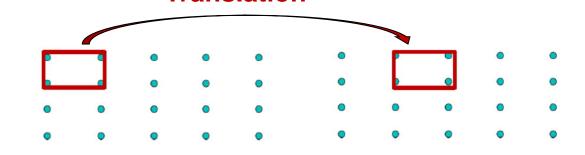
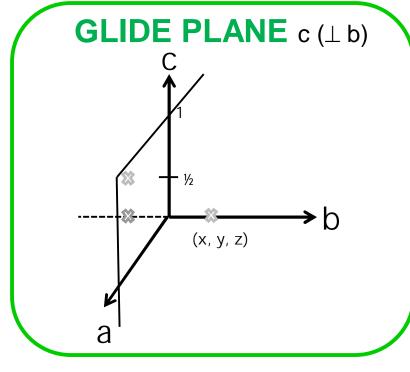
LECTURE 4: CRYSTALLOGRAPHY BASICS

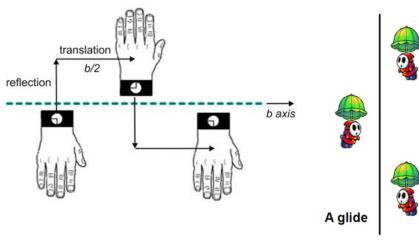
- From molecules to 3D crystals
- Translation in 3D crystals → new symmetry operations (glide planes & screw axes)
- From point groups to space groups
- Crystal lattice, lattice points & unit cell
- International Tables of Crystallography

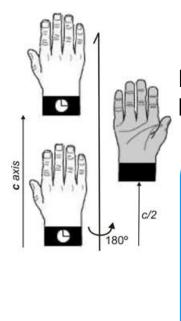
FROM MOLECULES TO CRYSTALS

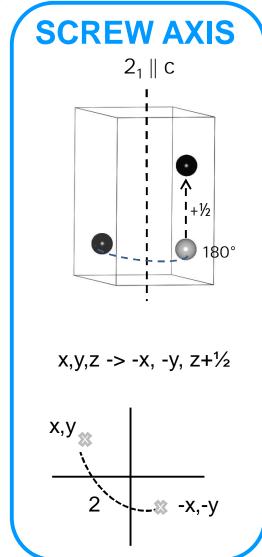

There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: **Space-filling & Translation**


Space-filling

- Macroscopic crystals need to cntinuosly fill the space → 5-cubes can not satisfy this (except in quasicrystals)
- For molecules 5-fold rotation is possible, but not for crystals


Translation in crystals


- Translation: move from one point to another (the entire object)
- This does not exist in molecules, but is the essence of macroscopic crystals exhibiting long-range order
- Combining translation with other symmetry operations/elements → new symmetry operations/elements (not included in point groups): glide planes & screw axes
 Translation



Reflection (m) through ac-plane, followed by (half) translation (t) along c-axis

Rotation (c) followed by translation (t)

In infinite lattice there are additional translation symmetry elements:

Translation

Translation (move) from one point to another point

Screw axis

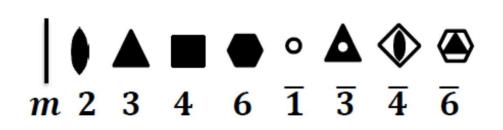
Rotation plus translation

 n_m (2₁, 3₁, 3₂, 4₁, 4₂, 4₃, 6₁, 6₂, 6₃, 6₄, 6₅) For example: 2₁: rotation 180° and translation $\frac{1}{2}(m/n)$

Glide plane

Reflection against a mirror plane plus (half) translation parallel to the plane

Axis glide plane: Diagonal glide plane: a, b, c (siirrot $\frac{1}{2}a$, $\frac{1}{2}b$, $\frac{1}{2}c$ kuhunkin liukutason suuntaan) n [$\frac{1}{2}(a+b)$, $\frac{1}{2}(b+c)$, $\frac{1}{2}(c+a)$] d [$\frac{1}{4}(a+b)$, $\frac{1}{4}(b+c)$, $\frac{1}{4}(c+a)$] (so-called diamond glide plane)


(from historical reasons) DIFFERENT SYMMETRY SYMBOLS

Schoenflies (S) symbols

- were developed first
- in molecular symmetry & spectroscopy

Hermann-Mauguin (HM) symbols

- in crystallography
- long and short forms
- Graphical symbols

System	Point group s		Symmetry elements	Number	
	S	H/M		opera- tions	
Triclinic	$\begin{matrix} C_1 \\ C_i = S_2 \end{matrix}$	$\frac{1}{1}$	$I = C_1$ $I, i(=S_2)$	1 2	
Monoclinic	$\begin{matrix} C_2 \\ C_S \!=\! C_{1k} \!=\! C_{1v} \\ C_{2k} \end{matrix}$	2 m 2/m	I, C_2 I, σ I, C_2, σ_h, i	2 2 4	
Orthorhombic	$C_{2v} \\ D_2 \\ D_{2h}$	mm2 222 mmm	$ \begin{matrix} I, \ C_2, \ 2\sigma \\ I, \ 3C_2 \\ I, \ 3C_2, \ 3\sigma, \ i \end{matrix} $	4 4 8	
Tetragonal	$\begin{array}{c} C_4 \\ S_4 \\ D_4 \\ C_{4v} \\ C_{4k} \\ D_{2d} \\ D_{4k} \end{array}$	4 422 4mm 4/m 42m 4/mmm	$\begin{array}{l} I, C_4 \\ I, S_4 (=C_2) \\ I, C_4 (=C_2), 2C_2', 2C_2' \\ I, C_4, 2\sigma_v, 2\sigma_d \\ I, C_4 (=S_4), \sigma_k, i \\ I, S_4 (=C_2), 2C_2', 2\sigma_d \\ I, C_4 (=S_4), 2C_2', 2C_2', \\ 2\sigma_v, 2\sigma_d, i \end{array}$	4 4 8 8 8 8 8	
Trigonal	$C_3 \\ C_{3i} = S_6 \\ D_3 \\ C_{3v} \\ D_{3d}$	3 33 32 3m 3m	I, C_3 $I, S_6 (= C_3), i$ $I, C_3, 3C_2$ $I, C_3, 3\sigma_0$ $I, S_6 (= C_3), 3C_2, 3\sigma_d, i$	3 6 6 6 12	
Hexagonal	$C_6 \\ C_{3h} \\ D_6 \\ D_{3h} \\ C_{6h} \\ C_{6s} \\ D_{6k}$	6 622 6m2 6/m 6/mm 6/mmm	$ \begin{array}{l} I, \ C_6 \\ I, \ S_3 \ (= \ C_3), \ \sigma_k \\ I, \ C_6, \ 3C'_2, \ 3C''_2 \\ I, \ C_3 \ (= \ S_3), \ 3C_2, \ 3\sigma_v, \ \sigma_k \\ I, \ C_6 \ (= \ S_6), \ \sigma_k, \ i \\ I, \ C_6 \ (= \ S_6), \ 3C'_2, \ 3C''_2, \ 3\sigma_v, \ 3\sigma_d, \ \sigma_k, \ i \end{array} $	6 6 12 12 12 12 12 12 24	
Cubic	T T _k T _d O O _h	23 m3 43m 432 m3m	$\begin{array}{l} I, 3C_2, 4C_3 \\ I, 3C_2, 4C_3 (=S_6), 3\sigma_k, i \\ I, 3C_2 (=S_4), 4C_3, 6\sigma_d \\ I, 3C_2, 4C_3, 3C_4 \\ I, 3C_2, 4C_3 (=S_6), \\ 3C_4 (=S_4), 3\sigma_k, 6\sigma_d, i \end{array}$	12 24 24 24 24 48	

able 1.1 Symmetry elements of crystal point groups

Symmetry elements (Schönflies/Hermann-Mauguin)

