
Computational
Methods in
Stochastics

Lecture II

Sampling from Different
Distributions aka

Stochastic Simulation
Logarithmic binning

Motivation: Stochastic Simulation
We want to understand the dynamics of a stochastic system.

More precisely, we want to determine how an initial distribution
of some (continuous) quantity evolves in time.

We have a random variable 𝑋 with probability density
function (PDF) 𝑓(𝑥) (or 𝑓!(𝑥)). We wish to evaluate E(𝑔 𝑋) for
some function 𝑔((): E 𝑔 𝑋 = ∫!𝑔 𝑥 𝑓 𝑥 𝑑𝑥 .

So, all models in this context are just distributions. All model
parameters 𝜃 = 𝜃", 𝜃#, … , 𝜃$ are parameters characterising
these distributions, for example, mean and variance.

Here, think of 𝑓 𝑥 𝑑𝑥 as the measure you are working with: you
measure everything with respect to this probability measure.

Motivation: Stochastic Simulation
We resort to Monte Carlo integration:

We simulate realisations of 𝑥", … , 𝑥% of 𝑋 and form realisations
of the random variable 𝑔(𝑋) as 𝑔 𝑥" , … , 𝑔 𝑥% . Then, provided
that the variance of 𝑔 𝑋 is finite, the law of large numbers
assures that we can approximate the integral by

E 𝑔 𝑋 ≃
1
𝑛
3
&'"

%

𝑔 𝑥& .

Even if we cannot simulate realisations of 𝑋, but can simulate
realisations of 𝑌 that has PDF ℎ (, then

𝐸 𝑔 𝑋 = 7
!
𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 7

!

𝑔 𝑥 𝑓 𝑥
ℎ 𝑥

ℎ 𝑥 𝑑𝑥

⇒ 𝐸(𝑔 𝑋) ⋍
1
𝑛
3
&'"

%
𝑔 𝑦& 𝑓 𝑦&
ℎ 𝑦&

. This is importance sampling.

(𝑥& are drawn from 𝑓)

Motivation: Stochastic Simulation

Monte Carlo integration:

Basic numerical integration:

In (non-random)
numerical integration
one sums up, for
instance values at mid-
points of intervals.

In Monte Carlo
integration one takes
randomly samples of
the area/volume
under/inside the curve.
MC integration is more
effective in dimension 3
or greater.

Motivation: Stochastic Simulation

𝐸 𝑔 𝑋 = 7
!
𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 7

!

𝑔 𝑥 𝑓 𝑥
ℎ 𝑥

ℎ 𝑥 𝑑𝑥

⇒ 𝐸(𝑔 𝑋) ⋍
1
𝑛
3
&'"

%
𝑔 𝑦& 𝑓 𝑦&
ℎ 𝑦&

.

Once more to make this clear: We have PDF 𝑓 (that is hard to
simulate. So, we simulate ℎ (that is easier and use the
realisations of 𝑌 (samples drawn from that distribution) and
compute the values of 𝑓 𝑦 and ℎ 𝑦 in the process of
computing the expectation - we change the measure.

This may also be written as 𝐸(𝑔 𝑋) ⋍
1
𝑛
3
&'"

%

𝑔 𝑦& 𝑤 𝑦& ,

where 𝑤 𝑦& = ()!
*)!

is a weight function; ∫!𝑤 𝑥 𝑑𝑥 = 1.

(𝑦& drawn from ℎ)

Motivation: Stochastic Simulation

g

ℎ(𝑥) should be as similar to 𝑓(𝑥) as possible to make the
integration computationally effective: this way sampling is
done primarily in the regions that contribute most to
𝐸 𝑔 𝑋 → weighted integration.

Transformation Methods
A prerequisite: Change of variable

The mathematical foundation for transformations of (random)
variates reads as follows:

The PDF of an arbitrary differentiable invertible
transformation 𝑌 = 𝑔 𝑋 is

𝑓+ 𝑦 = 𝑓! 𝑔," 𝑦
𝑑
𝑑𝑦

𝑔," 𝑦 .

