EXERCISE 2.1. Determine the point group for the following molecules/ions:
A. Carbon dioxide CO_{2}

B. Hydrogen peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$

C. Benzene $\mathrm{C}_{6} \mathrm{H}_{6}$

D. Phosphorus pentafluoride PF_{5}

G. Diborane $\mathrm{B}_{2} \mathrm{H}_{6}$
H. Boron trifluoride BF_{3} (planar)
I. Phosphorus trifluoride PF_{3}
J. Sulfurhexafluoride SF_{6}
K. Octachlorodimolybdate
L. SiFCIBrl

EXERCISE 2.2.

$\mathrm{Ni}(\mathrm{CN})_{4}{ }^{2-}$ ion has $\mathrm{D}_{4 \mathrm{~h}}$ symmetry.
What can you tell about its structure based on that?

EXERCISE 2.3.

What is the Bravais lattice type of perovskite CaTiO_{3};
Please illustrate by a simple drawing.

EXERCISE 2.4.

In this structure grey balls are Ti atoms and red balls O atoms. The unit cell parameters are: $\mathrm{a}=4.5937 \AA \AA, \mathrm{~b}=4.5937 \AA$ And $\mathrm{c}=2.9587 \AA \AA$; all angles are 90°.
A. What is the crystal system?
B. What are the coordination numbers?
C. What is the chemical formula of the compound?
D. How many formula units in the unit cell, i.e. what is the value of \mathbf{Z} ?
E. Please calculate the density.

EXERCISE 2.5.

Here is the structure of the highest T_{c} superconductor
$\mathrm{Hg}-\mathrm{Ba}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$.
From this structure,
derive the chemical formula of it.

How many formula units in the unit cell, i.e. what is the value of Z ?

$\mathrm{Hg}-\mathrm{Ba}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$

EXERCISE 2.6.

The La-Ba-Co-O compound has a crystal structure with space group $\mathrm{P} 4 / \mathrm{mmm}$ (No 123) and lattice parameters: $a=3.89 \AA$; $c=7.71 \AA$.
Atomic positions are:

Atomi	x	y	z
La	0	0	0
Ba	0	0	0.5
Co	0.5	0.5	0.248
O1	0.5	0.5	0
O2	0	0.5	0.2356
O3	0.5	0.5	0.5

A. Draw the unit cell.
B. What is the stoichiometry of the compound?
C. Do you see any correlation with the stoichiometry and site multiplicities ?
D. What is the name of the structure?
E. Calculate the theoretical density of the material.
$\left(\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}\right.$; atomic weights: La 138.9; Ba 137.3; Co 58.9; O 16.0)

EXERCISE 2.7.

$\mathrm{Cu}(1) \mathrm{Ba}_{2} \mathrm{YCu}(2)_{2} \mathrm{O}_{7-\delta}$ compound has a crystal structure with space group Pmmm (No 47) and lattice parameters: $a=3.8227 \AA, b=3.8872 \AA, c=11.6802 \AA$. Atomic positions are:

$\mathrm{Cu}(1)$	$(0,0,0)$	
$\mathrm{Cu}(2)$	$(0,0, z)$	$z=0.3556$
Ba	$(1 / 2,1 / 2, z)$	$z=0.1843$
Y	$(1 / 2,1 / 2,1 / 2)$	
$\mathrm{O}(1)$	$(0,1 / 2,0)$	
$\mathrm{O}(2)$	$(1 / 2,0, z)$	$z=0.3779$
$\mathrm{O}(3)$	$(0,1 / 2, z)$	$z=0.3790$
$\mathrm{O}(4)$	$(0,0, z)$	$z=0.1590$

A. Draw the unit cell.
B. Determine CN and bond lengths for both $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ atoms.
C. Calculate BVS for both Cu atoms $\left[\mathrm{R}^{0}\left(\mathrm{Cull}^{\mathrm{I}}-\mathrm{O}^{-11}\right)=1.679\right.$]

Reference:
J.D. Jorgensen, et al., Physical Review B 41, 1863 (1990).

Pmmm
No. 47

Maximal isomorphic subgroups of lowest index
IIc $\quad[2] P m m m\left(a^{\prime}=2 a\right.$ or $\boldsymbol{b}^{\prime}=2 \boldsymbol{b}$ or $\left.\boldsymbol{c}^{\prime}=2 \boldsymbol{c}\right)$

$$
\text { P.m m m }
$$

Reflection conditions
General:
no conditions
Special: no extra conditions

