.94}PO_{3.00}N_{0.60}
 7 x 10⁻⁷ S cm⁻¹

M. Nisula, Y. Shindo, H. Koga & M. Karppinen, *Chem. Mater.* 27, 6987 (2015).

CICADA WING

 Peculiar surfacenanostructure

200-nm high nanopillars with a WAXY SURFACE

superhydrofobic

ZnO

Reversible change from hydrofobic to hydrophilic upon UV-radiation

CICADA WING + ZnO (+ few-nm Al₂O₃)

- Conformal coating of the wing by a thin layer of ZnO (~20 nm) by means of ALD
- Reversible change from superhydrofobic to superhydrophilic upon UV-radiation

J. Malm, E. Sahramo, M. Karppinen & R. Ras, Chem. Mater. 22, 3349 (2010).

100 cycles (20 nm)

300 cycles (60 nm)

500 cycles (100 nm)

ALD (Atomic Layer Deposition)

MLD (Molecular Layer Deposition)

High-quality INORGANIC thin films with atomic level control

ORGANICS!

Inorganic-Organic (Metal-Organic) Hybrid Thin Films by Combined ALD/MLD

FLEXIBLE MULTIFUNCTIONAL SINGLE-PHASE HYBRID MATERIALS !!!

ANNUALLY PUBLISHED PAPERS:

MLD & ALD/MLD

Yoshimura, Tatsuura & Sotoyama, *Appl. Phys. Lett.* **1991,** *59,* 482.

Yoshimura, Tatsuura, Sotoyama, Matsuura & Hayano, *Appl. Phys. Lett.* **1992,** *60,* 268.

Kubono, Yuasa, Shao, Umemoto & Okui, *Thin Solid Films* **1996**, *289*, 107.

Shao, Umemoto, Kikutani & Okui, *Polymer* **1997,** *38,* 459.

Lee, Ryu, Choi, Lee, Im & Sung, *J. Am. Chem. Soc.* **2007**, *129*, 16034.

Smirnov, Zemtsova, Belikov, Zheldakov, Morozov, Polyachonok & Aleskovskii, *Dokl. Phys. Chem.* **2007**, *413*, 95.

Nilsen, Klepper, Nielsen & Fjellvåg, *ECS Trans.* **2008**, *16*, 3.

Dameron, Seghete, Burton, Davidson, Cavanagh, Bertrand & George, *Chem. Mater.* **2008**, *20*, 3315.

			MCl ₂	MOC	l₃ MC			2	ZTB Cu	ı(dmap) ₂	$Co_2(CO)_8$	Fe(hfa) ₂ T	MEDA M	(acac) Cp	2(Fe2(CO)4)	$M(OEt)_5$	ZnAc ₂
						halio	de ot M	hers						M ^{····} of		so	
н		1000	M(thd)	M(th	d)2 M(th	thd			NA AN	co) ₆	мтв			s M(CpEt) ₂		Не
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	Cl	Ar
K	Са	Sc		VOCI, (CO), V TEMA	Cr	Mn thd	FeCls Fe Fe	CO) ₈ CO thd acac	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	ZrCl ₄ ZTB Zr TDMA	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	57-71	Нf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	89-103	Rf	Dd	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

ALD/MLD Processes: Metal Precursors

Aalto University School of Chemical Technology

ALD/MLD Processes: Organic Precursors (sublimation temperatures !)

P. Sundberg & M. Karppinen,

Organic and inorganic-organic thin film structures by molecular layer deposition: A review, *Beilstein Journal of Nanotechnology* **5**, 1104 (2014).

TiCl₄ + Aminophenol

P. Sundberg & M. Karppinen,

Aalto University

Technology

School of Chemical

Organic-inorganic thin films from $TiCl_4$ and 4-aminophenol precursors: A model case of ALD/MLD hybrid-material growth?, *Eur. J. Inorg. Chem.* **2014**, 968 (2014).

NH₂

- Reactivity of the functional groups towards the metal precursor
- Bonding site (e.g. O, N or S) \rightarrow M-O / M-S / M-S bond in the hybrid
- Backbone: size, chemistry, functionality → Remains in the hybrid !!!

ORGANIC PRECURSOR

NUCLEOBASES FROM NATURE

J. Phys. Chem. C 120, 26342 (2016).

A. Khayyami & M. Karppinen, *Chem. Mater.* 30, 5904 (2018).
A. Khayyami, A. Philip & M. Karppinen, *Angew. Chem. Int. Ed.* 58, 13400 (2019).