The last term is the Jacobian of the transformation (in
dimension 2 or greater). (For an example in 2D, see the Box-
Müller method, page 16.)

“Equal measures”: 𝑓+ 𝑦 𝑑𝑦 = 𝑓! 𝑔," 𝑦 𝑑[𝑔,"(𝑦)].

Transformation Methods
“Proof”. The event 𝑌 ≤ 𝑦 is the same as the event 𝑋 ≤ 𝑔,"(𝑦)
⇒ 𝐹+ 𝑦 = Pr 𝑌 ≤ 𝑦 = Pr 𝑋 ≤ 𝑔," 𝑦 = 𝐹!(𝑔," 𝑦)

𝑦 = 𝑔 𝑥 ⇔ 𝑥 = 𝑔,"(𝑦)

𝑑𝑔,"

𝑑𝑦 =
𝑑𝑥
𝑑𝑦 =

1
𝑔′(𝑥)

𝑓+ 𝑦 =
𝑑𝐹+(𝑦)
𝑑𝑦

=
𝑑𝐹!(𝑔," 𝑦)

𝑑𝑦
=
𝑑𝐹!(x)
𝑑𝑥

𝑑𝑥
𝑑𝑦

=
1

𝑔´ 𝑥
𝑓! 𝑥

= -."#())
-) 𝑓! 𝑔," 𝑦 ∎

The differentiation -.
"#())
-) generalises to a Jacobian in multiple

dimensions.

Transformation Methods

When the inverse transformation can be determined, the inverse
distribution method can – should, for efficiency, - be used:
1. Sample 𝑦 from a uniform distribution 𝑦 ∈ 0,1 (notation Y ∼
𝒰[2,"], or 𝑌 ∽ 𝑈(0,1)).
2. Compute 𝑥 = 𝐹,"(𝑦),where 𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 . (If 𝑥 ∈ [𝑎, 𝑏],
then 𝐹 𝑥 = ∫5

6 𝑝 𝑥7 𝑑𝑥′, or the sum 𝐹 𝑥 = ∑586!86 𝑝 𝑥& in the
discrete case.) 𝑋 follows the distribution 𝐹 𝑥 as desired.
Proposition. If 𝑌 ∼ 𝑈(0,1) and 𝐹(() is a valid invertible
cumulative distribution function (CDF), then
𝑋 = 𝐹," 𝑌 has CDF 𝐹 (.
Proof.
𝑃 𝑋 ≤ 𝑥 = 𝑃 𝐹," 𝑌 ≤ 𝑥 = 𝑃 𝑌 ≤ 𝐹 𝑥 = 𝐹+ 𝐹 𝑥 = 𝐹 𝑥 .

The inverse distribution method

Transformation Methods
Example. Uniform random variates. Given 𝑈 ∼ 𝑈(0, 1), simulate
𝑉 ∼ 𝑈(𝑎, 𝑏), where 𝑎 < 𝑏.

1. Sample u ∈ 0,1 .
2. Compute v from 𝑣 = 𝑎 + 𝑏 − 𝑎 𝑢.

Now, 𝐹," 𝑢 = 𝑣 = 𝑎 + 𝑏 − 𝑎 𝑢. 𝐹 𝑣 = 9,5
:,5 , 𝑎 ≤ 𝑣 ≤ 𝑏.

Example. Exponential random variates. Given 𝑈 ∼ 𝑈(0, 1),
simulate X ~ 𝐸𝑥𝑝(𝜆).

PDF 𝑓 𝑥 = 𝜆𝑒,;6, 𝑥 ≥ 0.⇒ CDF 𝐹 𝑥 = 1 − 𝑒,;6, 𝑥 ≥ 0.

⇒ 𝐹," 𝑢 = 𝑥 = −
1
𝜆
log 1 − 𝐹 𝑥 = −

1
𝜆
log 1 − 𝑢 .

