EXERCISE 2.1. Determine the point group for the following molecules/ions:

EXERCISE 2.2.

 $Ni(CN)_4^{2-}$ ion has D_{4h} symmetry.

What can you tell about its structure based on that ?

EXERCISE 2.3.

What is the Bravais lattice type of perovskite $CaTiO_3$; Please illustrate by a simple drawing.

EXERCISE 2.4.

In this structure grey balls are Ti atoms and red balls O atoms. The unit cell parameters are: a = 4.5937 Å, b = 4.5937 Å and c = 2.9587 Å; all angles are 90°.

- A. What is the crystal system?
- B. What are the coordination numbers?
- C. What is the chemical formula of the compound?
- D. How many formula units in the unit cell, i.e. what is the value of Z?
- E. Please calculate the density.

EXERCISE 2.5.

Here is the structure of the highest T_c superconductor Hg-Ba-Ca-Cu-O. From this structure,

derive the chemical formula of it.

How many formula units in the unit cell, i.e. what is the value of Z ?

Hg-Ba-Ca-Cu-O

EXERCISE 2.6.

The La-Ba-Co-O compound has a crystal structure with space group P4/mmm (No 123) and lattice parameters: a = 3.89 Å; c = 7.71 Å.

Atomic positions are:

Atomi	X	У	Z
La	0	0	0
Ba	0	0	0.5
Со	0.5	0.5	0.248
01	0.5	0.5	0
02	0	0.5	0.2356
03	0.5	0.5	0.5

- A. Draw the unit cell.
- B. What is the stoichiometry of the compound?
- C. Do you see any correlation with the stoichiometry and site multiplicities?
- D. What is the name of the structure?
- E. Calculate the theoretical density of the material.

(N_A = 6.022 x 10²³; atomic weights: La 138.9; Ba 137.3; Co 58.9; O 16.0)

