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Motivation: Stochastic Simulation
We want to understand the dynamics of a stochastic system.

More precisely, we want to determine how an initial distribution 
of some (continuous) quantity evolves in time.

We have a random variable 𝑋 with probability density 
function (PDF) 𝑓(𝑥) (or 𝑓!(𝑥)). We wish to evaluate E(𝑔 𝑋 ) for 
some function 𝑔((): E 𝑔 𝑋 = ∫!𝑔 𝑥 𝑓 𝑥 𝑑𝑥 .

So, all models in this context are just distributions. All model 
parameters 𝜃 = 𝜃", 𝜃#, … , 𝜃$ are parameters characterising 
these distributions, for example, mean and variance. 

Here, think of 𝑓 𝑥 𝑑𝑥 as the measure you are working with: you 
measure everything with respect to this probability measure.



Motivation: Stochastic Simulation
We resort to Monte Carlo integration:

We simulate realisations of 𝑥", … , 𝑥% of 𝑋 and form realisations 
of the random variable 𝑔(𝑋) as 𝑔 𝑥" , … , 𝑔 𝑥% . Then, provided 
that the variance of 𝑔 𝑋 is finite, the law of large numbers 
assures that we can approximate the integral by

E 𝑔 𝑋 ≃
1
𝑛
3
&'"

%

𝑔 𝑥& .

Even if we cannot simulate realisations of 𝑋, but can simulate 
realisations of 𝑌 that has PDF ℎ ( , then

𝐸 𝑔 𝑋 = 7
!
𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 7

!

𝑔 𝑥 𝑓 𝑥
ℎ 𝑥

ℎ 𝑥 𝑑𝑥

⇒ 𝐸(𝑔 𝑋 ) ⋍
1
𝑛
3
&'"

%
𝑔 𝑦& 𝑓 𝑦&
ℎ 𝑦&

. This is importance sampling.

(𝑥& are drawn from 𝑓)



Motivation: Stochastic Simulation

Monte Carlo integration:

Basic numerical integration:

In (non-random) 
numerical integration 
one sums up, for 
instance values at mid-
points of intervals.

In Monte Carlo 
integration one takes 
randomly samples of 
the area/volume 
under/inside the curve. 
MC integration is more 
effective in dimension 3 
or greater.



Motivation: Stochastic Simulation

𝐸 𝑔 𝑋 = 7
!
𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 7

!

𝑔 𝑥 𝑓 𝑥
ℎ 𝑥

ℎ 𝑥 𝑑𝑥

⇒ 𝐸(𝑔 𝑋 ) ⋍
1
𝑛
3
&'"

%
𝑔 𝑦& 𝑓 𝑦&
ℎ 𝑦&

.

Once more to make this clear: We have PDF 𝑓 ( that is hard to 
simulate. So, we simulate ℎ ( that is easier and use the 
realisations of 𝑌 (samples drawn from that distribution) and 
compute the values of 𝑓 𝑦 and ℎ 𝑦 in the process of 
computing the expectation - we change the measure.

This may also be written as 𝐸(𝑔 𝑋 ) ⋍
1
𝑛
3
&'"

%

𝑔 𝑦& 𝑤 𝑦& ,

where 𝑤 𝑦& = ( )!
* )!

is a weight function; ∫!𝑤 𝑥 𝑑𝑥 = 1.

(𝑦& drawn from ℎ)



Motivation: Stochastic Simulation

g

ℎ(𝑥) should be as similar to 𝑓(𝑥) as possible to make the 
integration computationally effective: this way sampling is 
done primarily in the regions that contribute most to 
𝐸 𝑔 𝑋 → weighted integration.



Transformation Methods
A prerequisite: Change of variable

The mathematical foundation for transformations of (random) 
variates reads as follows:

The PDF of an arbitrary differentiable invertible 
transformation 𝑌 = 𝑔 𝑋 is 

𝑓+ 𝑦 = 𝑓! 𝑔," 𝑦
𝑑
𝑑𝑦

𝑔," 𝑦 .

The last term is the Jacobian of the transformation (in 
dimension 2 or greater). (For an example in 2D, see the Box-
Müller method, page 16.)