Identity **E**

Symmetry/inversion center i/1Rotation axis $C_n/1, 2, 3, ...$ Reflection/mirror plane σ/m Improper rotation axis $S_n/(1, 2), 3, 4, 6$

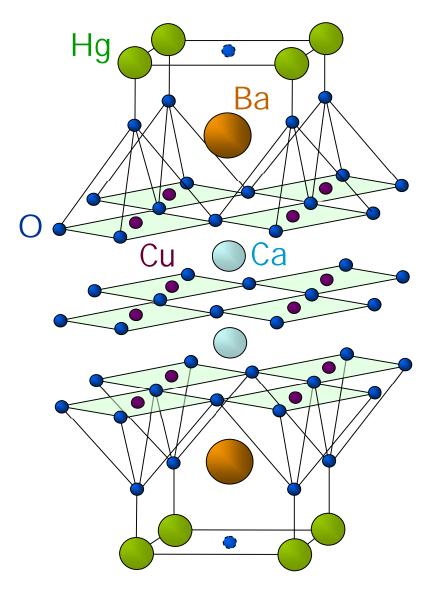
One point remains unchanged

Point/Molecular symmetry

NOTE:

- Inproper rotation axis 1 and inversion center 1 are equivalent
- Mirror plane m and inproper rotation axis $\overline{2}$ are equivalent

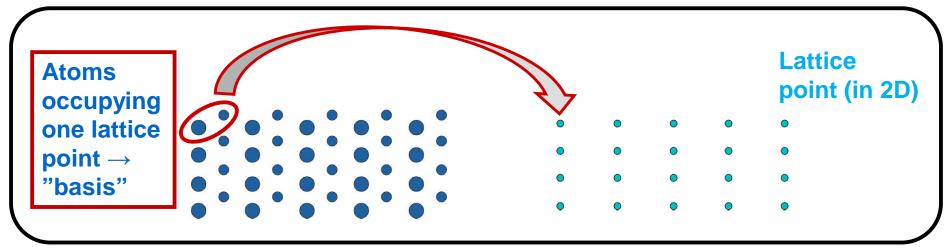
WHAT WE LIKE TO KNOW ABOUT THE CRYSTAL STRUCTURE


CRYSTALLOGRAPHY

- symmetry
- unit cell
- Iattice parameters
- number of formula units in unit cell
- space group
- etc.

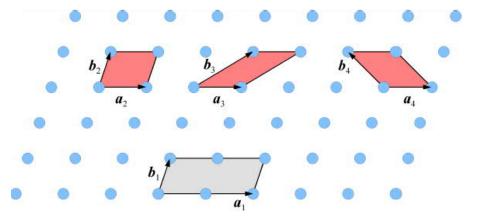
CRYSTAL CHEMISTRY

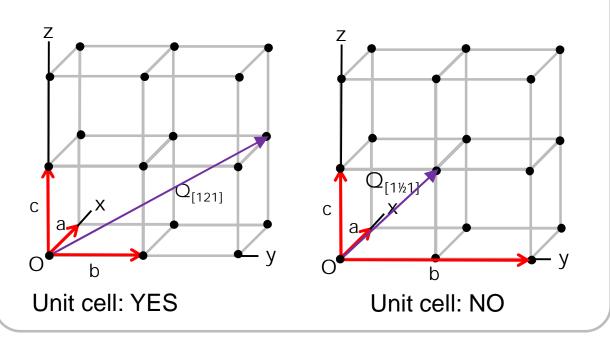
- coordination numbers
- coordination polyhedra
- bond lengths/angles
- occupation factors
- etc.


Discussed in Lecture 2!

HgBa₂Ca₂Cu₃O_{9-δ}

CRYSTAL LATTICE


- Regular (infinite 3D) arrangement of lattice points
- Lattice point: consists of one or more atoms (= basis)
- Each lattice point has identical environment + symmetry properties (point group)


UNIT CELL

- Smallest possible microscopic 3D part of the crystal lattice that repeats itself periodically and completely fills the lattice volume, and is enough to describe the lattice perfectly
- Choice of the unit cell not always unambicious: several possible choices

Choices of unit cell (in 2D)

Each lattice point should be able to be described with the vector $Q_{[uvw]} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$, where u, v and w all are integer values

What we need to tell about the UNIT CELL

• Shape & size of the unit cell *plus* the atomic positions in the unit cell

να

- Shape & size are given by:
 - Lattice parameters: a, b ja c
 - Angles between the axes: α , β ja γ

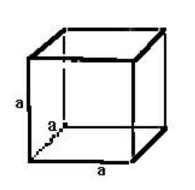
CLASSIFICATIONS

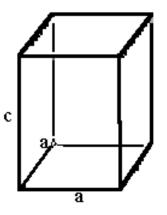
 "Macroscopic shape of the crystal" → Point group for the lattice → 7 CRYSTAL SYSTEMS (can fill the space without holes; no information of the lattice points/atoms)

CRYSTAL SYSTEM & LATTICE POINTS (historical importance)

- Combination of crystal system and lattice type \rightarrow 14 Bravais lattices
- Lattice type: positions of <u>lattice points</u> (≠ atoms) within the cell considered: primitive (P), body-centered (I), face-centered (F), base-centered (A/B/C), rhombohedral (R)

CRYSTAL SYSTEM & SYMMETRY (most important in crystallography)

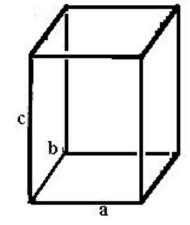

Possible combinations of point symmetry elements (which leave one point fixed) → 32 (geometric) cystal classes → describe completely the symmetry of macroscopic crystals


There are an infinite number of **three**-dimensional point groups, but the crystallographic restriction results in there being only **32** crystallographic point groups.

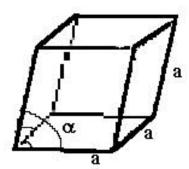
- Considering also the translational symmetry operations in 3D
 - \rightarrow 230 space groups

CRYSTAL SYSTEMS (7)

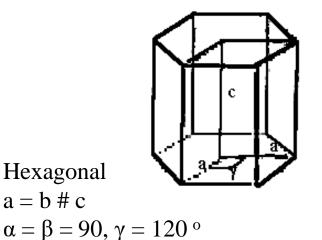
No information of the positions of atoms


Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$ NaCl, MgAl₂O₄

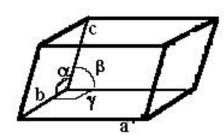
Hexagonal


a = b # c

LiNbO₃

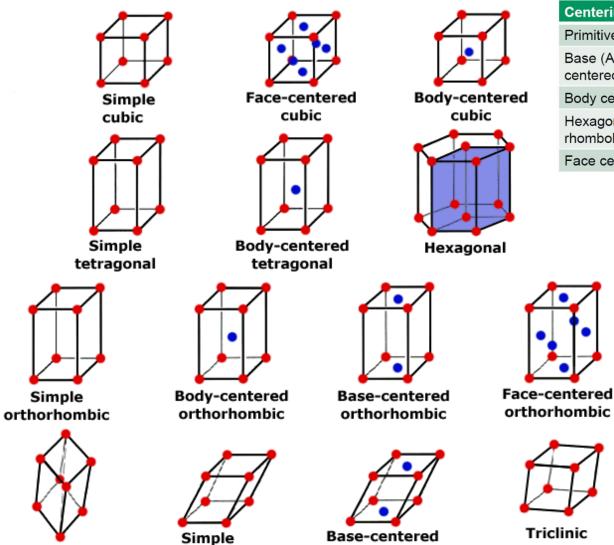

Tetragonal a = b # c $\alpha = \beta = \gamma = 90^{\circ}$ TiO_2 , K_2NiF_4

Orthorhombic a # b # c $\alpha = \beta = \gamma = 90^{\circ}$ YBa₂Cu₃O₇



Rhombohedral a = b = c $\alpha = \beta = \gamma \# 90^{\circ}$ BaTiO₃ (low-T)

Monoclinic a # b # c $\alpha = \gamma = 90^{\circ}, \beta \# 90^{\circ}$ KH₂PO₄



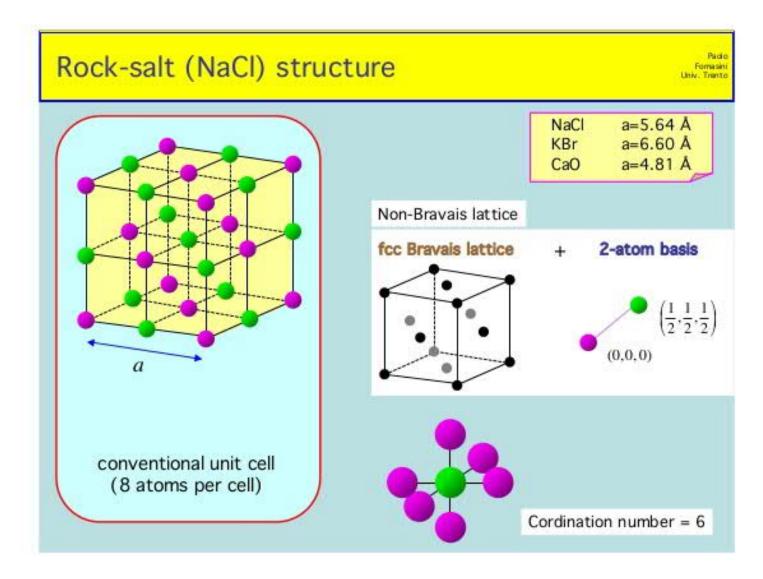
Triclinic a # b # c $\alpha \# \beta \# \gamma \# 90^{\circ}$

Element	What it does	Possible in crystal system
Identity (1)	-	All
Inversion $(\overline{1})$	Inversion	All
Mirror plane (m)	Mirror	All but triclinic
2- fold rotation (2)	Rotate 180°	All but triclinic
3-fold rotation (3)	Rotate 120°	Trigonal, Hexagonal and Cubic
4-fold Rotation (4)	Rotate 90°	Tetragonal and Cubic
6-fold Rotation (6)	Rotate 60°	Hexagonal

BRAVAIS LATTICES (14)

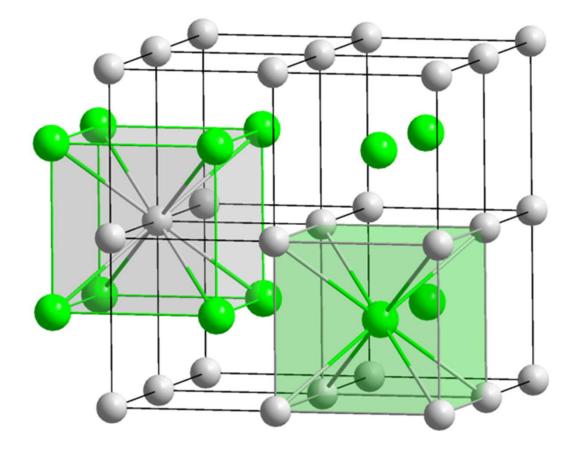
Positions of lattice sites (not atoms) included

Rhombohedral


Monoclinic

monoclinic

Centering	Lattice points/cell	Abbreviation
Primitive	1	Р
Base (A,B, or C) centered	2	A,B or C
Body centered	2	L
Hexagonal rhombohedral	3	hR
Face centered	4	F


EXAMPLE

What is the Bravais lattice type of NaCI: Cubic F (basis: Na-CI)

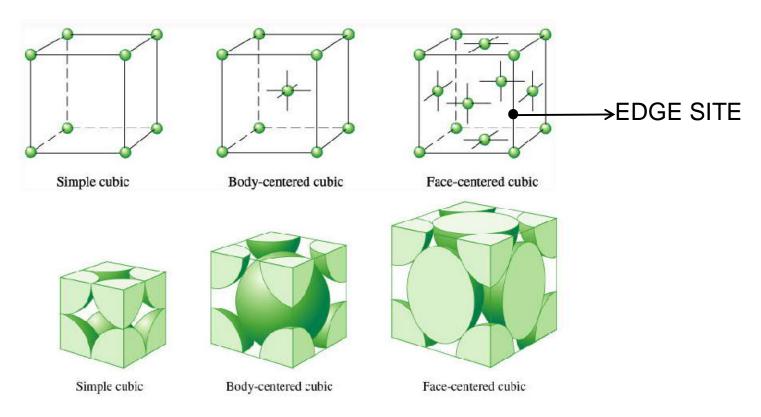
EXAMPLE

What is the Bravais lattice type of CsCI: Cubic P (basis: Cs-Cl)

CRYSTAL CLASSES (32)

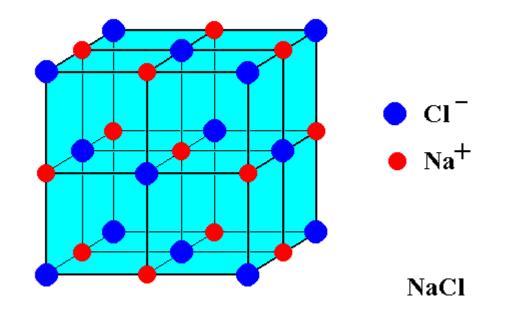
The 32 Point Groups								
1	4	3	6mm					
1	$\overline{4}$	32	$\overline{6}m2$					
2	4/m	3m	6/mmm					
m	422	$\overline{3}m$	23					
2/m	4mm	6	$m\overline{3}$					
222	$\overline{4}2m$	6	432					
mm2	4/mmm	6/m	$\overline{4}3m$					
mmm	3	622	$m\overline{3}m$					

The 32 Point Groups (Schoenflies)									
1 (C ₁)	4 (C ₄)	3 (C _{3i})	6mm (C _{6σν})						
$\bar{1} (C_i = S_2)$	$\overline{4}$ (S ₄)	32 (D ₃)	$\overline{6}m2$ (D _{3oh})						
2 (C ₂)	4/m (C _{4σh})	3m (C _{3σν})	6/mmm (D _{6oh})						
m (C _σ)	422 (D ₄)	$\overline{3}m$ (D _{3d})	23 (T)						
2/m (C _{2σh})	4mm (C _{4σν})	6 (C ₆)	$m\overline{3}$ (T _h)						
222 (D ₂)	$\overline{4}2m$ (D _{2d})	6 (C _{3σh})	432 (O)						
2mm (C _{2σv})	4/mmm (D _{4h})	6/m (C _{6σh})	$\overline{4}3m~(T_{d})$						
mmm (D _{2σh})	3 (C ₃)	622 (D ₆)	$m\overline{3}m$ (O _h)						


