

Network Traffic Measurements and Analysis Lecture III: Probability models and measurements

Markku Liinaharja (slides originally made by Esa Hyytiä),

Department of Communications and Networking Aalto University, School of Electrical Engineering

Version 0.2, October 4, 2017

Contents

- Introduction
- Probability
- Distributions for network measurements
- Parameter estimation
- Model validation

Measurements and modeling

- Exploratory approach
 Problem ⇒ Data ⇒ Analysis ⇒ (Model) ⇒ Conclusions
- Measurement analysis is often intertwined with traffic modeling
- If the observations can be described using an idealized mathematical model their implications are often easier to understand
- E.g., input to a queue
- "All models are wrong, but some models are useful"

Why models?

- Descriptive models for measurements
 - Efficient summary of observed data
 - E.g., Gaussian with mean 100ms and standard deviation 10ms
- Constructive models for what-if scenarios
 - Model that could have produced the observed data
 - E.g., The trace could have been produced by a certain stochastic process
 - We are interested in the underlying phenomena instead of details of data
- In this lecture, we focus on descriptive probability models

Probability models

- Probability captures features that are unknown or difficult to characterize
 - Exact user behavior
 - Immense amount of functionalities in the Internet
- Probability allows us to model, reason, and proceed with inference in an uncertain environment

Modeling process

1. Model selection

- Prefer models with a few parameters over those that have more parameters (Occam's razor)
- Model should be parsimonious to avoid over-fitting

Parameter estimation

 Choose the parameters that best describe the observed data

3. Validation

- Descriptive: Compare the distributions
- Constructive: Confirm that the observed data is relatively likely outcome of the model

Contents

- Introduction
- Probability
- Distributions for network measurements
- Parameter estimation
- Model validation

Probability

- Consider an experiment with random outcomes
- Event is a set of outcomes
- Probability
 - How likely an event is?
 - Long-run proportion of an event in a series of experiments
- Mathematically defined by three axioms, for an event A
 - i) $0 \le P\{A\} \le 1$
 - ii) $P{S} = 1$, where S is the sample space
 - iii) A and B disjoint $\Rightarrow P\{A \text{ or } B\} = P\{A\} + P\{B\}$
- Everything else follows from these!

Useful notions

Conditional probability:

$$P\{B \mid A\} = \frac{P\{A \text{ and } B\}}{P\{A\}} = \frac{P\{A \cap B\}}{P\{A\}}.$$

▶ **Independence**: If the two events are independent, then

$$\mathsf{P}\{B\mid A\}=\mathsf{P}\{B\}.$$

▶ **Bayes' rule**: assume $S = B_1 \cup B_2 \cup ... \cup B_n$, where $B_i \cap B_j = \emptyset$ for $i \neq j$. Then,

$$P\{B_i \mid A\} = \frac{P\{A \mid B_i\} \cdot P\{B_i\}}{\sum_j P\{A \mid B_j\} \cdot P\{B_j\}}.$$

Random variables

- Random variable X is a variable whose value is a numerical outcome of a random phenomenon
 - Coin toss: "heads" X = 1, "tails" X = 0
- ▶ **Discrete random variable** X takes discrete values $\{x_1, x_2, x_3, \ldots\}$ with probabilities $\{p_1, p_2, p_3, \ldots\}$
- Continuous random variable X takes continuous values {x} according to a probability density function f(x) (pdf)
 - ▶ Probability of event $x \in (a, b)$ is the area under pdf,

$$P\{a < X < b\} = \int_a^b f(x) \, dx$$

Expectation and variance of a random variable

Expectation (mean of a random variable) $\mu = E(X)$

$$\mu = \sum_{i} p_{i}x_{i}, \qquad \mu = \int x \cdot f(x) dx.$$

▶ Variance $V(X) = E((X - \mu)^2)$,

$$V(X) = \sum_{i} p_i(x_i - \mu)^2, \qquad V(X) = \int (x - \mu)^2 \cdot f(x) dx.$$

Covariance of two random variables

$$Cov[X, Y] = E((X - \mu_X)(Y - \mu_Y)).$$

Properties of expectation and variance

► For constants a, b, and random variables X and Y

$$\mathsf{E}(aX+bY)=a\,\mathsf{E}(X)+b\,\mathsf{E}(Y).$$

For constants a, b, and a random variable X

$$V(aX+b)=a^2V(X).$$

For independent random variables X and Y

$$V(X + Y) = V(X) + V(Y).$$

$$\mathsf{E}(XY) = \mathsf{E}(X) \cdot \mathsf{E}(Y).$$

Contents

- Introduction
- Probability
- Distributions for network measurements
- Parameter estimation
- Model validation