(Continued on preceding page)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Posi	tion	s						
Multij Wyck	plicity off le	tter,		Co	ordinates			Reflection conditions
Site s	ymme	stry						General:
16	и	$ \begin{array}{cccc} 1 & (1) x \\ (5) \overline{x} \\ (9) \overline{x} \\ (13) x \end{array} $, y , z , y , z , y , z , y , z	(2) $\vec{x}, \vec{y},$ (6) $x, \vec{y},$ (10) $x, y,$ (14) $\vec{x}, y,$.z (1 .ž (1) .ž (1) .z (15	3) ÿ,x,z 7) y,x,z 1) y,x,z 5) ÿ,x,z	(4) y, \bar{x}, z (8) $\bar{y}, \bar{x}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) y, x, z	no conditions
								Special:
8	t	. <i>m</i> .	$x, \frac{1}{2}, z$ $\overline{x}, \frac{1}{2}, \overline{z}$	$\overline{x}, \frac{1}{2}, z$ $x, \frac{1}{2}, \overline{z}$	$\frac{1}{2}, x, z$ $\frac{1}{2}, x, \overline{z}$	$\frac{1}{2}, \overline{x}, z$ $\frac{1}{2}, \overline{x}, \overline{z}$		no extra conditions
8	\$. <i>m</i> .	x,0,z x,0,z	$\bar{x},0,z$ $x,0,\bar{z}$	0, x, z $0, x, \overline{z}$	$\begin{array}{c} 0, \bar{x}, z\\ 0, \bar{x}, \bar{z} \end{array}$		no extra conditions
8	r	m	x,x,z x̄,x,z̄	$\overline{x}, \overline{x}, z$ $x, \overline{x}, \overline{z}$	<i>x</i> , <i>x</i> , <i>z</i> <i>x</i> , <i>x</i> , <i>z</i>	x, x , z x, x, z		no extra conditions
8	q	<i>m</i>	$\begin{array}{c} x, y, \frac{1}{2} \\ \bar{x}, y, \frac{1}{2} \end{array}$	$\frac{\bar{x},\bar{y},\frac{1}{2}}{x,\bar{y},\frac{1}{2}}$	$\overline{y}, x, \frac{1}{2}$ $y, x, \frac{1}{2}$	$\begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y}, \bar{x}, \frac{1}{2} \end{array}$		no extra conditions
8	р	<i>m</i>	x,y,0 x̄,y,0	$\bar{x}, \bar{y}, 0$ $x, \bar{y}, 0$	$\overline{y}, x, 0$ y, x, 0	y, x ,0 y , x ,0		no extra conditions
4	0	<i>m</i> 2 <i>m</i> .	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$		no extra conditions
4	n	m 2m .	$x, \frac{1}{2}, 0$	$\bar{x}, \frac{1}{2}, 0$	$\frac{1}{2}, x, 0$	$\frac{1}{2}, \bar{x}, 0$		no extra conditions
4	m	<i>m</i> 2 <i>m</i> .	$x, 0, \frac{1}{2}$	$\bar{x}, 0, \frac{1}{2}$	$0, x, \frac{1}{2}$	$0, \bar{x}, \frac{1}{2}$		no extra conditions
4	ı	m 2m .	x,0,0	x ,0,0	0,x,0	0, x ,0		no extra conditions
4	k	<i>m</i> .2 <i>m</i>	$x, x, \frac{1}{2}$	$\bar{x}, \bar{x}, \frac{1}{2}$	$\bar{x}, x, \frac{1}{2}$	$x, \overline{x}, \frac{1}{2}$		no extra conditions
4	j	<i>m</i> .2 <i>m</i>	x,x,0	x , x ,0	<i>x</i> , <i>x</i> ,0	x, x , 0		no extra conditions
4	i	2 <i>m m</i> .	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, \overline{z}$	$\frac{1}{2}, 0, \bar{z}$		hkl: h+k=2n
2	h	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, z$	$\frac{1}{2}, \frac{1}{2}, \overline{z}$				no extra conditions
2	8	4 <i>m m</i>	0,0,z	0,0, <i>ī</i>				no extra conditions
2	f	mmm.	0,½,0	±,0,0				hkl: h+k=2n
2	e	mmm.	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$				hkl: h+k=2n
1	d	4/ <i>m m m</i>	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$					no extra conditions
1	с	4/ <i>m m m</i>	½,½,0					no extra conditions
1	b	4/ <i>m m m</i>	$0,0,\frac{1}{2}$					no extra conditions
1	а	4/ <i>m m m</i>	0,0,0					no extra conditions
Syn	nme	try of spec	ial pro	jections				
Alo a'= Ori	ng = <i>a</i> gin	[001] $p 4n$ b' = b at 0,0,z	n m		A a C	Along [100 1'= b Drigin at 1	$\begin{array}{l} p \ 2m \ m \\ b' = c \\ x, 0, 0 \end{array}$	Along [110] $p \ 2mm$ $a' = \frac{1}{2}(-a+b)$ $b' = c$ Origin at $x,x,0$

421

EXERCISE 2.7.

Cu(1)Ba₂YCu(2)₂O_{7- δ} compound has a crystal structure with space group *Pmmm* (No 47) and lattice parameters: *a* = 3.8227 Å, *b* = 3.8872 Å, *c* = 11.6802 Å. Atomic positions are:

Cu(1)	(0,0,0)	
Cu(2)	(0,0, <i>z</i>)	z = 0.3556
Ba	(1/2,1/2,Z)	<i>z</i> = 0.1843
Y	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$	
O(1)	(0,1⁄2,0)	
O(2)	(½,0, <i>Z</i>)	z = 0.3779
O(3)	(0,½, <i>Z</i>)	z = 0.3790
O(4)	(0,0, <i>z</i>)	z = 0.1590

A. Draw the unit cell.

- B. Determine CN and bond lengths for both Cu(1) and Cu(2) atoms.
- C. Calculate BVS for both Cu atoms $[R^0(Cu^{II}-O^{-II}) = 1.679]$

Reference:

```
J.D. Jorgensen, et al., Physical Review B 41, 1863 (1990).
```


Maximal isomorphic subgroups of lowest index

IIIC [2] Pmmm(a'=2a or b'=2b or c'=2c)

selected (1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (3); (5) $T_{x,y,z} = Coordinates$ $T_{x,y,z} = T_{x,y,z} = T_{y,z} = T_{y,z}$

P.m m m

No. 47

CONTINUED