Crystal System	# of Point Groups	# of Crystal Lattices		
Cubic	5	3		
Tetragonal	7	2		
Orthorhombic	3	4		
Monoclinic	3	2		
Triclinic	2	1		
Hexagonal	7	1		
Trigonal	5	1		
Totals	32	14		

System	Minimum Requirements
Cubic	Four 3-fold rotation axis
Tetragonal	One 4-fold rotation (or RI) axis
Orthorhombic	Three perpendicular 2-fold axis
Rhombohedral	One 3-fold rotation (or RI) axis
Hexagonal	One 6 fold rotation (or RI) axis
Monoclinic	One 2 fold rotation axis or mirror plane
Triclinic	none

System	Point groups
Cubic	23 , $m\overline{3}$, 432 , $\overline{4}3m$, $m\overline{3}m$
Tetragonal	4, $\overline{4}$, 4/m, 422, 4mm, $\overline{4}2m$, 4/mmm
Orthorhombic	222, 2mm, mmm
Trigonal	3 , 3̄, 32 , 3 m, 3̄ <i>m</i>
Hexagonal	6, $\overline{6}$, 6/m, 622, 6mm, $\overline{6}m2$, 6/mmm
Monoclinic	2, m, 2/m
Triclinic	1, 1


NUMBER of FORMULA UNITS in UNIT CELL (Z)

- typically 1 6, but can be tens or even hundreds
- atom inside unit cell: belongs only to one unit cell
- atom on unit cell face: belongs to two unit cells
- atom on unit cell edge: belongs to four unit cells
- atom on unit cell corner: belongs to eight unit cells

EXAMPLE

- How many NaCl formula units in unit cell?
- Answer: 4

SPACE GROUPS

- From finite molecule (or macroscopic crystal) to infinite lattice → translation symmetry must be included
- Possible combinations of symmetry elements (including the translation symmetry elements): 230
 → 230 space groups
- Space groups (and the characteristic information in 2 pages) are listed in International Tables for Crystallography
 BIBLE of CRYSTALLOGRAPHY
- Next-next slide: Space Group P4/mmm as an example

https://it.iucr.org/

Triclinic					Tetragonal									
	(For the	enlarged unit cells, cl	ick here)			(For the enlarged	C- and F-centred unit	cells, click <u>here</u>)						
1. <u>P 1</u>	2. <u>P -1</u>				75. <u>P 4</u>	76. <u>P 41</u>	77. <u>P 4</u> 2	78. <u>P 4</u> 3	79. <u>/ 4</u>			n		
		Monoclinio	6		80. <u>74</u>	81. <u>P-4</u>	82. <u>/ -4</u>	83. <u>P.4 / m</u>	84. <u>P 4₂ / m</u>			Hexagonal		
(For a ful	ller list with alternative	unique axes, origins,	or enlarged unit cells	lick here)	85. <u>P 4 / n</u>	86. <u>P 42 / 11</u>	87. <u>I 4 / m</u>	88. <u>[41/a</u>	89. <u>P 4 2 2</u>	168. <u>P 6</u>	169. <u>P 61</u>	170. <u>P 65</u>	171. <u>P 6</u> 2	172. <u>P 64</u>
3. P 1 2 1	4. <u>P12i1</u>	5. <u>C121</u>	6. P 1 m 1	7. P1c1	90. <u>P 4 2₁ 2</u>	91. <u>P 41 2 2</u>	92. <u>P 4₁ 2₁ 2</u>	93. <u>P 4₂ 2 2</u>	94. <u>P 4₂ 2₁ 2</u>	173. <u>P 63</u>	174. <u>P -6</u>	175. <u>P 6 / m</u>	176. <u>P 63 / m</u>	177. <u>P 6 2 2</u>
8. C 1 m 1	9. C1 c1	10. P 1 2 / m 1	$11.P12_1/m1$	12. C12/m1	95. <u>P 4x 2 2</u>	96. <u>P 4₃ 2₁ 2</u>	97. <u>1422</u>	98. <u>74122</u>	99. <u>P 4 m m</u>	178. <u>P 61 2 2</u>	179. <u>P 65 2 2</u>	180. <u>P 62 2 2</u>	181. <u>P 64 2 2</u>	182. <u>P 61 2 2</u>
13. P12/c1	14. P 1 21/c1	15. C12/c1			100. <u>P 4 b m</u>	101. <u>P 4₂ c m</u>	102. <u>P 4₂ n m</u>	103. <u>P4cc</u>	104. <u>P 4 n c</u>	183. <u>P 6 m m</u>	184. <u>P 6 c c</u>	185. <u>P 63 c m</u>	186. <u>P 63 m c</u>	187. <u>P-6 m 2</u>
					105. <u>P 42 m c</u>	106. <u>P 42 è c</u>	107. <u>I 4 m m</u>	108. <u>I 4 c m</u>	109. <u>I 41 m d</u>	188. <u>P-6 c 2</u>	189. <u>P =6 2 m</u>	190. <u>P -6 2 c</u>	191. P6/mmm	192. P6/mcc
	Orthorhombic				110. 141 cd	111. <u>P -4 2 m</u>	112. <u>P -4 2 c</u>	113. <u>P-4 21 m</u>	114. <u>P -4 21 c</u>	193. <u>P 63 / m c m</u>	194. <u>P 63 / m m c</u>			
	(For a fuller list wi	th alternative axes and	origins click here)		115. <u>P -4 m 2</u>	116. <u>P-4 c 2</u>	117. <u>P -4 b 2</u>	118. <u>P -4 n 2</u>	119. <u>I -4 m 2</u>			Call		
16. <u>P 2 2 2</u>	17. <u>P 2 2 21</u>	18. <u>P 2₁ 2₁ 2</u>	19. <u>P212121</u>	20. <u>C 2 2 2 1</u>	120. <u>I -4 c 2</u>	121. <u>I =4 2 m</u>	122. <u>I -4 2 d</u>	123. <u>P 4 / m m m</u>	124. <u>P 4 / m c c</u>			Cubic		
21. C 2 2 2	22. <u>F 2 2 2</u>	23. <u>12 2 2</u>	24. 121 21 21	25. <u>Pmm2</u>	125. <u>P 4 / n b m</u>	126. <u>P 4 / n n c</u>	127. <u>P 4 / m b m</u>	128. <u>P 4 / m n c</u>	129. <u>P 4 / n m m</u>	195. <u>P 2 3</u>	196. <u>F 2 3</u>	197. <u>7 2 3</u>	198. <u>P 2₁ 3</u>	199. <u>12₁ 3</u>
26. Pmc21	27. Pcc2	28. Pma2	29. Pc a 21	30. Pnc2	130. <u>P4/ncc</u>	131. <u>P 4₂ / m m c</u>	132. <u>P 4₂ / m c m</u>	133. <u>P 4₂ / n b c</u>	134. <u>P 4₂ / n n m</u>	200. <u>Pm-3</u>	201. <u>P n -3</u>	202. <u>F m -3</u>	203. <u>F d -3</u>	204. <u>Im-3</u>
31. Pmn 21	32. <u>Pba2</u>	33. <u>P n a 21</u>	34. Pn n 2	35. <u>Cmm2</u>	135. <u>P 42 / m b c</u>	136. <u>P 4₂ / m n m</u>	137. <u>P 4₂ / n m c</u>	138. <u>P 4₂ / n c m</u>	139. <u>I 4 / m m m</u>	205. <u>Pa-3</u>	206. <u>I a -3</u>	207. <u>P 4 3 2</u>	208. <u>P 4₂ 3 2</u>	209. <u>F 4 3 2</u>
36. Cm c 21	37. Ccc2	38. <u>Amm 2</u>	39. A b m 2	40. <u>A m a 2</u>	140. <u>[4/mcm</u>	141. <u>I 4₁ / am d</u>	142. [41/acd			210. <u>F 41 3 2</u>	211. 7432	212. <u>P 43 3 2</u>	213. <u>P 4₁ 3 2</u>	214. <u>/ 4₁ 3 2</u>
41. Aba2	42. Fmm2	43. Fdd2	44. Im m 2	45.[ba2			Trigonal			215. P-43 m	216. F -4 3 m	217. <u>I -4 3 m</u>	218. P-4 3 n	219. F-4 3 c
46. <u>1 m a 2</u>	47. Pmmm	48. P n n n	49. Pccm	50. Phan	(For the R-cen	tred cells with hexago	nal axes and the larger	H-centred trigonal ce	lls, click here)	220.1-43d	221. P m -3 m	222. P n - 3 n	223. Pm-3 n	224. Pn-3 m
51. Pmma	52. Pnna	53. Pmna	54. P c c a	55. Pbam	143. <u>P 3</u>	144. <u>P 3</u> 1	145. <u>P 32</u>	146. <u>R 3</u>	147. <u>P - 3</u>	225. Fm -3 m	226. F m -3 c	227. F d -3 m	228. Fd-3 c	229. Im -3 m
56. <u>Pccn</u>	57. <u>Pbcm</u>	58. <u>P n n m</u>	59. <u>P m m n</u>	60. <u>Pbcn</u>	148. <u>R - 3</u>	149. <u>P 3 1 2</u>	150. <u>P 3 2 1</u>	151. <u>P 31 1 2</u>	152. <u>P 31 2 1</u>	230. 1 a -3 d				
61. <u>Pbca</u>	62. <u>P n m a</u>	63. <u>Cmcm</u>	64. <u>Cmea</u>	65. <u>Cmmm</u>	153. <u>P 3₂ 1 2</u>	154. <u>P 3₂ 2 1</u>	155. <u>R 3 2</u>	156. <u>P 3 m 1</u>	157. <u>P 3 1 m</u>					
66. <u>C c c m</u>	67. Cmma	68. <u>C c c a</u>	69. F m m m	70. <u>F d d d</u>	158. <u>P 3 c 1</u>	159. <u>P 3 1 c</u>	160. <u>R 3 m</u>	161. <u>R 3 c</u>	162. <u>P +3 1 m</u>					
71. <u>I m m m</u>	72. <u>I b a m</u>	73. <u>Ibca</u>	74. [m m a		163. <u>P -3 1 c</u>	164. <u>P -3 m 1</u>	165. <u>P-3 c 1</u>	166. <u>R -3 m</u>	167. <u>R -3 с</u>					
														2.121