“Equal measures”: 𝑓+ 𝑦 𝑑𝑦 = 𝑓! 𝑔," 𝑦 𝑑[𝑔,"(𝑦)].



Transformation Methods
“Proof”. The event 𝑌 ≤ 𝑦 is the same as the event 𝑋 ≤ 𝑔,"(𝑦)
⇒ 𝐹+ 𝑦 = Pr 𝑌 ≤ 𝑦 = Pr 𝑋 ≤ 𝑔," 𝑦 = 𝐹!(𝑔," 𝑦 )

𝑦 = 𝑔 𝑥 ⇔ 𝑥 = 𝑔,"(𝑦)

𝑑𝑔,"

𝑑𝑦 =
𝑑𝑥
𝑑𝑦 =

1
𝑔′(𝑥)

𝑓+ 𝑦 =
𝑑𝐹+(𝑦)
𝑑𝑦

=
𝑑𝐹!(𝑔," 𝑦 )

𝑑𝑦
=
𝑑𝐹!(x)
𝑑𝑥

𝑑𝑥
𝑑𝑦

=
1

𝑔´ 𝑥
𝑓! 𝑥

= -."#())
-) 𝑓! 𝑔," 𝑦 ∎

The differentiation -.
"#())
-) generalises to a Jacobian in multiple 

dimensions.



Transformation Methods

When the inverse transformation can be determined, the inverse 
distribution method can – should, for efficiency, - be used:
1. Sample 𝑦 from a uniform distribution 𝑦 ∈ 0,1 (notation Y ∼
𝒰[2,"], or 𝑌 ∽ 𝑈(0,1)).
2. Compute 𝑥 = 𝐹,"(𝑦),where 𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 . (If 𝑥 ∈ [𝑎, 𝑏], 
then 𝐹 𝑥 = ∫5

6 𝑝 𝑥7 𝑑𝑥′, or the sum 𝐹 𝑥 = ∑586!86 𝑝 𝑥& in the 
discrete case.) 𝑋 follows the distribution 𝐹 𝑥 as desired. 
Proposition. If 𝑌 ∼ 𝑈(0,1) and 𝐹(() is a valid invertible 
cumulative distribution function (CDF), then 
𝑋 = 𝐹," 𝑌 has CDF 𝐹 ( .
Proof.
𝑃 𝑋 ≤ 𝑥 = 𝑃 𝐹," 𝑌 ≤ 𝑥 = 𝑃 𝑌 ≤ 𝐹 𝑥 = 𝐹+ 𝐹 𝑥 = 𝐹 𝑥 .

The inverse distribution method



Transformation Methods
Example. Uniform random variates. Given 𝑈 ∼ 𝑈(0, 1), simulate 
𝑉 ∼ 𝑈(𝑎, 𝑏), where 𝑎 < 𝑏.

1. Sample u ∈ 0,1 .
2. Compute v from 𝑣 = 𝑎 + 𝑏 − 𝑎 𝑢.

Now, 𝐹," 𝑢 = 𝑣 = 𝑎 + 𝑏 − 𝑎 𝑢.  𝐹 𝑣 = 9,5
:,5 , 𝑎 ≤ 𝑣 ≤ 𝑏.

Example. Exponential random variates. Given 𝑈 ∼ 𝑈(0, 1), 
simulate X ~ 𝐸𝑥𝑝(𝜆).

PDF 𝑓 𝑥 = 𝜆𝑒,;6, 𝑥 ≥ 0.⇒ CDF 𝐹 𝑥 = 1 − 𝑒,;6, 𝑥 ≥ 0.

⇒ 𝐹," 𝑢 = 𝑥 = −
1
𝜆
log 1 − 𝐹 𝑥 = −

1
𝜆
log 1 − 𝑢 .

