Shapes in Action

 Sept 18thOrbifolds and topology

Program schedule for Sept $18^{\text {th }}$

13:15 Where are we?
13:30 Orbifolds: How to relate topology to patterns?
14:00 Break
14:15 Magic theorem and its consequences
15:00 Break
15:15 Textile analysis in groups

Where are we?

Goal : Understanding

Signature/Orbifold notation due to
B. Thurston and J.H. Conway (90')

Done so far:

- Basic ideas on planar symmetries, signatures (= unique names for patterns) fundamental domain (= smallest piece in the
 pattern, that together with the boundary instructions determine the whole pattern)
- Some examples that make everybody confused...

A fundamental domain of a pattern with

- Four different, order two, rotation points
- Together with the boundary arrows contain all information that is needed to construct the whole pattern

Signature: 2222

Situation after one rotation wrt the blue rotation point

Look at the situation now at the boundary: Rest of the pattern can be created by continuing rotations wrt to other rotation points OR simply by translating over the green\& red boundary parts (2 consequent rotations generate a translation)

What next?

- Look at the symbols for signatures once more (one symbol was still missing!)
- How many (and which?) symmetries can be present in a same picture

- The Magic theorem will give the answer!

Star *

Star * (in the signature notation) denotes a mirror or kaleidoscopic symmetry $=$ reflection with respect to a line.

Star alone means: there is one (and only one) single line of mirror symmetry.

Pic by Anne Kasterpalu
Finite rosette pattern Signature: 6•

Miracle x

X : between the reflection lines (of the same type) two oppositely oriented patterns that can be connected with a path without crossing the lines

The signature of this pattern Is *x

Wanderings and Wonder-Rings 0

Symmetry that is not explained by mirrors, rotations or miracles

Fundamental domain?

Note again the role of arrows !

Signature
(0)

Four Fundamental Features

Claim:

- wonders O...O,
- rotations AB...C,
- kaleidoscopes *ab...c*de...f... and
- miracles X...X
suffice to describe all repeating patterns of the Euclidean plane. Notational convention: orientation preserving operations first(blue) then orientation reversing (red). Then you need nOt use different colors to distinguish operations.

Every property has its cost (in euros)

Symbol	Price	Symbol	Price
0	2	* or x	1
2	$1 / 2$	2	$1 / 4$
3	$2 / 3$	3	$1 / 3$
4	$3 / 4$	4	$3 / 8$
5	4/5	5	2/5
6	5/6	6	5/12
n	$(\mathrm{n}-1) / \mathrm{n}$	n	$(\mathrm{n}-1) / 2 \mathrm{n}$
n - fold rotation point		n reflection lines	meet at a vertex
Aalto Unive			18.9 .2020 15

The Magic Theorem for plane repeating patterns

The signatures of plane patterns are precisely those with total cost 2 euros.

Ingredients for the proof:

- Local geometrical obstructions
- Global topological obstructions

Be patient! Will take a look of the proof a bit later...

Signature and total price = $\mathbf{2}$ euro
*2222
$1+1 / 4+1 / 4+1 / 4+1 / 4=2$

- Only reflection lines explain the whole symmetry pattern
- Fundamental domain: rectangle with green edges
- Two reflection lines meet in the four different vertices

Signature: 333
Price $2 / 3+2 / 3+2 / 3=2$

- Three different types of (genuine) rotation points of order three (=120 degree rotations)
- No reflection lines
- Fundamental domain:

Parallelogram in the picture that has only two different edges
2.

Signature: 0
Price: 2

- No rotation points
- No reflection lines
- Two different translations generate the whole pattern - Fundamental domain: Highlighted rectangle, that has only two different edges

- For this type of symmetry no unique way to choose a representative for a parallelogram 'spanning' the pattern

Signature 2222
Price: $1 / 2+1 / 2+1 / 2+1 / 2=2$
Fundamental domain:
Rectangle bounded by three types of arrows

- Four different rotation points of order two (=180 degree rotations)
- No reflection lines

4.

Signature: $\mathbf{2}^{*} 22$
Price: $1 / 2+1+1 / 4+1 / 4=2$
Fundamental domain: Triangle Bounded by two reflection line segments and green arrow

- Two types of reflection lines
- One (genuine =not produced by consecutive reflections) rotation point of order two

5.

Signature *x

Price 1+1=2
Fundamental domain:
Rectangle bounded by two different reflection line segments and one type of arrow

- Only one type of reflection line: Two black lines in the picture are the same up to rigid motion
- Between the lines also mirror images that are not caused by a mirror line
=> Blue horizontal arrows cutting the shape have opposite orientation

6.