From: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

All space group diagrams and tables online: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

P 4/m m m	D_{4h}^1	4/m m m	Tetragonal	CONTINUED
No. 123	P 4/m 2/m 2/m	Datterson cum	ametry P4/mmm	C
110. 125	1 4/11 2/11 2/11	Patterson syn	unerty P 4/m m m	Generators sele
				Positions
1994 1994 1994				Mudtiplicity, Wychoff Jener, Sile symmetry
+QQ-	- California -	X X		16 ar 1 (
	2	\times		(1:
øą.	·			8 i .m.
-960	· · · · · · · · · · · · · · · · · · ·			8 s.m.
Origin at centre (4/mmm)				8 rm
	$0 \le y \le \frac{1}{2}; 0 \le z \le \frac{1}{2}; x \le y$			
Symmetry operations				8 <i>q</i> m
(1) 1 (2) 2 0 (5) 2 0, y, 0 (6) 2 x (9) 1 0, 0, 0 (10) m 2		(4) 4 ⁻ 0,0,z (8) 2 x, π ,0 (12) 4 ⁻ 0,0,z; 0,0,0		8 p m
(13) m x,0,z (14) m (0.y.z (15) m x,x,z	(16) m x,x,z		4 o m 2m .
				4 n m 2m.
				4 m m 2m.
				4 I m 2m .
				4 k m.2m
				4 j m.2m
Maximal non-isomorphic sub	217 1.01 Par			4 <i>i</i> 2mm.
I [2]P422	1; 2; 3; 4; 5; 6; 7; 8			2 h 4mm
[2]P4/m11(P4/m) [2]P4mm	1; 2; 3; 4; 9; 10; 11; 12 1; 2; 3; 4; 13; 14; 15; 16			2 g 4mm
[2]P 4 2m [2]P 4m 2	1; 2; 5; 6; 11; 12; 15; 16 1; 2; 7; 8; 11; 12; 13; 14			2 f mmm.
[2]P2/m2/m1(Pmmm) [2]P2/m12/m(Cmmm)	1; 2; 5; 6; 9; 10; 13; 14			2 e mmm.
IIa none	1, 4, 1, 0, 2, 10, 12, 10			1 d 4/mmm
[2]C4/mmd(a'=2a,b')	$P 4_3/m m c (c' = 2c); [2] P 4_3/m c m (c) = 2b)(P 4/m b m); [2] C 4/a m m (a' = 2b, c' = 2c)(I 4/m m m); [2] F 4/m$	= 2a, b' = 2b)(P4/nmm);		1 c 4/mmm
Maximal isomorphic subgrou				i i quana
	$C4/mmm(a^{\prime}=2a, b^{\prime}=2b)(P4/m)$	n m m)		l a 4/mmm
Minimal non-isomorphic supe	rgroups			Symmetry of sp Along [001] p+
I [3]Pm 3m II [2]J4/mmm				a'=a $b'=bOrigin at 0,0,z$