1. Sample u ∈ 0,1 .

2. Compute x from x = − "
; log 1 − 𝑢 .



Transformation Methods
Example. Variates from the Lorentzian distribution.

p(x) =
1

⇡

1

1 + x2
(�1 < x < 1)

1. Sample 𝑦 ∈ 0,1 .

2. Compute x from

y = F (x) =

Z x

�1

1

⇡

1

1 + x02 dx
0 =

1

2
+

1

⇡
arctan(x)

) x = F�1(y) = tan


⇡(y � 1

2
)

�

PDF

Learn to do this “without thinking”, that is, learn the 
“notation” and derive 𝐹," using it. It’s easy to get mixed up, if 
you think too much! Assignments →



Transformation Methods

When playing around with distributions it is often useful to 
identify factors  contributing to scaling and location. In the 
prototypical case, if 𝑌 has PDF 𝑓(𝑦) and CDF 𝐹(𝑦), and 𝑋 =
𝑎𝑌 + 𝑏 (affine relation), then 𝑋 has CDF

𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥 = 𝑃 𝑎𝑌 + 𝑏 ≤ 𝑥 = 𝑃 𝑌 ≤
𝑥 − 𝑏
𝑎

= 𝐹
𝑥 − 𝑏
𝑎

and PDF

𝑓! 𝑥 =
1
𝑎
𝑓
𝑥 − 𝑏
𝑎

.

Here, 𝑎 is the scale parameter and 𝑏 is the location parameter.



Transformation Methods
Example. Gamma random variates. Simulate 𝑋 ∼ 𝐺𝑎 𝑛, 𝜆 random 
variates for integer 𝑛.

Exact inverse 𝐹,"(() does not exist, but use the property that if 
𝑌& ∼ 𝐸𝑥𝑝(𝜆), and the 𝑌& are independent, then

𝑋 =3
&'"

%

𝑌& ∽ 𝐺𝑎 𝑛, 𝜆 .

In practise, to simulate gamma random variates, simulate 
exponential random variates and sum them up. (𝐺𝑎 1, 𝜆 =
Exp(λ), see Lecture 1, p. 39.) Note: sum of memoryless 
processes → Gamma.
𝑛 is the shape parameter and 𝜆 is the scale parameter.
Often library algorithms generate 𝐺𝑎 𝑛, 1 , afterwhich one 
needs to rescale: if 𝑌 ∼ 𝐺𝑎(𝑛, 1), then 𝑋 = 𝑌/𝜆 ∼ 𝐺𝑎(𝑛, 𝜆).



Transformation Methods
Normal random variates

Obviously, efficient simulation of Gaussian random 
quantities is of great importance. However, the inverse 
transformation cannot be applied.

We need a technique for simulating 𝑍 ∼ 𝑁(0, 1) random 
variables, because 𝑋 = 𝜇 + 𝜎𝑍 ∼ 𝑁 𝜇, 𝜎# .
CLT-based method
This approximate method makes use of the central limit theorem.

𝑍 =3
&'"

"#

𝑈& − 6For example, , where 𝑈& ∽ 𝑈 0, 1 , 𝑖 = 1, 2, … , 12

are independent, is approximately normal with 𝐸 𝑍 = 0
and Var 𝑍 = 1.



Transformation Methods
Normal random variates

This example case for the CLT-based method has support on 
[-6, 6] and is poorly behaved in the extreme tails. For 𝑍 ∼
𝑁(0, 1), 𝑃( 𝑍 > 6) ≈ 2×10,<, so the truncation is not a major 
problem in many applications. The method is, however, slow: 
12 uniform random numbers to get one Gaussian.

Remember: In CLT 𝑍% =
=!$,>
⁄@ %

; then as 𝑛 → ∞ 𝑍% ~𝑁(0,1).



Transformation Methods
Normal random variates

- fast and efficient way to generate normal random variates
The Box-Muller method

1. Simulate Θ ~ 𝑈(0,2𝜋) and 𝑅# ~ 𝐸𝑥𝑝( ⁄1 2) independently.

2. Compute two independent standard normal random variables
𝑋 = 𝑅 cosΘ and 𝑌 = 𝑅 sinΘ.

Proof. 𝑓!,+ 𝑥, 𝑦 =
1
2𝜋

exp(− 𝑥# + 𝑦# /2)
If 𝑋 = 𝑅 cosΘ and 𝑌 = 𝑅 sinΘ,

𝑓A,B 𝑟, 𝜃 = 𝑓!,+ 𝑥, 𝑦
𝜕 𝑥, 𝑦
𝜕 𝑟, 𝜃

=
1
2𝜋

𝑒,C%/# cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

= "
#E 𝑟𝑒

,C%/#
↖ F 6,)