1. Sample u ∈ 0,1 .

2. Compute x from x = − "
; log 1 − 𝑢 .

Transformation Methods
Example. Variates from the Lorentzian distribution.

p(x) =
1

⇡

1

1 + x2
(�1 < x < 1)

1. Sample 𝑦 ∈ 0,1 .

2. Compute x from

y = F (x) =

Z x

�1

1

⇡

1

1 + x02 dx
0 =

1

2
+

1

⇡
arctan(x)

) x = F�1(y) = tan

⇡(y � 1

2
)

�

PDF

Learn to do this “without thinking”, that is, learn the
“notation” and derive 𝐹," using it. It’s easy to get mixed up, if
you think too much! Assignments →

Transformation Methods

When playing around with distributions it is often useful to
identify factors contributing to scaling and location. In the
prototypical case, if 𝑌 has PDF 𝑓(𝑦) and CDF 𝐹(𝑦), and 𝑋 =
𝑎𝑌 + 𝑏 (affine relation), then 𝑋 has CDF

𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥 = 𝑃 𝑎𝑌 + 𝑏 ≤ 𝑥 = 𝑃 𝑌 ≤
𝑥 − 𝑏
𝑎

= 𝐹
𝑥 − 𝑏
𝑎

and PDF

𝑓! 𝑥 =
1
𝑎
𝑓
𝑥 − 𝑏
𝑎

.

Here, 𝑎 is the scale parameter and 𝑏 is the location parameter.

Transformation Methods
Example. Gamma random variates. Simulate 𝑋 ∼ 𝐺𝑎 𝑛, 𝜆 random
variates for integer 𝑛.

Exact inverse 𝐹,"(() does not exist, but use the property that if
𝑌& ∼ 𝐸𝑥𝑝(𝜆), and the 𝑌& are independent, then

𝑋 =3
&'"

%

𝑌& ∽ 𝐺𝑎 𝑛, 𝜆 .

In practise, to simulate gamma random variates, simulate
exponential random variates and sum them up. (𝐺𝑎 1, 𝜆 =
Exp(λ), see Lecture 1, p. 39.) Note: sum of memoryless
processes → Gamma.
𝑛 is the shape parameter and 𝜆 is the scale parameter.
Often library algorithms generate 𝐺𝑎 𝑛, 1 , afterwhich one
needs to rescale: if 𝑌 ∼ 𝐺𝑎(𝑛, 1), then 𝑋 = 𝑌/𝜆 ∼ 𝐺𝑎(𝑛, 𝜆).

Transformation Methods
Normal random variates

Obviously, efficient simulation of Gaussian random
quantities is of great importance. However, the inverse
transformation cannot be applied.

We need a technique for simulating 𝑍 ∼ 𝑁(0, 1) random
variables, because 𝑋 = 𝜇 + 𝜎𝑍 ∼ 𝑁 𝜇, 𝜎# .
CLT-based method
This approximate method makes use of the central limit theorem.

𝑍 =3
&'"

"#

𝑈& − 6For example, , where 𝑈& ∽ 𝑈 0, 1 , 𝑖 = 1, 2, … , 12

are independent, is approximately normal with 𝐸 𝑍 = 0
and Var 𝑍 = 1.

Transformation Methods
Normal random variates

This example case for the CLT-based method has support on
[-6, 6] and is poorly behaved in the extreme tails. For 𝑍 ∼
𝑁(0, 1), 𝑃(𝑍 > 6) ≈ 2×10,<, so the truncation is not a major
problem in many applications. The method is, however, slow:
12 uniform random numbers to get one Gaussian.

Remember: In CLT 𝑍% =
=!$,>
⁄@ %

; then as 𝑛 → ∞ 𝑍% ~𝑁(0,1).

Transformation Methods
Normal random variates

- fast and efficient way to generate normal random variates
The Box-Muller method

1. Simulate Θ ~ 𝑈(0,2𝜋) and 𝑅# ~ 𝐸𝑥𝑝(⁄1 2) independently.

2. Compute two independent standard normal random variables
𝑋 = 𝑅 cosΘ and 𝑌 = 𝑅 sinΘ.

Proof. 𝑓!,+ 𝑥, 𝑦 =
1
2𝜋

exp(− 𝑥# + 𝑦# /2)
If 𝑋 = 𝑅 cosΘ and 𝑌 = 𝑅 sinΘ,

𝑓A,B 𝑟, 𝜃 = 𝑓!,+ 𝑥, 𝑦
𝜕 𝑥, 𝑦
𝜕 𝑟, 𝜃

=
1
2𝜋

𝑒,C%/# cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

= "
#E 𝑟𝑒

,C%/#
↖ F 6,)

