A!

Aalto University
School of Electrical
Engineering

ELEC-C7310 Sovellusohjelmointi
Lecture 2: Environment

Risto Jarvinen

September 14, 2020

Lecture contents

m Prepping: system calls and error conventions.
m Environment, taking a look at the surroundings.

m Stevens: parts of ch1, ch6 and ch7.
m Kerrisk: parts of ch2, ch3, ch6-11, plus ch35.1.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 2/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Prepping: System calls

m Calls from userspace to kernelspace. man 2 syscall
m Perform what can’t be done inside userspace.
m Most are defined in unistd.h (=painful to read). man 2 syscalls

m System calls are a definite strain and when optimizing for performance, it'’s usually
worth minimizing them. For example, buffered I/O in libc.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 3/37
School of Electrical Risto Jarvinen 14.9.2020
B Engineering

Prepping: Error handling

= Naturally function calls can’t always succeed.
m Standardized error reporting.
m return value
m errno global variable
= man 3 errno
m Helper functions:

m void perror(const char *s), prints *s as a prefix and appends error message that
corresponds to current errno.
m char *strerror(int errnum), returns string describing the error.

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 4/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Error handling: some common errors 1/2

E2BIG The argument list is too long.
EACCES Access would be denied
EAGAIN No data is available, try again later. Used with non-blocking 1/0
EINTR System call was interrupted.
EINVAL Invalid value in argument.
EPERM Not enough permissions.

7 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 5/37
School of Electrical Risto Jarvinen 14.9.2020
| | Engineering

Error handling: some common errors 2/2

EIO 1/O error, usually hardware or unrecoverable error.
EISDIR Argument is a directory, when function was expecting a file.
ENOENT No such file or directory.
ENOMEM Out of memory.
EEXIST File already exists. When trying to create a file but it already exists.
ENOSPC Out of space.
EBADF Bad file number.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 6/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Environment 1/2

Each running program has an environment:

Program state, context. m File system root. (next lecture)

Memory layout. m Current working directory. (next lecture)
Process priority. m Terminal. (next lecture)

Command-line arguments.

Environmental variables.

Process ID.

Credentials.

Resource limits

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 7/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Environment 2/2

System has some global environment.
m System capabilities
m System information
m System time and date

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 8/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Context

m Processor state as it is executing the program.

= When multitasking, the state is stored and restored.

m Each change is called a context switch.

m Usually quite costly, but necessary for pre-emptive multitasking.
m (Alternatives: Co-operative multitasking (Win3.11), co-routines)

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 9/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Memory layout 1/2

Process memory layout

m text = program code, read-only, executable

m data = initialized data, read-write

m bss = data initialized to zero, read-write (block started by symbol)
Try "size program" to show sizes of these blocks from an executable.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
School of Electrical Risto Jarvinen
Engineering

10/37
14.9.2020

Memory layout 2/2

In addition running programs have:
m heap, for dynamic allocations
m stack, for function calls and stack allocations

"cat /proc/<pid>/maps" to view process detailed memory layout.

Placement depending on processor architecture, on Intel processors, stack grows
down and heap grows up.

(vdso/vsyscall are Linux-specific tricks to improve system call performance.)

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 11/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Memory allocation 1/5

With C, you handle memory allocation and freeing.
Memory allocation functions return a pointer to the memory on success, and NULL on

failure. But beware:
m You can kill all performance if you go to swap.
m Linux memory system uses overcommitment; you can malloc() more memory than
there actually is! If you do actually try to use all that memory, you get killed when
system actually runs out of memory.

7 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 12/37
School of Electrical Risto Jarvinen 14.9.2020
n Engineering

Memory allocation 2/5

#include <stdlib.h>

void xcalloc(size_t nmemb, size_t size);
void xmalloc(size_t size);

void xrealloc(void xptr, size_t size);
void free(void xptr);

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
School of Electrical Risto Jarvinen
Engineering

13/37
14.9.2020

Memory allocation 3/5

Previous functions are actually front-ends to:

#include <unistd.h>

int brk(void xaddr);
void xsbrk(intptr_t increment);

These functions merely extend the point where heap memory ends.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
School of Electrical Risto Jarvinen
B Engineering

14/37
14.9.2020

Memory allocation 4/5

Also sometimes useful, but not part of POSIX:

#include <alloca.h>

void xalloca(size_t size);

Allocates memory from stack frame. Automatically freed when the function returns.
Beware of stack overflows. Usually better to stick to malloc().
C99 added Variable-Length Arrays, which does quite a similar function.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 15/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Memory allocation 5/5

Also often used for allocating memory:

#include <sys/mman.h>

void xmmap(void xaddr, size_t length, int prot, int flags,
int fd, off_t offset);
int munmap(void xaddr, size_t length);

Memory is allocated by for example mapping /dev/zero to given addresses. Main
function of mmap() is not memory allocation but in general mapping files to memory.
More of this later.