F C,G =
⁄𝜕𝑥 𝜕𝑟 ⁄𝜕𝑥 𝜕𝜃
⁄𝜕𝑦 𝜕𝑟 ⁄𝜕𝑦 𝜕𝜃 (Jacobian)

- this is the standard method



Transformation Methods
The Box-Muller algorithm:

4. Multiply 𝑥 and 𝑦 by 𝜎! and 𝜎+ to get the desired 
variances 𝜎!#and 𝜎+#. Add the desired 𝜇.

5. Go to 1.

1. Generate 𝑢", 𝑢# ~ 𝑈(0, 1) independently.

3. Compute 𝑥 = 𝑟 cos(𝜃) and 
𝑦 = 𝑟 sin(𝜃)

2. Compute 𝑟 = −2 ln 𝑢" and 
𝜃 = 2𝜋𝑢#

You can use this stuff as an aid when doing Assignment 2.1.



Lookup Methods
The lookup method is the discrete version of the inverse 
transformation method. It is used in simulating a discrete 
random quantity 𝑋 with outcome space 𝑆 = {0, 1, 2, … }
(ordered by increasing probabilities). 

The probability mass function (PMF) of 𝑋: 𝑝H = Pr 𝑋 = 𝑘 , 𝑘 =
0, 1, 2, …
Define 𝑞H = Pr 𝑋 ≤ 𝑘 = ∑&'2H 𝑝&.
To generate realisations of 𝑋, first simulate 𝑢 ~ 𝑈(0, 1), then 
compute 𝑋 = min{𝑘|𝑞H ≥ 𝑢}.
⇒ 𝑞H," < 𝑢 ≤ 𝑞H, so

Pr 𝑋 = 𝑘 = Pr 𝑢 ∈ 𝑞H,", 𝑞H = 𝑞H − 𝑞H," = 𝑝H.

(This method is used e.g. for simulating discrete Markov models.)



Rejection Samplers
Rejection samples are used in generating random numbers 
that follow an arbitrary distribution 𝑝(𝑥) that is not 
analytically invertible.

Basic method

We want to simulate from 𝑓(𝑥) with finite support on [𝑎, 𝑏]. If 
we can determine 𝑚 such that 𝑓 𝑥 ≤ 𝑚,∀𝑥 ∈ [𝑎, 𝑏], we can 
simulate 𝑋 ~ 𝑈(𝑎, 𝑏) and 𝑌 ~ 𝑈(0,𝑚) and accept 𝑋, if 𝑌 <
𝑓(𝑋), otherwise reject and try again. The accepted 𝑋 values 
have PDF 𝑓 𝑥 .

(For a proof, see e.g. Proposition 4.4. in Stochastic Modelling 
for Systems Biology.)



Rejection Samplers
The algorithm:

1. Generate 𝑥 in the support of 𝑋: 𝑥 ∈ [𝑎, 𝑏]. 

2. Generate 𝑦 ~ 𝑈(0, 1): if 𝑦 ≤ 𝑓(𝑥)/𝑚 , accept 𝑥. (This 
means: ”accept 𝑥 with probability 𝑓(𝑥)/𝑚”.)

3. Go to 1. 𝑦, 𝑓(𝑥)

𝑚



Rejection Samplers

The acceptance probability for this method is 

Pr Accept = Pr 𝑋, 𝑌 ∈ 𝐴
= ∫5

: Pr 𝑋, 𝑌 ∈ 𝐴 𝑋 = 𝑥 × "
:,5𝑑𝑥 = ∫5

: ((6)
I × "

:,5𝑑𝑥

=
1

𝑚(𝑏 − 𝑎)
7
5

:
𝑓 𝑥 𝑑𝑥 =

1
𝑚(𝑏 − 𝑎)

.

If Pr Accept is very low, one can use the envelope method.



Rejection Samplers
The envelope method
This method also extends application of the rejection method 
to distributions with infinite support. Decent computational 
efficiency can be obtained choosing the enveloping region 
carefully.