NEW EXCITING ORGANIC COMPONENTS

D.J. Hagen, L. Mai, A. Devi, J. Sainio & M. Karppinen, Atomic/molecular layer deposition of Cu-organic thin films, *Dalton Transactions* **47**, 15791 (2018).

ZnO:benzene SUPERLATTICE

A6B6-thick

(b)

(a) A6B6

POSSIBLE APPLICATIONS OF ALD/MLD FILMS ...

GAS-BARRIER COATINGS

 Al_2O_3 + hybrid Al-organic nanolaminate coatings on biopolymers: \rightarrow Enhanced mechanical & thereby oxygen-gas barrier properties

UV- and IR-to-Vis Conversion Layers for SOLAR CELLS Ln-organic (Ln = e.g. Eu, Yb, Er) films with UV or IR-absorbing organics — More efficient utilization of solar radiation

FLEXIBLE LI-ORGANIC MICROBATTERY

Not-previously-existing Li-organic electrode materials → First all-organic Li-ion microbattery

TEXTILE-INTEGRATED THERMOELECTRICS

ZnO-organic superlattice structures in a scale of $1\sim10$ nm \rightarrow Suppressed thermal conductivity/enhanced TE characteristics

FLEXIBLE CRM-FREE MAGNETIC THIN FILMS

epsilon-Fe₂O₃-organic superlattice thin films \rightarrow enhanced mechanical properties without compromising the magnetic properies

BIOBASED PACKAGING MATERIALS: Polylactic acid (PLA)

25 nm Al₂O₃

- biodegradable & sustainable
- **PROBLEM:** oxygen transmission rate too large: $OTR = 400 \text{ cm}^3/\text{m}^2 \text{ d}10^5 \text{ Pa}$
- **SOLUTION:** thin (25 nm) ALD-Al₂O₃ coating: $OTR = 20 \text{ cm}^3/\text{m}^2 \text{ d}10^5 \text{ Pa}$
- **PROBLEM:** strain induces cracks & deteriorates barrier properties of ALD-Al₂O₃

SOLUTION: Al_2O_3 + alucone (-AI-O-CH₃-CH₃-O-) nanolaminate coating by ALD/MLD

Biopolymer

ALO:

ALO:

Al,0;

Alucone

Aucone

20 um

30

3 % strain M. Vähä-Nissi, P. Sundberg, T. Hirvikorpi, J. Sievänen, A. Sood, M. Karppinen & A. Harlin, Thin Solid Films 520, 6780 (2012).

PHOTOLUMINESCENCE: Flexible Eu-hybrid thin films

PRECURSORS: Eu(thd)₃ + pyridinedicaboxylic acid

10 um

Z. Giedraityte, P. Sundberg & M. Karppinen, *J. Mater. Chem. C* **3**, 12316 (2015).

A. Ghazy, M. Safdar, M. Lastusaari, A. Aho, A. Tukiainen, H. Savin, M. Guina & M. Karppinen, Luminescent $(Er,Ho)_2O_3$ thin films by ALD to enhance the performance of silicon solar cells, *Solar Energy Materials & Solar Cells* **219**, 110787 (2021).

PRECURSORS for ALD/MLD

Cu(thd)₂

Terephthalic acid (TPA)

Potential application: Li-ion battery cathode

Structure predicted by DFT

Aalto University School of Chemical Technology M. Nisula, J. Linnera, A.J. Karttunen & M. Karppinen, Lithium aryloxide thin films with guest-induced structural transformation by ALD/MLD, *Chemistry – A European Journal* **23**, 2988 (2017).

Aalto University School of Chemical Technology M. Nisula & M. Karppinen, Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes, *Nano Lett.* **16**, 1276 (2016).

M. Nisula and M. Karppinen, In-situ lithiated quinone cathode for ALD/MLD-fabricated high-power thin-film battery, *J. Mater. Chem. A* **6**, 7027 (2018).

Inorganic-Organic INTERFACES: Reduction of Thermal Conductivity

- Thermal conductivity (K) is important: thermal barriers, thermoelectrics, etc.
- Interfaces in the form of superlattice: metal oxide layers & organic layers
- Proof-of-concept data: ZnO:benzene in a scale of 1 ~ 20 nm for ZnO

T. Tynell, A. Giri, J. Gaskins, P.E. Hopkins, P. Mele, K. Miyazaki & M. Karppinen, Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers, *J. Mater. Chem. A* **2**, 12150 (2014).