		NUED					110.	123	P 4/n
Ger	iera	tors select	ed (1);	1(1,0,0); r(0,1	1,0); 1(0,	0,1); (2); (3);	(5); (9)	
Pos	itio	15							
Wycl	iplicie kett 1 lymm	eiter,		C	cordinate	18			Reflection conditions
16	u	(5) (9)	x,y,z I,y,Į I,9,Į x,J,z	(2) I, J (6) x, J (10) x, y (14) I, y	1.2 .2 ()	(3) 9,x,z (7) y,x,ž (1) y,X,ž (5) 9,X,z	(4) y,x,z (8) 9,x,z (12) 9,x,z (16) y,x,z		General: no conditions
									Special:
8	ſ	.177 .	X, ±, Z X, ±, Z	R, 2, 2 X, 2, 7	1,X,Z 2,X,Z	1, <i>X</i> , <i>Z</i> 1, <i>X</i> , <i>Z</i>			no extra conditions
8	8		x,0,z X,0,ž	1,0,2 x,0,2	0,x,z 0,x,2	0,x,z 0,x,z			no extra conditions
8	r	81	x,x,z X,x,ž	X,X,Z X,X,Z	X,X,Z X,X,Z	x,\$,z \$,\$,\$			no extra conditions
8	9	м	x,y,1 x,y,1	R.9.1 x.9.1	9.x.1 y.x.1	y.1.1 9.1.1			no extra conditions
8	P	m	x, y, 0 $\pi, y, 0$	${x, y, 0 \atop x, y, 0}$	9,x,0 y,x,0	y.£.0 F.£.0			no extra conditions
4	0	w 2m .	x.†.‡	<i>x</i> .+.+	$\frac{1}{2}$,x, $\frac{1}{2}$	±.x.±			no extra conditions
4	п	m 2m .	x,±,0	R, 1, 0	9.x.§	0.3.5			no extra conditions
4	т	<i>m</i> 2 <i>m</i> .	x,0,±	$_{x,0,\frac{1}{2}}$	0,x,1	0,\$,\$			no extra conditions
4	I	m 2m .	0,0,x	1,0,0	0,x,0	0,1,0			no extra conditions
4	k	<i>m</i> .2 <i>m</i>	$x, x, \frac{1}{2}$	π,π,\pm	$\tilde{x}, x, \frac{1}{2}$	$X,\overline{X}, \frac{1}{2}$			no extra conditions
4	1	m.2m	x,x,0	0,1,1	<i>x</i> , <i>x</i> ,0	x,x,0			no extra conditions
4	l	200.00	$0, \frac{1}{2}, z$	±,0,z	$0, \frac{1}{2}, \frac{\pi}{2}$	$^{1}_{2,0,2}$			hkl: h+k=2n
2	ĥ	4 <i>m</i> m	±,±,z	1.1,2					no extra conditions
2	8	4 <i>m</i> m	$_{0,0,\varepsilon}$	0,0,7					no extra conditions
2	f	<i>m.m.m</i> .	$0, \frac{1}{2}, 0$	±,0,0					hkI: h+k=2n
2	e	mmm.	$0, \frac{1}{2}, \frac{1}{2}$	±,0,±					hkl: h+k=2n
1	đ	4/m.m.m	1.1.1						no extra conditions
1	с	4/m m m	±,±,0						no extra conditions
I.	b	4/m.m.m	0,0,±						no extra conditions
1	a	4/ <i>m</i> m m	0,0,0						no extra conditions
ym	met	ry of spec	ial proje	ections					
'=;	8	001] $p 4n$ b'=b t 0,0,z	1711		18	long [100] '=b b rigin at x,	= c		Along [110] $p 2mm$ $a' = \frac{1}{2}(-a+b)$ $b' = c$ Origin at $x, x, 0$

EXAMPLES of INFORMATION

- Space group number: 123
- Name: P4/mmm
- Complete name: P 4/m 2/m 2/m; showing the symmetry elements (4-fold rotation axis, mirror planes)
- Crystal family: tetragonal
- Lattice type: P (primitive)
- Site symmetry of the highest-symmetry site: D_{4h}
- Asymmetric unit: smallest closed part of space the entire space is filled by applying all symmetry operations

CONTINUED

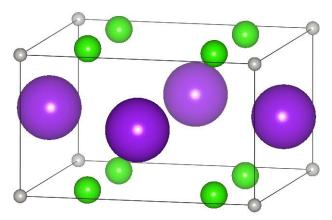
(Continued on preceding page)

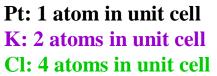
P4/mmm

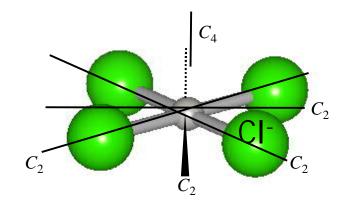
On the second page:

- List of possible sites for the atoms
- These are indicated/named by: multiplicity, Wyckoff letter & site symmetry
- Not all sites are actually occupied by an atom
- On the top: general site (16u)
- At the bottom: the highest symmetry site (1a)
- Multiplicity: number of identical sites

Gene	erate	ors selected	(1);	t(1,0,0);	t (0,1,0);	t(0,0,1);	(2); (3	3); (5);	(9)	
Posit	tions	s								
Multip Wycko Site sy	off let	tter,		Coo	ordinates					Reflection conditions
-					(2)	_	(4) -			General: no conditions
16	и	$ \begin{array}{cccc} 1 & (1) x \\ (5) \overline{x} \\ (9) \overline{x} \\ (13) x \end{array} $, y , Z , y , Z	(2) $\bar{x}, \bar{y}, \bar{x}, \bar{y}, \bar{x}$ (6) $x, \bar{y}, \bar{x}, \bar{y}, \bar{x}$ (10) x, y, \bar{x} (14) \bar{x}, y, \bar{x}	z (7) j z (11) y	y, x, \overline{z} $y, \overline{x}, \overline{z}$ (1	(4) y,x,z (8) y,x,z 12) y,x,z 16) y,x,z			no conditions
										Special:
8	t	. <i>m</i> .	$x, \frac{1}{2}, z$ $\overline{x}, \frac{1}{2}, \overline{z}$	$\overline{x}, \frac{1}{2}, z$ $x, \frac{1}{2}, \overline{z}$, x , z , x , z				no extra conditions
8	\$. <i>m</i> .	x,0,z x,0,z	$\bar{x},0,z$ $x,0,\bar{z}$), x , z , x , z				no extra conditions
8	r	<i>m</i>	x,x,z x̄,x,z̄	\bar{x}, \bar{x}, z x, \bar{x}, \bar{z}		x, x, z x, x, z				no extra conditions
8	q	<i>m</i>	$\begin{array}{c} x, y, \frac{1}{2} \\ \bar{x}, y, \frac{1}{2} \end{array}$	$\overline{x}, \overline{y}, \frac{1}{2}$ $x, \overline{y}, \frac{1}{2}$		$y, \bar{x}, \frac{1}{2}$ $\bar{y}, \bar{x}, \frac{1}{2}$				no extra conditions
8	p	<i>m</i>	x,y,0 x̄,y,0	$\bar{x}, \bar{y}, 0$ $x, \bar{y}, 0$		y, <i>x</i> ,0 ÿ, <i>x</i> ,0				no extra conditions
4	0	m 2m .	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$ $\frac{1}{2}$	$, \bar{x}, \frac{1}{2}$				no extra conditions
4	n	m 2m .	$x, \frac{1}{2}, 0$	$\bar{x}, \frac{1}{2}, 0$	$\frac{1}{2}, x, 0$ $\frac{1}{2}$, x ,0				no extra conditions
4	m	m 2m .	x,0,½	$\bar{x}, 0, \frac{1}{2}$	$0, x, \frac{1}{2} = 0$	$(, \bar{x}, \frac{1}{2})$				no extra conditions
4	ı	m 2m .	x,0,0	₹,0,0	0,x,0 0), x ,0				no extra conditions
4	k	<i>m</i> .2 <i>m</i>	$x, x, \frac{1}{2}$	$\bar{x}, \bar{x}, \frac{1}{2}$	$\bar{x}, x, \frac{1}{2}$	$x, \overline{x}, \frac{1}{2}$				no extra conditions
4	j	<i>m</i> .2 <i>m</i>	x,x,0	<i>x</i> , <i>x</i> ,0	<i>x</i> , <i>x</i> ,0	x,x,0				no extra conditions
4	i	2 <i>m m</i> .	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, \overline{z} = \frac{1}{2}$,0, <i>ž</i>				hkl: h+k=2n
2	h	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, z$	$\frac{1}{2}, \frac{1}{2}, \overline{z}$						no extra conditions
2	8	4 <i>m m</i>	0,0, <i>z</i>	0,0, <i>ī</i>						no extra conditions
2	f	mmm.	0, <u>1</u> ,0	1 ,0,0						hkl: h+k=2n
2	e	mmm.	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2},0,\frac{1}{2}$						hkl: h+k=2n
1	d	4/ <i>m m m</i>	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$							no extra conditions
1	с	4/ <i>m m m</i>	½,½,0							no extra conditions
1	Ь	4/ <i>m m m</i>	$0,0,\frac{1}{2}$							no extra conditions
1	а	4/ <i>m m m</i>	0,0,0							no extra conditions
Sym	me	try of spec	ial pro	jections						
a '=	a	[001] p 4n b' = b at 0,0,z	n m		a'=	ng [100] = b b '= gin at x,0,0	с			Along [110] $p 2mm$ $a' = \frac{1}{2}(-a+b)$ $b' = c$ Origin at x,x,0