To simulate 𝑋 with PDF 𝑓(() we choose a PDF ℎ(() such that
𝑓 𝑥 ≤ 𝑎ℎ 𝑥 , ∀𝑥

and for which we can simulate values of 𝑌 with the same 
support as 𝑋.

𝑎 is an upper bound for 𝑓(𝑥)/ℎ(𝑥); 𝑎 ≥ 1, since both 𝑓(𝑥) and 
ℎ(𝑥) integrate to 1.



Rejection Samplers
The envelope method.



Rejection Samplers
The envelope algorithm.

1. Draw 𝑌 = 𝑦 from ℎ(() and then 𝑈 = 𝑢 ~ 𝑈 0, 𝑎ℎ 𝑦 .
2. Accept 𝑦 as a simulated value of 𝑋 if 𝑢 < 𝑓(𝑦) (with 
probability 𝑓(𝑦)/ 𝑎ℎ 𝑦 )*, otherwise reject.

3. Go to 1.

This procedure distributes points uniformly over a region 
covering 𝑓(𝑥) and keeps ones under 𝑓(𝑥).
The overall acceptance probability:
Pr 𝑈 < 𝑓 𝑌 = 7

,J

J
Pr 𝑈 < 𝑓 𝑌 𝑌 = 𝑦 ℎ 𝑦 𝑑𝑦 = 7

,J

J 𝑓(𝑦)
𝑎

𝑑𝑦

=
1
𝑎
. → 𝑎 should be as close to 1 as possible.

(In practise, 𝑎 should be smaller than 10.)

(* “with probability 𝑓(𝑦)/ 𝑎ℎ 𝑦 ” means:  
accept 𝑦 if 𝑧 < 𝑓(𝑦)/[𝑎ℎ 𝑦 ], where 𝑧 ~ 𝑈[0, 1])



Importance Resampling

This stochastic simulation method sort of spawns from 
importance sampling and the envelope rejection method.

The advantage over the envelope rejection method is that one 
does not have to “guess” a good envelope and bounding 
constant.

Instead, any proposal distribution  ℎ(() having the same 
support as 𝑓(() can be used. In practise, the method works the 
bejer the more similar ℎ(() is to 𝑓(().

Unlike importance sampling, the importance resampling is 
approximate: the samples are only approximately from 𝑓((). 
The approximation improves with increasing number of 
generated samples.



Importance Resampling

Here, we rewrite the expectation of an arbitrary function in the 
importance sampling

𝐸(𝑔 𝑋 ) ≃
1
𝑛
3
&'"

%
𝑔 𝑦& 𝑓(𝑦&)
ℎ(𝑦&)

as

𝐸(𝑔 𝑋 ) ≃
1
𝑛3
&'"

%

𝑤&𝑔 𝑦& ,

where 𝑤& = 𝑓(𝑦&)/ℎ(𝑦&).
The procedure:
1. generate samples from the proposal ℎ(()
2. resample from the sample using the weights 𝑤&.
→ the new sample is distributed approximately according to 𝑓(().



Importance Resampling
The algorithm:

1. Sample 𝑦", 𝑦#, … , 𝑦% ~ ℎ(().
2. Compute the weights 𝑤H = 𝑓(𝑦H)/ℎ(𝑦H), 𝑘 = 1, 2, … , 𝑛.
3. Compute the sum of the weights 𝑤2 = ∑K'"% 𝑤K.
4. Compute the normalised weights 𝑤H7 = 𝑤H/𝑤2, 𝑘 =

1, 2, … , 𝑛.
5. Sample 𝑛 times with replacement from the set {𝑦", 𝑦#, … , 𝑦%}

using the probabilities {𝑤"7 , 𝑤#7 , … , 𝑤%7 } (using e.g. the lookup 
method) to generate a new sample {𝑥", 𝑥#, … , 𝑥%}.

6. Return the new sample {𝑥", 𝑥#, … , 𝑥%} as an approximate 
sample from 𝑓(().

Note: ”Sample with replacement” means that if you pick for 
example  𝑦L, you ”mentally” put it back to the set, so you 
may pick it again. 



