

Shapes in Action Sept 18th

Orbifolds and topology

Program schedule for Sept 18th

- 13:15 Where are we?
- 13:30 Orbifolds: How to relate topology to patterns ?
- 14:00 Break
- 14:15 Magic theorem and its consequences
- 15:00 Break
- **15:15 Textile analysis in groups**

Where are we?

Goal : Understanding

Signature/Orbifold notation due to B. Thurston and J.H. Conway (90 [^])

Done so far:

 Basic ideas on planar symmetries, signatures (= unique names for patterns) fundamental domain (= smallest piece in the pattern that together with the boundary instruct

pattern, that together with the boundary instructions determine the whole pattern)

• Some examples that make everybody confused...

A fundamental domain of a pattern with

- Four different, order two, rotation points
 - Together with the boundary arrows contain all information that is needed to construct the whole pattern

Signature: 2222

Situation after one rotation wrt the blue rotation point

Look at the situation now at the boundary: Rest of the pattern can be created by continuing rotations wrt to other rotation points OR simply by translating over the green& red boundary parts (2 consequent rotations generate a translation)

What next?

- Look at the symbols for signatures once more (one symbol was still missing!)
- How many (and which?) symmetries can be present in a same picture

• The Magic theorem will give the answer!

Star * (in the signature notation) denotes a *mirror* or *kaleidoscopic symmetry* = reflection with respect to a line.

Star alone means: there is one (and only one) single line of mirror symmetry.

Pic by Anne Kasterpalu

Finite rosette pattern Signature: 6•

Miracle x

X : between the reflection lines (of the same type) two oppositely oriented patterns that can be connected with a path without crossing the lines

The signature of this pattern Is ***x**

Wanderings and Wonder-Rings O

Symmetry that is not explained by mirrors, rotations or miracles

Fundamental domain?

Aalto University

Note again the role of arrows !

18.9.2020 12

Signature

Four Fundamental Features

Claim:

- wonders O...O,
- rotations AB...C,
- kaleidoscopes *ab...c*de...f... and
- miracles x...x

suffice to describe all repeating patterns of the Euclidean plane. Notational convention: orientation preserving operations

first(blue) then orientation reversing (red). Then you need **NOt** use different colors to distinguish operations.

Every property has its cost (in euros)

Symbol	Price	Symbol	Price
0	2	* or x	1
2	1/2	2	1⁄4
3	2/3	3	1⁄3
4	3/4	4	3/8
5	4⁄5	5	2⁄5
6	5⁄6	6	5/12
n	(n-1)/n	n	(n-1)/2n
n- fold rotation	meet at a vertex		

The Magic Theorem for plane repeating patterns

The signatures of plane patterns are precisely those with total cost 2 euros.

Ingredients for the proof:

- Local geometrical obstructions
- Global topological obstructions

Be patient! Will take a look of the proof a bit later...

Signature and total price = 2 euro

*2222 1+1/4+1/4+1/4+1/4=2

- Only reflection lines explain the whole symmetry pattern
- Fundamental domain: rectangle with green edges
- Two reflection lines meet in the four different vertices

Signature: 333 Price 2/3+2/3+2/3=2

- Three different types of (genuine) rotation points of order three (=120 degree rotations)
- No reflection lines
- Fundamental domain: Parallelogram in the picture that has only two different edges

2.

Signature: **O** Price: 2

- No rotation points
- No reflection lines
- Two different translations generate the whole pattern
- Fundamental domain: Highlighted rectangle, that has only two different edges

3.

For this type of symmetry no unique way to choose a representative for a parallelogram 'spanning' the pattern

Signature 2222 Price: $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ =2 Fundamental domain: Rectangle bounded by three types of arrows

• Four different rotation points of order two (=180 degree rotations)

4

No reflection lines

Signature: 2*22Price: $\frac{1}{2}+1+\frac{1}{4}+\frac{1}{4}=2$ Fundamental domain: Triangle Bounded by two reflection line segments and green arrow

- Two types of reflection lines
- One (genuine =not produced by consecutive reflections) rotation point of order two

5.

Signature *x Price 1+1=2 Fundamental domain:

Rectangle bounded by two different reflection line segments and one type of arrow

- Only one type of reflection line: Two black lines in the picture are the same up to rigid motion
- Between the lines also mirror images that are not caused by a mirror line
 Blue horizontal arrows cutting the shape have

Perttu Näsänen, 1940-2012

What is the signature of Sik-Sak 1978?