F C,G =
⁄𝜕𝑥 𝜕𝑟 ⁄𝜕𝑥 𝜕𝜃
⁄𝜕𝑦 𝜕𝑟 ⁄𝜕𝑦 𝜕𝜃 (Jacobian)

- this is the standard method

Transformation Methods
The Box-Muller algorithm:

4. Multiply 𝑥 and 𝑦 by 𝜎! and 𝜎+ to get the desired
variances 𝜎!#and 𝜎+#. Add the desired 𝜇.

5. Go to 1.

1. Generate 𝑢", 𝑢# ~ 𝑈(0, 1) independently.

3. Compute 𝑥 = 𝑟 cos(𝜃) and
𝑦 = 𝑟 sin(𝜃)

2. Compute 𝑟 = −2 ln 𝑢" and
𝜃 = 2𝜋𝑢#

You can use this stuff as an aid when doing Assignment 2.1.

Lookup Methods
The lookup method is the discrete version of the inverse
transformation method. It is used in simulating a discrete
random quantity 𝑋 with outcome space 𝑆 = {0, 1, 2, … }
(ordered by increasing probabilities).

The probability mass function (PMF) of 𝑋: 𝑝H = Pr 𝑋 = 𝑘 , 𝑘 =
0, 1, 2, …
Define 𝑞H = Pr 𝑋 ≤ 𝑘 = ∑&'2H 𝑝&.
To generate realisations of 𝑋, first simulate 𝑢 ~ 𝑈(0, 1), then
compute 𝑋 = min{𝑘|𝑞H ≥ 𝑢}.
⇒ 𝑞H," < 𝑢 ≤ 𝑞H, so

Pr 𝑋 = 𝑘 = Pr 𝑢 ∈ 𝑞H,", 𝑞H = 𝑞H − 𝑞H," = 𝑝H.

(This method is used e.g. for simulating discrete Markov models.)

Rejection Samplers
Rejection samples are used in generating random numbers
that follow an arbitrary distribution 𝑝(𝑥) that is not
analytically invertible.

Basic method

We want to simulate from 𝑓(𝑥) with finite support on [𝑎, 𝑏]. If
we can determine 𝑚 such that 𝑓 𝑥 ≤ 𝑚,∀𝑥 ∈ [𝑎, 𝑏], we can
simulate 𝑋 ~ 𝑈(𝑎, 𝑏) and 𝑌 ~ 𝑈(0,𝑚) and accept 𝑋, if 𝑌 <
𝑓(𝑋), otherwise reject and try again. The accepted 𝑋 values
have PDF 𝑓 𝑥 .

(For a proof, see e.g. Proposition 4.4. in Stochastic Modelling
for Systems Biology.)

Rejection Samplers
The algorithm:

1. Generate 𝑥 in the support of 𝑋: 𝑥 ∈ [𝑎, 𝑏].

2. Generate 𝑦 ~ 𝑈(0, 1): if 𝑦 ≤ 𝑓(𝑥)/𝑚 , accept 𝑥. (This
means: ”accept 𝑥 with probability 𝑓(𝑥)/𝑚”.)

3. Go to 1. 𝑦, 𝑓(𝑥)

𝑚

Rejection Samplers

The acceptance probability for this method is

Pr Accept = Pr 𝑋, 𝑌 ∈ 𝐴
= ∫5

: Pr 𝑋, 𝑌 ∈ 𝐴 𝑋 = 𝑥 × "
:,5𝑑𝑥 = ∫5

: ((6)
I × "

:,5𝑑𝑥

=
1

𝑚(𝑏 − 𝑎)
7
5

:
𝑓 𝑥 𝑑𝑥 =

1
𝑚(𝑏 − 𝑎)

.

If Pr Accept is very low, one can use the envelope method.

Rejection Samplers
The envelope method
This method also extends application of the rejection method
to distributions with infinite support. Decent computational
efficiency can be obtained choosing the enveloping region
carefully.