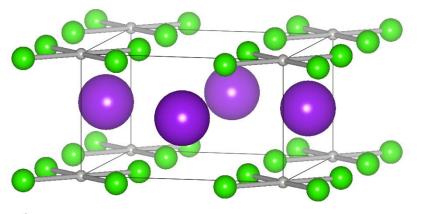

EXAMPLE: Potassium tetrachloroplatinate(II): K₂PtCl₄

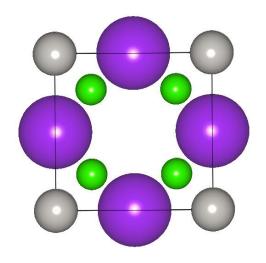

Space group: P4/mm (No. 123) Lattice parameters: a = b = 7.023 Å, c = 4.1486 Å Atomic positions: Pt 1a: 0,0,0 K 2e: $0,\frac{1}{2},\frac{1}{2}$ Cl 4*j*: x,x,0; x = 0.23247


- (a) Draw the unit cell with the atoms.
- (b) Draw the projection of the unit cell in *c*-axis direction.
- (c) Theoretical density is 3.37 g/cm³. Calculate Z? ($N_A = 6.022 \times 10^{23}$; atomic weights: K 39.098; Pt 195.22; Cl 35.453)
- (d) Calculate the distances: Pt-Pt, Pt-K, Pt-Cl.
- (e) What is the coordination number of platinum?
- (f) What is the site symmetry of platinum ?

P4/mmm	D_{4h}^1	4/m m m	Tetragonal	CONTINUED
No. 123	P 4/m 2/m 2/m	Datterson cum	ametry P4/mmm	C
110. 125	1 4/11 2/11 2/11	Patterson syn	unerty P 4/m m m	Generators sele
				Positions
1994 1994 1994		XX		Mudtiplicity, Wychoff Jener, Sile symmetry
+QQ-	- California -	X X		16 ar 1 (
-	2	\times		(1:
øą.	·			8 <i>i</i> .m.
-960	· · · · · · · · · · · · · · · · · · ·			8 s.m.
Origin at centre (4/mmm)				8 rm
	$0 \le y \le \frac{1}{2}; 0 \le z \le \frac{1}{2}; x \le y$			
Symmetry operations				8 <i>q</i> m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				8 p m
(13) $m x_1 0_{z}$ (14) $m 0_{y,z}$ (15) $m x_1 x_2$ (15) $m x_1 x_2$ (16) $m x_1 x_2$		4 o m 2m .		
				4 n m 2m.
				4 m m 2m.
				4 I m 2m .
				4 k m.2m
				4 j m.2m
Maximal non-isomorphic sub				4 <i>i</i> 2mm.
I [2]P422	1; 2; 3; 4; 5; 6; 7; 8			2 h 4mm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 g 4mm
				2 f mmm.
[2]P2/m2/m1(Pmmm) [2]P2/m12/m(Cmmm)	1; 2; 5; 6; 9; 10; 13; 14			2 e mmm.
IIa none	1, 4, 1, 0, 2, 10, 12, 10			1 d 4/mmm
[2]C4/mmd(a'=2a,b')	$P 4_3/m m c (c' = 2c); [2]P 4_3/m c m (c) = 2b)(P 4/m b m); [2]C 4/a m m (a' = 2b, c' = 2c)(I 4/m m m); [2]F 4/m$	= 2a, b' = 2b)(P4/nmm);		1 c 4/mmm
Maximal isomorphic subgrou				i i quana
	$C4/mmm(a^{\prime}=2a, b^{\prime}=2b)(P4/m)$	n m m)		l a 4/mmm
Minimal non-isomorphic supe	rgroups			Symmetry of sp Along [001] p+
I [3]Pm 3m II [2]J4/mmm				a'=a $b'=bOrigin at 0,0,z$

		NUED						. 123	P 4/n
Ger	iera	tors select	ed (1);	1(1,0,0); r(0,1	,0); 1(0,	0,1); (2); (3);	(5); (9)	
Pos	itio	15							
Wycl	iplicie kett i lymm	etter,		C	cordinate	15			Reflection conditions
16	u	(5) (9)	x,y,z I,y,I I,9,I x,J,I	(2) x, j (6) x, j (10) x, y (14) x, y	1,2 1,2 1,2 ()	(3) <i>J</i> , <i>x</i> , <i>z</i> (7) <i>y</i> , <i>x</i> , <i>ž</i> 1) <i>y</i> , <i>X</i> , <i>ž</i> 5) <i>J</i> , <i>X</i> , <i>z</i>	(4) y,x,z (8) g,x,z (12) f,x,z (16) y,x,z		General: no conditions
									Special:
8	ſ	.177 .	x,±,z X,±,Z	R, 2, 2 X, 2, 2	1,X,Z 2,X,Z	3.R.2 3.R.2			no extra conditions
8	8		x,0,z 1,0,1	1,0,2 x,0,2	0,x,z 0,x,ž	5.7.0 5.7.0			no extra conditions
8	r	81	x,x,z X,x,ž	X,X,Z X,X,Z	1.x.z x.x.z	x,\$,; \$,\$,\$			no extra conditions
8	9	т	x,y,1 x,y,1	R.9.1 x.9.1	9.x.1 y.x.1	y.1.1 9.1.1			no extra conditions
8	P	m	x,y,0 x,y,0	x,y,0	9,x,0 y,x,0	y.f.0 F.f.0			no extra conditions
4	0	m 2m .	x.†.‡	x.+.+	±.x.±	±.x.ŧ			no extra conditions
4	п	m 2m .	x,±,0	R,1,0	9.x.§	0.X.§			no extra conditions
4	т	<i>m</i> 2 <i>m</i> .	x,0,±	$_{\bar{x},0,\frac{1}{2}}$	0,x,i	0,\$,1			no estra conditions
4	I	m 2m .	<i>x</i> ,0,0	1,0,0	0,x,0	0,1,0			no extra conditions
4	k	m.2m	$x, x, \frac{1}{2}$	<i>x</i> , <i>x</i> ,‡	$\mathbf{I}, \mathbf{X}, \frac{1}{2}$	$X, \overline{X}, \frac{1}{2}$			no extra conditions
4	1	m.2m	x,x,0	0,1,1	<i>1,1,0</i>	x,x,0			no extra conditions
4	i	200.00	0, 1 , z	±,0,z	0,1.2	1,0,5			hkl: h+k=2n
2	ĥ	4 <i>m m</i>	1,1,2	1.1.2					no extra conditions
2	8	4 <i>m</i> m	0,0,2	0,0,7					no extra conditions
2	f	mmm.	0,1,0	±,0,0					hkl:h+k=2n
2	e	mmm.	0,1,1	±.0,±					hkl: h+k=2n
1	d	4/m.m.m	1.1.1						no extra conditions
1	с	4/m m m	±,±,0						no extra conditions
i.	b	4/m.m.m	0,0,1						no extra conditions
1	a	4/m m m	0,0,0						no extra conditions
ym	met	ry of spec	ial proje	ctions					
lon '=	g [(001] p 4n b'=b t 0,0,z			1	long [100] = b - b' rigin at x.	= c		Along [110] $p 2mm$ $a' = \frac{1}{2}(-a+b)$ $b' = c$ Origin at $x, x, 0$





