LECTURE 3: SYMMETRY

- Greek "symmetrein" (= commensurate, yhteismitallinen)
- Symmetry elements & operations
- Molecular symmetry
- Point groups

SYMMETRY

- Some people see beauty in symmetry, some in asymmetry
- Symmetry is also common in nature

MOLECULAR SYMMETRY

Important for understanding/explaining/classification

- Molecule structures
- **Crystal structures**
- **Quantum chemistry**
- Spectroscopy (IR, Raman)
- Material properties, e.g. piezoelectricity

SYMMETRY OPERATION

Operation that generates the same representation of an object (molecule)

SYMMETRY ELEMENT

Each symmetry operation has a corresponding symmetry element (point, axis, plane) about which the operation takes place

MOLECULAR SYMMETRY Operations & Elements

(historical Schönflies notation; used also in spectroscopy)

Molecular symmetry: at least one point remains unchanged

- Identity (E; German Einheit): No change; every molecule has E
- Rotation axis (C_n): Rotation by 360°/n (n = 1, 2, 3, ...) about an axis, which leaves the molecule unchanged
- Symmetry or mirror plane (σ): Plane through which reflection leaves the molecule unchanged:

 σ_{x} : vertical mirror plane (in relation to rotation axis)

 σ_h : horisontal mirror plane (in relation to rotation axis)

- Center of symmetry (i): center through which inversion leaves the molecule unchanged
- Improper rotation (or rotary-reflection) axis (S_n): Rotation about an axis by 360°/n, followed by reflection in a plane perpendicular to the axis.

Note: $S_1 = \sigma$; $S_2 = i$

Proper: Can be actually done on a molecule: E, C_n

Improper: Can be only imagined, not done: σ , I, S_n

(drastic chemical bond rearrangements)

Rotary-reflection: CH₄

 H_2O

BF₃

 CH_4

Ethane (staggered): CH₃-CH₃

POINT GROUP

- Summarizes all the symmetry operations that can be performed on a certain molecule
- Describes unambiguously the symmetry of the molecule
- In principle there are infinite number of space groups (combinations of symmetry elements); in practice ca. 40 different point groups are enough to classify all the known molecules
- Point groups are named: C_2 , C_{2v} , D_{3h} , O_h , T_d ... (Schönflies)

Point Groups

Every molecule has a set of symmetry elements. This set is called the Point Group of the molecule.

Nonaxial	C_n	Cnv	Cnh	$\mathbf{D_n}$	$\mathbf{D_{nh}}$	Dnd	S_n	Higher	Linear
C_1	C ₂	C_{2v}	C _{2h}	D_2	D _{2h}	D _{2d}	S4	Td	$C_{\infty v}$
Cs	C ₃	C_{3v}	C _{3h}	D_3	D _{3h}	D _{3d}	S ₆	Oh	$D_{\infty h}$
C_i	C ₄	C_{4v}	C _{4h}	D_4	D _{4h}	D _{4d}	S ₈	Ih	
	C ₅	C _{5v}	C _{5h}	D_5	D _{5h}	D_{5d}	S ₁₀		
	C ₆	C_{6v}	C _{6h}	D_6	D _{6h}	D _{6d}			

Character table for D_{3h} point group

	E	2C3	3C'2	σh	2S ₃	3σ _γ	linear, rotations	quadratic
--	---	-----	------	----	-----------------	-----------------	----------------------	-----------

http://www.webqc.org/symmetry.php

Finding the POINT GROUP:

There are a number of routes or so-called symmetry trees; here are some examples

EXAMPLES

HCI

 ∞ -fold rotation axis along the H-Cl bond, but no inversion center $\rightarrow C_{\infty v}$

BFCIBr (planar, B in a middle of triangle)

Only symmetry plane (where the atoms are) \rightarrow C_s

trans-N₂O₂²⁻ (planar)

One C_2 rotation axis perpendicular to the plane where the atoms are, no S_4 rotary-reflection axis, but horizontal symmetry plane $\rightarrow C_{2h}$

CH₄ (tetraedric)

Four C_3 rotation axes, no inversion center, six symmetry planes $\rightarrow T_d$

S₈

One C_4 and four C_2 rotation axes perpendicular to C_4 , no horizontal symmetry plane, but four vertical symmetry planes $\rightarrow D_{4d}$