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 16/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Command-line arguments

int main(int argc,char xargv[]);
argc count of command-line arguments
argv table of arguments
Command-line arguments from shell are expanded automatically.

#include <unistd.h>

int getopt(int argc, char x const argv|],
const char xoptstring);

Stobh—phas RharEg=

extern int optind, opterr, optopt;

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
School of Electrical Risto Jérvinen
n Engineering

17/37
14.9.2020

Environmental variables

#include <unistd.h>

extern char xenviron|[];

NULL-terminated table of strings containing NAME=VALUE pairs.

const char xgetenv(const char xname);
int putenv(const char xstring);

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 18/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Process ID

Process IDs
m Process ID (pid) is a positive integer (type pid_t) that is unique a particular process,
within the system.

pid_t getpid(void);

pid_t getppid(void);

Pid 1 is reserved for init, the first process started by the kernel. Also, processes that
lose contact with their parents (direct parent dies) are transferred to be children of pid
1.

Neat tool: pstree

School of Electrical Risto Jérvinen 14.9.2020

A’ J Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 19/37
Engineering

Credentials: overview

User IDs (uid)

m Positive integers that are mapped to user identities

m Traditionally users are defined in /etc/passwd
Group IDs (gid)

m Positive integers that are mapped to group identifiers

m Traditionally groups are defined in /etc/group
Tradition is extended via name service switch (nsswitch), implemented transparently
inside libc.
Uids and gids are inherited. Changing uids/gids requires root privileges, and thus it's
rarely done in runtime.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 20/37
School of Electrical Risto Jarvinen 14.9.2020
B Engineering

Credentials: User IDs

UID 0 is hardcoded for root user. Internally used as integers, symbols shown only for
humans.
Each process actually has three uids:

m Real uid, inherited uid.

m Saved uid, original uid in case set-uid programs is run.

m Effective uid, determines the actual access.
Effective uid is the uid that has any actual effect. Saved and real uids are only used
when checking if the process can change it's effective uid: any non-root process can
only change it’s uid to the values stored in real uid and saved uid. root may change to
any uid.

School of Electrical Risto Jérvinen 14.9.2020

A Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 21/37
Engineering

Credentials: API

Users

int getuid(void);

int geteuid(void);

int setreuid(uid_t ruid,
int setuid (uid_t uid);

int seteuid(uid_t uid);

Groups

int getgid(void);

int getegid(void);

int setregid(gid_t rgid,
int setgid(gid_t gid);

int setegid(uid_t gid);

uid_t euid);

gid_t egid);

Aalto University
School of Electrical
B Engineering

ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
Risto Jarvinen

22/37
14.9.2020

Credentials: Group IDs

Each process has one uid and one or more gids. One gid is primary and works like
uid. Other gids are supplemental groups.

int setgroups(size_t num,const gid_t xlist);
int getgroups(size_t num,gid_t xlist);

Primary group in /etc/passwd, supplementals in /etc/group.

A Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 23/37

School of Electrical Risto Jarvinen 14.9.2020
Engineering

Process priority 1/2

Priority is a value that defines in which order processor time is distributed. If any higher

priority task has work to do, it dominates all lower priority tasks.

#include <unistd.h>

int nice(int inc);

Adjust process "nice" value. Nice processes let others go first.

School of Electrical Risto Jarvinen

A? Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
n Engineering

24/37
14.9.2020

Process priority 2/2

#include <sys/time.h>
#include <sys/resource.h>

int getpriority (int which, int who);

int setpriority (int which, int who, int prio);

which = PRIO_PROCESS / PRIO_PGRP / PRIO_USER who = process / process
group / user id, respectively.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 25/37
School of Electrical Risto Jarvinen 14.9.2020
B Engineering

Resource usage

int getrusage (int who, struct rusage =xusage);

Resources used by the process.
See /usr/include/bits/resource.h
POSIX only defines ru_utime and ru_stime.