Distributional models

Distributional (analytic) models for measurement data have certain benefits

- Models can be manipulated mathematically, leading to improved understanding
- Models are concise and easily communicated (only a few parameters)
- Values of model's parameters can give insight into the nature of the underlying data (distribution varies predictably, when its parameters are varied)
- Models can take into account features that have not been observed or external knowledge

Discrete distributions

 Discrete distributions are characterized by the probability mass function (pmf)

$$p_i = p(x_i) = P\{X = x_i\}.$$

► Cumulative distribution $P{X \le x}$ is given by

$$F(x) = \sum_{i:x_i < x} p(x_i).$$

Binomial distribution

Number of successes (each with probability p) in n attempts takes values $\{0, 1, 2, ..., n\}$.

Bin(*n*, *p*):

$$P\{X=i\} = \binom{n}{i} p^i (1-p)^{n-i}.$$

Mean μ : npVariance σ^2 : np(1-p)

16/51

Poisson distribution

When $n \to \infty$ and $p \to 0$ in binomial distribution so that $np = \lambda$ takes values $\{0, 1, 2, \ldots\} \Rightarrow$ Poisson distribution.

Poisson(λ):

$$\mathsf{P}\{X=i\}=\tfrac{\lambda^i}{i!}\,e^{-\lambda}.$$

Mean μ : λ Variance σ^2 : λ

Zipf's Law

- Consider a set of categorical variables, e.g., URLs of web pages sorted in decreasing number of references made to each page
 - R number of references to a page
 - n rank of the page
- ▶ Then, for some constants c and β , Zipf's law states that

$$R = c n^{-\beta}$$
.

- "Discrete power-law distribution"
- Linear in log-log plot

$$\log R = \log c - b \log n.$$

Example: Zipf's Law Applied To WWW Documents

Source: C.Cunha, A. Bestavros, M. Crovella, Characteristics of WWW Client-based Traces, Tech. Report BU-CS-95-010, Boston University, 1995.

Continuous distributions

- A continuous random variable has a probability density function (pdf), denoted by f(x)
- ► Cumulative distribution function (cdf) defines the probability $P\{X \le x\}$ and it is denoted by F(x),

$$F(x) = \int_{-\infty}^{x} f(x) \, dx.$$

Normal distribution $N(\mu, \sigma^2)$

Normal (Gaussian) distribution is denoted by $N(\mu, \sigma^2)$ with mean μ and variance σ^2 .

Probability density function:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Mean: μ Variance: σ^2

Exponential distribution $Exp(\lambda)$

Exponential distribution with intensity λ is denoted by $Exp(\lambda)$.

Probability density function:

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

Mean μ : $1/\lambda$ Variance σ^2 : $1/\lambda^2$

Memorylessness property:

$$P{X > x+t \mid X > t} = P{X > x}.$$

Gamma distribution Gamma(p, λ)

Probability density function:

$$f(x) = \frac{(\lambda x)^{p-1}}{\Gamma(p)} \, \lambda \, e^{-\lambda x}, \quad x \ge 0,$$

where

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt.$$

Mean: p/λ Variance: p/λ^2

Heavy-tailed distributions

- Heavy-tailed distributions are distributions with a right tail that decays slower than exponentially
- Evidence found, e.g., in sizes of
 - Files stored on Web servers
 - Data transferred through the Internet
 - Files stored in general-purpose Unix file systems
 - I/O traces of file system, disk, and tape activity

Visual comparison

Definitions

▶ Distribution has a **heavy tail** if for all $\gamma > 0$

$$\lim_{x\to\infty}e^{\gamma x}G(x)\to\infty,$$

where G(x) = 1 - F(x), i.e., the ccdf.

Distribution has a long tail if

$$G(x+t) \sim G(x)$$
, as $x \to \infty$.

▶ Distribution has a **power tail** if for some α and β > 0

$$G(x) \sim \alpha x^{-\beta}$$
, as $x \to \infty$.

- In a nutshell:
 - Large values likely
 - High variability

Relations

Power-tailed \subset Long-tailed \subset Heavy-tailed.