What is the fundamental domain?

Especially: NO Miracles!

Symmetry type 22x

Pic by Tuan Nguyen 22x symmetry

Pic by Tuan Nguyen 2*22 symmetry

Pattern analysis steps

- 1. Draw all mirror lines (=lines of reflection)
- 2. Find the fundamental domain of the kaleidoscope
- 3. How many lines meet on each vertex? => Local symmetries of form *N
- 4. Find rotationally symmetric points (non-kaleidoscopic)
- 5. Are there mirror images without mirrors ? Then there must be at least one miracle **x**.
- 6. Helpful to look at the price list during the analysis and take the miracle theorem into account
- 7. If there is only repletion into two directions (nothing from above) then the pattern is 'wandering' **O**

What kind of fundamental domains we have found so far?

Triangle with no identifications on the boundary (different parts coming from reflection lines)

Topologically (= deformations that do not produce new holes are allowed): **Disk orbifold**

*632

Combination of rotation points and reflection lines Ex: 4*2 Fundamental domain: A triangle with

Fundamental domain: A triangle with some identifications on the boundary (red arrows due to the presence of a rotation point in the middle) What is the **topological shape** of the piece after the identification (= gluing the red boundary arrows) ?

Disk orbifold again ? Are there other types ?

Cost of a miracle (x) = 1euro

Signature *x Möbius band orbifold

Wanderings O

Torus orbifold !

18.9.2020 34

Rotation points only Ex 2222

What is this shape after the boundary identifications ?

Ex: Brick walls/pavements

- 2 rotation points
- Mirror images without a reflection line
- => 22x

Aalto University

What is the orbifold of 22x symmetry?

What shape do you get when you do the identifications on the boundary ?

Aalto University

Real projective plane !

What about xx ?

 Two miracles (mirror images without reflection lines) no rotation points

Aalto University

Klein bottle !

Surfaces via identifying boundary components of polyhedrons

How many different signatures exist for plane patterns?

Assuming Magic Theorem to hold, this is similar question as asking:

How many different ways can I make change for one euro if I can use only 50, 20, 10 and 5 cents?

- Find all blue types
- Find all red types
- Find all hybrids

Blue types (orientation preserving)

Price for one n-fold rotational point is (n-1)/n <1 => need more than two to cost 2 euros:

- 333, 442, 632
- 2222
- Wonder O

What is the orbifold of the given signatures?

Red types without miracles

Observation: If no miracles x then *AB....N corresponds to ABC...N since $1+(A-1)/2A+(B-1)/2B+...+(N-1)/2N = 2 \Leftrightarrow$ (A-1)/A+(B-1)/B+...+(N-1)/N =2

=> Only types *333, *442, *632, *2222

can occur in addition to ** .

What is the orbifold of these?

Hybrids: mixture of blue and red or involve x

Observations :

- switching between n* and *nn does not change the total cost
- replacing x with * -"-
- replacing final * with x -"-
- =>
- cannot be changed into a hybrid: *632
- *442 => 4*2
- *333 => 3*3
- *2222 => 2*22 => 22* => 22x
- ** => *x => xx

Orbifolds of the above?

Conclusions

Only 17 possible signatures = 17 symmetry types for repeating patterns in the plane:

*632	*442	*333	*2222	**
			2*22	*X
	4*2	<mark>3*3</mark>	22*	XX
			22x	
632	442	333	2222	0

Possible orbifolds for planar patterns

Orientable

Sphere (632 442 333 2222)

Torus O

Annulus **

Disk (*632 *442 *333 *2222

2*22 4*2 3*3 22*)

Non-orientable

Projective plane 22x

Klein bottle xx

Möbius band *x

Groupwork with textiles

1) Choose the different patterns in your group as instructed by Laura

- 2) Upload (as a group) to MyCourses by next Tue
- 3) Group Presentations starting on Tue 29th only 5-10(?)min/group

4) Give criteria/justification (either artistic or mathematical) for your choice.

5) For the repeated patterns, find the signature and orbifold if possible (ignore 'mistakes' and minor details in the prints)

Q: How to benefit from the classification in (flat) surface design in practise?