THERMOELECTRIC MATERIALS

- High electrical conductivity & Low thermal conductivity
 Difficult combination to be achieved with conventional materials
- ALD/MLD thin-film technology → nanoscale SUPERLATTICE (SL):
 - thermoelectric oxide layers (ZnO) by ALD & organic (benzene) layers by MLD
 - thermal conductivity decreases but electrical conductivity remains the same
- XRR: we can see SL peaks as an indication of the regular ordered SL structure

J.-P. Niemelä, A.J. Karttunen & M. Karppinen, Inorganic-organic superlattice thin films for thermoelectrics, *J. Mater. Chem. C* **3**, 10349 (2015).

ALD/MLD for **ZnO** : **Benzene** superlattice

DEPOSITIONS

- 220 °C
- 600 ALD/MLD cycles in total

XRR: X-ray Reflectivity

XRR:

We can see/count the number (N) of "superlayer" units in the SL thin film; most clearly for N = 6 to 12; for N > 12 the oscillations start to overlap
NOTE: for ZnO no SL peaks are seen

T. Tynell, I. Terasaki, H. Yamauchi & M. Karppinen, J. Mater. Chem. A 1, 13619 (2013).

ZnO : benzene	THERMAL CONDUCTIVITY (at RT)						
	Sample	K [W m ⁻¹ K ⁻¹]					
SUPERLATTICE PERIOD	ZnO	~43					
$99:1 \rightarrow 16 \text{ nm}$	ZnO:benzene (99:1)	7.1					
$49:1 \rightarrow 8 \text{ nm}$	ZnO:benzene (49:1)	4.1					
$29:1 \rightarrow 5 \text{ nm}$	ZnO:benzene (29:1)	3.1					
$9:1 \rightarrow 2 \text{ nm}$	ZnO:benzene (9:1)	1.3					
000000000 _ 4:1 → 1 nm	ZnO : benzene (4 : 1)	0.7					

- T. Tynell, A. Giri, J. Gaskins, P.E. Hopkins, P. Mele, K. Miyazaki & M. Karppinen, J. Mater. Chem. A 2, 12150 (2014).
- A. Giri, J.-P. Niemelä, C.J. Szwejkowski, M. Karppinen & P.E. Hopkins, *Phys. Rev. B* 93, 024201 (2016).
- A. Giri, J.-P. Niemelä, T. Tynell, J. Gaskins, B.F. Donovan, M. Karppinen & P.E. Hopkins, *Phys. Rev. B* 93, 115310 (2016).

Aalto University School of Chemical Technology Using the ALD/MLD technique it is possible to perfectly control where within the ZnO film the organic (benzene) layers are placed \rightarrow We can grow both regular superlattice films and irregular "gradient" ZnO-organic films. For example, in both of the following two films

Total film thickness: ~105 nm Number of organic layers: 5 Average ZnO layer thickness: ~17 nm Superlattice: all ZnO layers ~17 nm (thermal conductivity Gradient film: ZnO layers 9 ~ 28 nm

ONLY for the former the SL peaks are seen in XRR data

F. Krahl, A. Giri, J.A. Tomko, T. Tynell, P.E. Hopkins & M. Karppinen, Thermal conductivity reduction at inorganic-organic interfaces: from regular superlattices to irregular gradient layer sequences, *Adv. Mater. Interfaces* **5**, 1701692 (2018).

Silicon

G. Marin, R. Funahashi & M. Karppinen, Textile-integrated ZnO-based thermoelectric device using atomic layer deposition, *Advanced Engineering Materials* **22**, 2000535 (2020).

A. Philip, J.-P. Niemelä, G.C. Tewari, B. Putz, T.E.J. Edwards, M. Itoh, I. Utke & M. Karppinen, Flexible ϵ -Fe₂O₃-terephthalate thin-film magnets through ALD/MLD, *ACS Applied Materials & Interfaces* **12**, 21912 (2020).

About the CHEMICAL BONDING in the films

- Covalent bonds
- Ionic bonds
- Hydrogen bonds

- Computational first-principles calculations
- Atomic-level bonding models
- Band structures
- Prediction of physical properties

A.J. Karttunen, T. Tynell & M. Karppinen, J. Phys. Chem. C 119, 13105 (2015).