To simulate 𝑋 with PDF 𝑓(() we choose a PDF ℎ(() such that
𝑓 𝑥 ≤ 𝑎ℎ 𝑥 , ∀𝑥

and for which we can simulate values of 𝑌 with the same
support as 𝑋.

𝑎 is an upper bound for 𝑓(𝑥)/ℎ(𝑥); 𝑎 ≥ 1, since both 𝑓(𝑥) and
ℎ(𝑥) integrate to 1.

Rejection Samplers
The envelope method.

Rejection Samplers
The envelope algorithm.

1. Draw 𝑌 = 𝑦 from ℎ(() and then 𝑈 = 𝑢 ~ 𝑈 0, 𝑎ℎ 𝑦 .
2. Accept 𝑦 as a simulated value of 𝑋 if 𝑢 < 𝑓(𝑦) (with
probability 𝑓(𝑦)/ 𝑎ℎ 𝑦)*, otherwise reject.

3. Go to 1.

This procedure distributes points uniformly over a region
covering 𝑓(𝑥) and keeps ones under 𝑓(𝑥).
The overall acceptance probability:
Pr 𝑈 < 𝑓 𝑌 = 7

,J

J
Pr 𝑈 < 𝑓 𝑌 𝑌 = 𝑦 ℎ 𝑦 𝑑𝑦 = 7

,J

J 𝑓(𝑦)
𝑎

𝑑𝑦

=
1
𝑎
. → 𝑎 should be as close to 1 as possible.

(In practise, 𝑎 should be smaller than 10.)

(* “with probability 𝑓(𝑦)/ 𝑎ℎ 𝑦 ” means:
accept 𝑦 if 𝑧 < 𝑓(𝑦)/[𝑎ℎ 𝑦], where 𝑧 ~ 𝑈[0, 1])

Importance Resampling

This stochastic simulation method sort of spawns from
importance sampling and the envelope rejection method.

The advantage over the envelope rejection method is that one
does not have to “guess” a good envelope and bounding
constant.

Instead, any proposal distribution ℎ(() having the same
support as 𝑓(() can be used. In practise, the method works the
bejer the more similar ℎ(() is to 𝑓(().

Unlike importance sampling, the importance resampling is
approximate: the samples are only approximately from 𝑓(().
The approximation improves with increasing number of
generated samples.

Importance Resampling

Here, we rewrite the expectation of an arbitrary function in the
importance sampling

𝐸(𝑔 𝑋) ≃
1
𝑛
3
&'"

%
𝑔 𝑦& 𝑓(𝑦&)
ℎ(𝑦&)

as

𝐸(𝑔 𝑋) ≃
1
𝑛3
&'"

%

𝑤&𝑔 𝑦& ,

where 𝑤& = 𝑓(𝑦&)/ℎ(𝑦&).
The procedure:
1. generate samples from the proposal ℎ(()
2. resample from the sample using the weights 𝑤&.
→ the new sample is distributed approximately according to 𝑓(().

Importance Resampling
The algorithm:

1. Sample 𝑦", 𝑦#, … , 𝑦% ~ ℎ(().
2. Compute the weights 𝑤H = 𝑓(𝑦H)/ℎ(𝑦H), 𝑘 = 1, 2, … , 𝑛.
3. Compute the sum of the weights 𝑤2 = ∑K'"% 𝑤K.
4. Compute the normalised weights 𝑤H7 = 𝑤H/𝑤2, 𝑘 =

1, 2, … , 𝑛.
5. Sample 𝑛 times with replacement from the set {𝑦", 𝑦#, … , 𝑦%}

using the probabilities {𝑤"7 , 𝑤#7 , … , 𝑤%7 } (using e.g. the lookup
method) to generate a new sample {𝑥", 𝑥#, … , 𝑥%}.

6. Return the new sample {𝑥", 𝑥#, … , 𝑥%} as an approximate
sample from 𝑓(().

Note: ”Sample with replacement” means that if you pick for
example 𝑦L, you ”mentally” put it back to the set, so you
may pick it again.

