LECTURE 3: SYMMETRY - Greek "symmetrein" (= commensurate, yhteismitallinen) - Symmetry elements & operations - Molecular symmetry - Point groups # **SYMMETRY** - Some people see beauty in symmetry, some in asymmetry - Symmetry is also common in nature ### **MOLECULAR SYMMETRY** Important for understanding/explaining/classification - Molecule structures - **Crystal structures** - **Quantum chemistry** - Spectroscopy (IR, Raman) - Material properties, e.g. piezoelectricity ### SYMMETRY OPERATION Operation that generates the same representation of an object (molecule) ### SYMMETRY ELEMENT Each symmetry operation has a corresponding symmetry element (point, axis, plane) about which the operation takes place # MOLECULAR SYMMETRY Operations & Elements (historical Schönflies notation; used also in spectroscopy) ### Molecular symmetry: at least one point remains unchanged - Identity (E; German Einheit): No change; every molecule has E - Rotation axis (C_n): Rotation by 360°/n (n = 1, 2, 3, ...) about an axis, which leaves the molecule unchanged - Symmetry or mirror plane (σ): Plane through which reflection leaves the molecule unchanged: σ_{x} : vertical mirror plane (in relation to rotation axis) σ_h : horisontal mirror plane (in relation to rotation axis) - Center of symmetry (i): center through which inversion leaves the molecule unchanged - Improper rotation (or rotary-reflection) axis (S_n): Rotation about an axis by 360°/n, followed by reflection in a plane perpendicular to the axis. Note: $S_1 = \sigma$; $S_2 = i$ Proper: Can be actually done on a molecule: E, C_n Improper: Can be only imagined, not done: σ , I, S_n (drastic chemical bond rearrangements) # Rotary-reflection: CH₄ H_2O BF₃ CH_4 Ethane (staggered): CH₃-CH₃ # **POINT GROUP** - Summarizes all the symmetry operations that can be performed on a certain molecule - Describes unambiguously the symmetry of the molecule - In principle there are infinite number of space groups (combinations of symmetry elements); in practice ca. 40 different point groups are enough to classify all the known molecules - Point groups are named: C_2 , C_{2v} , D_{3h} , O_h , T_d ... (Schönflies) # **Point Groups** Every molecule has a set of symmetry elements. This set is called the Point Group of the molecule. | Nonaxial | C_n | Cnv | Cnh | $\mathbf{D_n}$ | $\mathbf{D_{nh}}$ | Dnd | S_n | Higher | Linear | |----------|----------------|-------------------|-----------------|----------------|-------------------|-----------------|-----------------|--------|----------------| | C_1 | C ₂ | C_{2v} | C _{2h} | D_2 | D _{2h} | D _{2d} | S4 | Td | $C_{\infty v}$ | | Cs | C ₃ | C_{3v} | C _{3h} | D_3 | D _{3h} | D _{3d} | S ₆ | Oh | $D_{\infty h}$ | | C_i | C ₄ | C_{4v} | C _{4h} | D_4 | D _{4h} | D _{4d} | S ₈ | Ih | | | | C ₅ | C _{5v} | C _{5h} | D_5 | D _{5h} | D_{5d} | S ₁₀ | | | | | C ₆ | C_{6v} | C _{6h} | D_6 | D _{6h} | D _{6d} | | | | Character table for D_{3h} point group | | E | 2C3 | 3C'2 | σh | 2S ₃ | 3σ _γ | linear,
rotations | quadratic | |--|---|-----|------|----|-----------------|-----------------|----------------------|-----------| |--|---|-----|------|----|-----------------|-----------------|----------------------|-----------| http://www.webqc.org/symmetry.php # **Finding the POINT GROUP:** There are a number of routes or so-called symmetry trees; here are some examples ### **EXAMPLES** #### **HCI** ∞ -fold rotation axis along the H-Cl bond, but no inversion center $\rightarrow C_{\infty v}$ ### BFCIBr (planar, B in a middle of triangle) Only symmetry plane (where the atoms are) \rightarrow C_s ### trans-N₂O₂²⁻ (planar) One C_2 rotation axis perpendicular to the plane where the atoms are, no S_4 rotary-reflection axis, but horizontal symmetry plane $\rightarrow C_{2h}$ ### CH₄ (tetraedric) Four C_3 rotation axes, no inversion center, six symmetry planes $\rightarrow T_d$ ### S₈ One C_4 and four C_2 rotation axes perpendicular to C_4 , no horizontal symmetry plane, but four vertical symmetry planes $\rightarrow D_{4d}$