26/37

ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
14.9.2020

,, Aalto University
School of Electrical Risto Jérvinen
Engineering

Resource limits

#include <sys/resource.h>

int getrlimit(int resource,struct rlimit xrlim);
int setrlimit(int resource,const struct rlimit xrlim);
Check "ulimit -a"

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
School of Electrical Risto Jarvinen
Engineering

27/37
14.9.2020

Global parameters: System capabilities 1/2

#include <unistd.h>
long sysconf(int);

_SC_CLK_TCK number of kernel internal clock ticks per second
_SC_PAGESIZE Page size in bytes.

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 28/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Global parameters: System capabilities 2/2

_SC_STREAM_MAX maximum number of C standard I/O streams a process can have
open at once

_SC_ARG_MAX maximum length that the command line arguments and environmental
variables can be used with any exec() functions.

_SC_OPEN_MAX maximum number of open files.
_SC_LINE_MAX maximum line length text-processing tools are required to take.
_SC_NGROUPS_MAX maximum number of supplemental groups a process can have

School of Electrical Risto Jarvinen 14.9.2020

Aq Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 29/37
n Engineering

Global parameters: System information 1/2

#include <sys/utsname.h>

int uname(struct utsname xunameBuf);

Returned structure contains:

A

Operating system name ("Linux")

Node name, configured hostname

OS Release (Linux has kernel version)

OS Version (Linux has kernel timestamp)

Hardware identifier (architecture)

Domain name (GNU extension, has NIS/YP domain name)

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment
School of Electrical Risto Jarvinen
Engineering

30/37
14.9.2020

Global parameters: System information 2/2

#include <unistd.h>
int sethostname (const char xname, size_t len);
int setdomainname (const char xname, size_t len);

Set nodename and domainname.
Note: these names don’t need to have any relation to names found in DNS.

9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 31/37
School of Electrical Risto Jarvinen 14.9.2020
| | Engineering

Global parameters: System time and date 1/5

#include <time.h>

time_t time(time_t xt);

Unix time is defined as seconds from epoch; midnight Jan 1, 1970 UTC.
On most 32-bit UNIX systems, time_t is signed 32-bit integer. It will overflow on
Monday, January 18, 2038. Expect failures.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 32/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Global parameters: System time and date 2/5

#include <sys/time.h>

int gettimeofday (struct timeval xtv,struct timezone xtz);
int settimeofday (const struct timeval *tv,const struct timezone xtz);

struct timeval {
int tv_sec;
int tv_usec;

}s

struct timezone ({
int tz_minuteswest;
int tz_dsttime;

Y
I

7 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 33/37
School of Electrical Risto Jarvinen 14.9.2020
| | Engineering

Global parameters: System time and date 3/5

#include <time.h>

int clock_getres(clockid_t clk_id, struct timespec xres);
int clock_gettime(clockid_t clk_id, struct timespec xtp);
int clock_settime(clockid_t clk_id, const struct timespec xtp);

struct timespec {
time_t tv_sec;
long tv_nsec;

}s

gettimeofday() was obsoleted by clock_gettime() as of POSIX.1-2008.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 34/37
School of Electrical Risto Jarvinen

14.9.2020
Engineering

Global parameters: System time and date 4/5

#include <time.h>

char xasctime(const struct tm xtm);
char xasctime_r(const struct tm xtm,char xbuf);

char xctime (const time_t xtimep);
char xctime_r(const time_t xtimep,char xbuf);

struct tm xgmtime(const time_t xtimep);
struct tm xgmtime_r(const time_t xtimep, struct tm xres);

struct tm xlocaltime (const time_t xtimep);
struct tm xlocaltime_r (const time_t xtimep,struct tm xres);

J9 Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 35/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

Global parameters: System time and date 5/5

Additional:

#include <time.h>
time_t mktime(struct tm xtm);

time_t timelocal (struct tm xtm);
time_t timegm(struct tm xtm);

size_t strftime (char xs, size_t max, const char xformat,
const struct tm xtm);

o Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 36/37
School of Electrical Risto Jarvinen 14.9.2020
| | Engineering

Is it over yet?

m Questions?

m Next time: Filesystem and file I/0.

Aalto University ELEC-C7310 Sovellusohjelmointi Lecture 2: Environment 37/37
School of Electrical Risto Jarvinen 14.9.2020
Engineering