Importance Resampling
So, samples from ℎ (are used as if they were samples from
𝑓((), only they are re-weighted by 𝑤&. So, generate samples
from the proposal ℎ (and resample from the sample using
the weights 𝑤&. One more effort to explain the resample part:
Once you have the list 𝑦", 𝑦#, … , 𝑦% , you resample 𝑚 times
from this list using the weights 𝑤", 𝑤#, … , 𝑤I as
probabilities to get a new list 𝑥", 𝑥#, … , 𝑥% and you use this
as an approximate sample from the original 𝑓((). Because there
is replacement, you might have more than one instances of
the same 𝑦&. What’s the point? To generate several
approximate samples from the original – that is, different
instances. To see the ”sense” in this method, one might think
of using the limited sample as if there were a number of
them.
One should try to find ℎ (as closely reminiscent to 𝑓(() as
possible.

Importance Resampling

After all this fancy talk: Importance resampling just uses the
already generated ensemble of samples and takes “new”
batches of samples from it. This is done when the number of
available samples is limited. This is all you need to remember
of it in addition to the fact that such a trick exists; look into it
and use it when you need it.

Binning of Distributions
In order to analyse/identify distributions and make them
more “presentable” one often needs to bin the data. The data
is assorted to intervals along the abscissa (the first axis).

Linear binning: The range 𝑎, 𝑏 in the abscissa is divided
into 𝐿 intervals of equal width Δ = ⁄(𝑏 − 𝑎) 𝐿. The data
element 𝑥K belongs to the 𝑖th bin, if 𝑥K ∈ [𝑎 + 𝑖 − 1 Δ, 𝑎 +
𝑖Δ). After assorting the data there will be 𝑁& elements in the
𝑖th bin. One point represents the data in each bin. The
binned data:

�𝑥& = 𝑎 +
Δ
2
+ (𝑖 − 1)Δ ;

𝑦& =
𝑁&
∆
,where 𝑁& is the number of 𝑥K ∈ [𝑎 + 𝑖 − 1 Δ, 𝑎 + 𝑖Δ)

Binning of Distributions
Logarithmic binning: The range 𝑅 in the abscissa is divided
into intervals of width Δ& = exp(⁄𝑖 𝑟) − exp[⁄(𝑖 − 1) 𝑟], where 𝑖 ∈
{−𝑅,− 𝑅 − 1 ,… , 𝑅 − 1, 𝑅}. 𝑅 and 𝑟 define the range and
resolution, respectively. The data element 𝑥K belongs to the 𝑖th
bin, if 𝑥K ∈ [exp

&,"
C , exp 𝑖/𝑟). After assorting the data there

will be 𝑁& elements in the 𝑖th bin. One point represents the data
in each bin. The values of these points are calculated as

�𝑥& =
exp[⁄𝑖 − 1 𝑟] + exp(⁄𝑖 𝑟)

2 ;

For the layman: The bins are really small for small 𝑖 and grow
exponentially with 𝑖. Plot in log-log coordinates.

𝑦& =
$!
∆!

, where 𝑁& is the number of 𝑥K ∈ [exp
&,"
C

, exp 𝑖/𝑟).

(You generate and plot points �𝑥&, 𝑦& to represent the data.)

Binning of Distributions
Here are ∆& vs interval midpoints in linear (left) and
logarithmic (right) coordinates.

Binning of Distributions
Log-binning allows you to see the functional dependence of a
fat-tailed distribution (density) more precisely at small 𝑥. It
also extends the visibility of the functional dependence to
larger 𝑥 values. (This last bit holds for real data, not the one
generated in the assignment.)
To my knowledge,
there is no direct way
to do log-binning in
Python
(see a log-bin query).

So, you will
implement your
own log-binning in
an assignment.

https://stackoverflow.com/questions/37170511/scaled-logarithmic-binning-in-python

Word of advise about axes
When trying to understand a given data, plot in linear,
semilog, and log-log axes to see what works.
Expecting exponential growth or decay: use semilog.
Expecting power-law or log-normal and/or if you are dealing
with a random process you expect to exhibit multiplicative
stochasticity: use log-log.