Importance Resampling
So, samples from ℎ ( are used as if they were samples from 
𝑓((), only they are re-weighted by 𝑤&. So, generate samples 
from the proposal ℎ ( and resample from the sample using 
the weights 𝑤&. One more effort to explain the resample part: 
Once you have the list 𝑦", 𝑦#, … , 𝑦% , you resample 𝑚 times 
from this list using the weights 𝑤", 𝑤#, … , 𝑤I as 
probabilities to get a new list 𝑥", 𝑥#, … , 𝑥% and you use this 
as an approximate sample from the original 𝑓((). Because there 
is replacement, you might have more than one instances of 
the same 𝑦&. What’s the point? To generate several 
approximate samples from the original – that is, different 
instances. To see the ”sense” in this method, one might think 
of using the limited sample as if there were a number of 
them. 
One should try to find ℎ ( as closely reminiscent to 𝑓(() as 
possible.



Importance Resampling

After all this fancy talk: Importance resampling just uses the 
already generated ensemble of samples and takes “new” 
batches of samples from it. This is done when the number of 
available samples is limited. This is all you need to remember 
of it in addition to the fact that such a trick exists; look into it 
and use it when you need it.



Binning of Distributions
In order to analyse/identify distributions and make them 
more “presentable” one often needs to bin the data. The data 
is assorted to intervals along the abscissa (the first axis).

Linear binning: The range 𝑎, 𝑏 in the abscissa is divided 
into 𝐿 intervals of equal width Δ = ⁄(𝑏 − 𝑎) 𝐿. The data 
element 𝑥K belongs to the 𝑖th bin, if 𝑥K ∈ [𝑎 + 𝑖 − 1 Δ, 𝑎 +
𝑖Δ). After assorting the data there will be 𝑁& elements in the 
𝑖th bin. One point represents the data in each bin. The 
binned data:

�𝑥& = 𝑎 +
Δ
2
+ (𝑖 − 1)Δ ;

𝑦& =
𝑁&
∆
,where 𝑁& is the number of 𝑥K ∈ [𝑎 + 𝑖 − 1 Δ, 𝑎 + 𝑖Δ)



Binning of Distributions
Logarithmic binning: The range 𝑅 in the abscissa is divided 
into intervals of width Δ& = exp( ⁄𝑖 𝑟) − exp[ ⁄(𝑖 − 1) 𝑟], where 𝑖 ∈
{−𝑅,− 𝑅 − 1 ,… , 𝑅 − 1, 𝑅}. 𝑅 and 𝑟 define the range and 
resolution, respectively. The data element 𝑥K belongs to the 𝑖th
bin, if  𝑥K ∈ [exp

&,"
C , exp 𝑖/𝑟 ). After assorting the data there 

will be 𝑁& elements in the 𝑖th bin. One point represents the data 
in each bin. The values of these points are calculated as

�𝑥& =
exp[ ⁄𝑖 − 1 𝑟] + exp( ⁄𝑖 𝑟)

2 ;

For the layman: The bins are really small for small 𝑖 and grow 
exponentially with 𝑖. Plot in log-log coordinates.

𝑦& =
$!
∆!

, where 𝑁& is the number of 𝑥K ∈ [exp
&,"
C

, exp 𝑖/𝑟 ).

(You generate and plot points �𝑥&, 𝑦& to represent the data.)



Binning of Distributions
Here are ∆& vs interval midpoints in linear (left) and 
logarithmic (right) coordinates.



Binning of Distributions
Log-binning allows you to see the functional dependence of a 
fat-tailed distribution (density) more precisely at small 𝑥. It 
also extends the visibility of the functional dependence to 
larger 𝑥 values.  (This last bit holds for real data, not the one 
generated in the assignment.)
To my knowledge, 
there is no direct way 
to do log-binning in 
Python 
(see a log-bin query).

So, you will 
implement your 
own log-binning in 
an assignment. 

https://stackoverflow.com/questions/37170511/scaled-logarithmic-binning-in-python


Word of advise about axes
When trying to understand a given data, plot in linear, 
semilog, and log-log axes to see what works.
Expecting exponential growth or decay: use semilog.
Expecting power-law or log-normal and/or if you are dealing 
with a random process you expect to exhibit multiplicative 
stochasticity: use log-log. 


