$$
\begin{aligned}
& e^{A t}=L^{-1}\left\{(t I-A)^{-1}\right\} \\
& e^{A t}=L^{-1}\left[(0-A)^{-1}\right] \\
& =L^{-}\left(\frac{\operatorname{adj}(I-A)}{\operatorname{at(II-A}=0} \frac{a}{a}\right) \\
& T T^{-1}=I \\
& \operatorname{det}\left(T T^{-1}\right)=\operatorname{det}(T) \cdot \operatorname{del}\left(T^{-1}\right)=1 \\
& \Rightarrow \operatorname{ddt}\left[T^{-1}\right)=\frac{1}{\operatorname{let}(T)} \\
& \operatorname{det}\left(\lambda I-I A I^{-1}\right)= \\
& \operatorname{dt}\left[\lambda I T^{-1}-I A I_{-}^{-1}\right] \\
& =\operatorname{dnt}\left\{T(\lambda I-A) T^{-1}\right\} \\
& =\operatorname{dt}(T) \cdot \operatorname{dc}(\lambda I-A) \cdot \operatorname{dot}\left(T^{-1}\right) \\
& =\operatorname{dnt}(T) \cdot \frac{1}{\operatorname{det}(T)} \cdot \operatorname{ld}(\lambda I-A) \\
& {\left[\begin{array}{l}
1 \\
\cdots \\
A
\end{array}\right] \operatorname{dt}(A) \neq v} \\
& {[\operatorname{rank}(\theta)=2} \\
& \left.\left[\begin{array}{l}
\because \\
\because \\
\vdots \\
\vdots
\end{array}\right)\right] \\
& C(s)=\frac{s+1}{s^{2}+2 s+3}+\text { zero } \\
& 6(s)=0 \\
& A=A^{*} \\
& \begin{array}{l}
\frac{\left(x^{x} A x\right)^{x}}{\left.x^{x}\right)^{n x x_{1} n x \mid}}=x^{x} A_{0}^{x} x=X^{x} A x \\
X^{x} A x>0
\end{array}
\end{aligned}
$$