Perttu Näsänen, 1940-2012

What is the signature of Sik-Sak 1978?

What is the fundamental domain?

Symmetry type 22x

Pic by Tuan Nguyen

22x symmetry

A Aalto University

Pic by Tuan Nguyen

2*22 symmetry

A
Aalto University

Pattern analysis steps

1. Draw all mirror lines (=lines of reflection)
2. Find the fundamental domain of the kaleidoscope
3. How many lines meet on each vertex? => Local symmetries of form *N
4. Find rotationally symmetric points (non-kaleidoscopic)
5. Are there mirror images without mirrors ? Then there must be at least one miracle x.
6. Helpful to look at the price list during the analysis and take the miracle theorem into account
7. If there is only repletion into two directions (nothing from above) then the pattern is 'wandering' O

What kind of fundamental domains we have found so far?

Triangle with no identifications on the boundary (different parts coming from reflection lines)

Topologically (= deformations that do not produce new holes are allowed): Disk orbifold

Combination of rotation points and reflection lines

Ex: 4*2

A

Fundamental domain: A triangle with some identifications on the boundary (red arrows due to the presence of a rotation point in the middle)
What is the topological shape of the piece after the identification (= gluing the red boundary arrows)?

22*

Disk orbifold again ? Are there other types?

Cost of a miracle $(x)=1$ euro

Signature ** Annulus orbifold

$1+1=2 \mathrm{euro}$

Signature *x Möbius band orbifold

1+1=2euro

Wanderings 0

Torus orbifold !

Rotation points only

Ex 2222

What is this shape after the boundary identifications ?

Ex: Brick walls/pavements

- 2 rotation points
- Mirror images without a reflection line
- => 22x

A

What is the orbifold of $22 x$ symmetry?

What shape do you get when you do the identifications on the boundary ?

Real projective plane !

What about $x x$?

- Two miracles (mirror images without reflection lines) no rotation points

A
Aalto University

Klein bottle !

Surfaces via identifying boundary components of polyhedrons

(no boundary after gluing)

(non-empty boundary)

How many different signatures exist for plane patterns?

Assuming Magic Theorem to hold, this is similar question as asking:

How many different ways can I make change for one euro if I can use only $50,20,10$ and 5 cents?

- Find all blue types
- Find all red types
- Find all hybrids

Blue types (orientation preserving)

Price for one n-fold rotational point is $(n-1) / n<1=>$ need more than two to cost 2 euros:

- 333, 442, 632
- 2222
- Wonder O

What is the orbifold of the given signatures?

Red types without miracles

Observation: If no miracles x then *AB....N corresponds to ABC...N since
$1+(\mathrm{A}-1) / 2 \mathrm{~A}+(\mathrm{B}-1) / 2 \mathrm{~B}+\ldots+(\mathrm{N}-1) / 2 \mathrm{~N}=2 \Leftrightarrow$
$(\mathrm{A}-1) / \mathrm{A}+(\mathrm{B}-1) / \mathrm{B}+\ldots+(\mathrm{N}-1) / \mathrm{N}=2$
=> Only types *333, *442, *632, *2222
can occur in addition to ** .

What is the orbifold of these?

Hybrids: mixture of blue and red or involve x

Observations :

- switching between n^{*} and *nn does not change the total cost
- replacing x with *
- replacing final * with x
- $=>$
- cannot be changed into a hybrid: *632
- *442 => $4 * 2$
- *333 => $3 * 3$
- *2222 => 2*22 => 22* => 22x
- ** => *x => xx

Orbifolds of the above?
A

Conclusions

Only 17 possible signatures = 17 symmetry types for repeating patterns in the plane:

$* 632$	${ }^{*} 442$	${ }^{*} 333$	${ }^{*} 2222$	${ }^{* *}$
			$2^{*} 22$	${ }^{*} \mathrm{x}$
	$4^{*} 2$	$3^{*} 3$	2^{*}	xx
			$22 x$	
632	442	333	2222	0

Possible orbifolds for planar patterns

Orientable

Non-orientable

Sphere (6324423332222)
Torus O
Projective plane 22x
Annulus **
Disk (*632 *442 *333 *2222
2*22 4*2 3*3 22*) Möbius band *x

Groupwork with textiles

1) Choose the different patterns in your group as instructed by Laura
2) Upload (as a group) to MyCourses by next Tue
3) Group Presentations starting on Tue 29th only 510(?)min/group
4) Give criteria/justification (either artistic or mathematical) for your choice.
5) For the repeated patterns, find the signature and orbifold if possible (ignore 'mistakes' and minor details in the prints)

Q: How to benefit from the classification in (flat) surface design in practise?