Site symmetry of Pt: D_{4h}

Bond lengths: Pt-Pt: $(1-0)^{2} \cdot 4.15$ Å Pt-K: $\sqrt{[(0.5-0)^{2} \cdot 7.023$ Å + $(0.5-0)^{2} \cdot 4.149$ Å] = 4.08Å Pt-Cl: $\sqrt{[(0.232-0)^{2} \cdot 7.023$ Å + $(0.232-0)^{2} \cdot 7.023$ Å] = 2.30Å

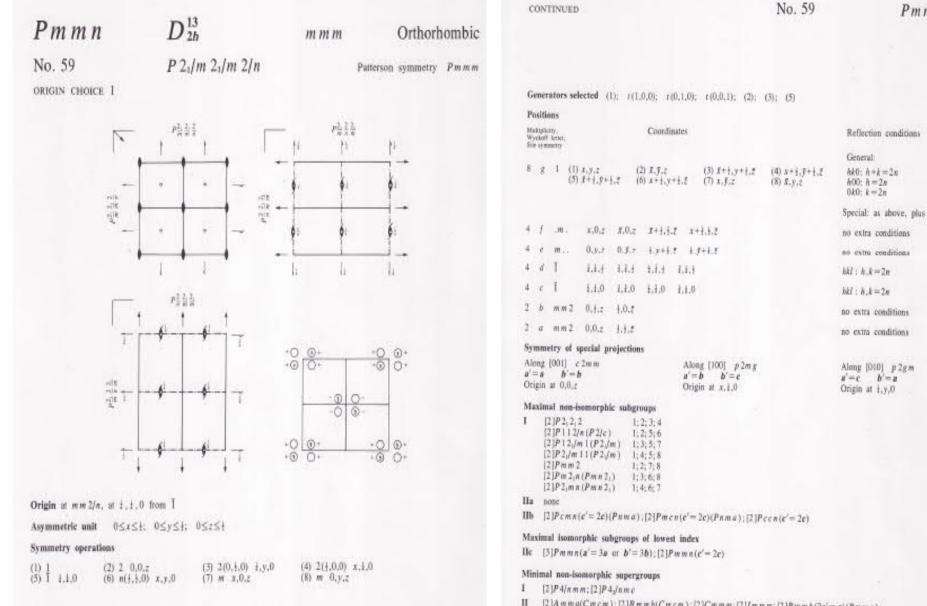
ab-projectio (seen from *c*-direction)

K₂PtCl₄

- $\rho = 3.37 \text{ x } 10^6 \text{ g/m}^3$
- V = 7.023 Å x 7.023 Å x 4.1486 Å = 204.62 x 10⁻³⁰ m³
- M = (2 x 39.098 + 195.22 + 4 x 35.453) g/mol = 415.228 g/mol
- $Z = (V \times \rho \times N_A) / M = 1$
- Distances: Pt-Pt: 4.15 Å
 - Pt-K: 4.08 Å
 - Pt-CI: 2.31 Å (\rightarrow chemical bond)
- CN(Pt) = 4
- Pl site symmetry: D_{4h}

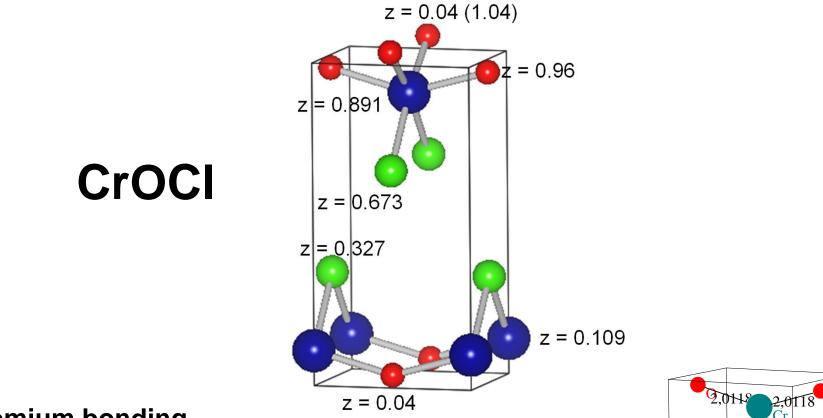
EXAMPLE: Chromium oxychloride CrOCI

Space group *Pmmn* (No. 59)


Lattice parameters: a = 3.88 Å, b = 3.20 Å, c = 7.72 Å (Z = 2)

Atomic positions:	Cr	2 <i>a</i>	<i>z</i> = 0.109
-	CI	2b	<i>z</i> = 0.327
	0	2b	<i>z</i> = 0.960

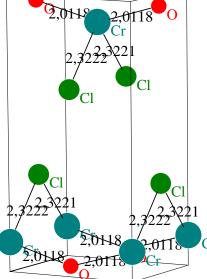
(a) Draw the unit cell.


- (b) Give for chromium: bond lengths
 - coordination numbers
 - site symmetry

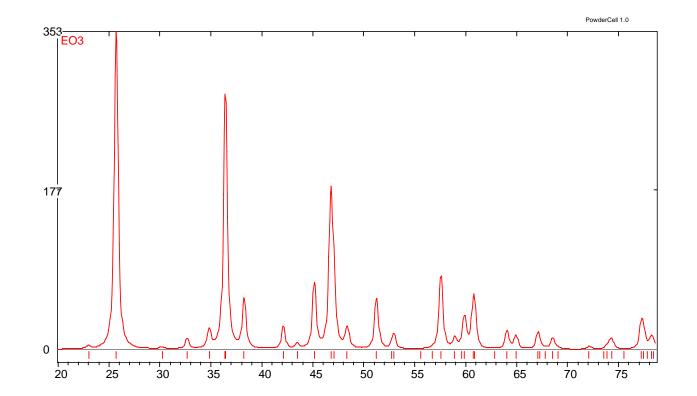
(c) Calculate BVS for chromium. [R⁰ values: Cr^{III}-O^{-II}: 1.724, Cr^{III}-Cl^{-I}: 2.08]

[2]Amma(Cmcm); [2]Bmmb(Cmcm); [2]Cmmm; [2]Immm; [2]Pmmb(2a'=a)(Pmma); [2]Pmma(2b'=b)

Pmmn


Chromium bonding

2xCr-Cl: $\sqrt{\{(0.891-0.673)x7.72 \text{ Å}\}^2 + \{0.5x3.20 \text{ Å}\}^2 = 2.3222 \text{ Å}$ 2xCr-O: $\sqrt{\{(0.960-0.891)x7.72 \text{ Å}\}^2 + \{0.5x3.88 \text{ Å}\}^2 = 2.0118 \text{ Å}$ 2xCr-O: $\sqrt{\{[(1-0.891)+0.04]x7.72 \text{ Å}\}^2 + \{0.5x3.20 \text{ Å}\}^2 = 1.9706 \text{ Å}$


CN(Cr) = 6

Cr site symmetry: C_{2v}

BVS(Cr): +2.985

CrOCI: simulated XRD pattern based on the structure data