Distribution with a short tail has

$$\lim_{x\to\infty} e^{\gamma x} G(x) \to 0,$$

for some $\gamma > 0$.

Effects of "heavy tails"

- Expectation paradox:
 - ► The longer we have waited for an event the longer we have to wait
- Aggregate size of small variables is negligible compared to the largest one

$$\lim_{x \to \infty} \frac{P\{X_1 + X_2 + \ldots + X_n > x\}}{P\{\max\{X_1, X_2, \ldots, X_n\} > x\}} = 1, \quad \forall \, n \ge 2.$$

 Typical flow is small, but typical transferred byte belongs to a large flow

Examples of utilizing heavy tails

- Load balancing in distributed systems
 - Only a few flows are redirected with a significant effect on load distribution
- Scheduling in web servers
 - Shortest-remaining-processing-time scheduling lets the small tasks interrupt larger ones and with heavy tails the benefit becomes large
- Routing and switching in the Internet
 - Shortcuts established only for large flows (cf. data centers)

Log-normal distribution, LogNormal(μ, σ^2)

Def.: Random variable X follows the LogNormal(μ , σ^2) distribution if $\log(X)$ is distributed as $N(\mu, \sigma^2)$.

Probability density function:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma \cdot x} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}.$$

Mean: $e^{\mu+\sigma^2/2}$ Variance: $\left(e^{\sigma^2}-1\right)e^{2\mu+\sigma^2}$.

Pareto distribution Pareto(α, k)

Probability density function:

$$f(x) = \alpha k^{\alpha} x^{-\alpha - 1}.$$

- ightharpoonup lpha is the shape parameter
- ▶ k is the scale parameter

Pareto has a power tail,

$$G(x) = \left(\frac{k}{x}\right)^{\alpha}, \quad x \geq k.$$

Mean: $\frac{\alpha k}{\alpha - 1}$ Variance: $\left(\frac{k}{\alpha - 1}\right)^2 \frac{\alpha}{\alpha - 2}$

1.0Pareto Exponential 0.03

Note: mean is infinite for $\alpha \leq 1$, and variance for $\alpha \leq 2$.

Weibull distribution, Weibull(α, β)

In Weibull(α, β) distribution α is the shape parameter and β the scale parameter.

- α < 1 "failure rate decreases in time"
- $\alpha >$ 1 "failure rate increases in time"

The pdf has the form

$$f(x) = \alpha \beta^{-\alpha} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}}.$$

Mean:
$$\beta \Gamma (1 + 1/\alpha)$$

Variance: $\beta^2 \Gamma (1 + 2/\alpha)$
 $-\beta^2 \Gamma (1 + 1/\alpha)^2$

Choosing the distribution

- Distribution can be chosen according to "best fit"
- Distribution function can be adopted from a similar situation
 - Often assumed that the distribution function remains valid in other "similar conditions", only parameters vary
- Distribution functions can emerge from generative processes
 - E.g., CLT and Gaussian distribution
 - Allows taking into account external knowledge on the variable
- As a result probabilistic modeling of network measurements is seldom purely objective process ...

Contents

- Introduction
- Probability
- Distributions for network measurements
- Parameter estimation
- Model validation

Parameter estimation

- Given a distribution (or distribution family) and data, the next step is to fit the parameters of the distribution to match the data
- ► Estimator is a function of (sample) data that attempts to estimate an unknown (population) parameter
- We try to optimize the parameters of a density with respect to some measure of fit

Estimation

- We briefly outline two practical methods of parameter estimation
 - 1. Method of moments
 - 2. Maximum likelihood (ML)
- Note that a lot of literature exists on parameter estimation
 - Quality of the estimators ignored here . . .
 - E.g., sample mean and sample variance of data are "best" estimates for Normal distribution

Method of moments

- \blacktriangleright k:th moment of a random variable: $E(X^k)$
- ▶ k:th sample moment of data: $m_k = \frac{1}{n} \sum_i x_i^k$
- Method of moments:
 - 1. Derive as many moments of the distribution as there are parameters
 - 2. Compute the corresponding sample moments from data
 - 3. Solve the parameters so that the moments and sample moments are equal
- Simple, but not always available
- The estimates are not necessarily "optimal"

Maximum likelihood

- Idea is to maximize the probability/likelihood that the selected distribution has produced the observations
- Likelihood function for independent observations

$$L(x_1,x_2,\ldots,x_n;\theta)=\prod_{i=1}^n f(x_i;\theta).$$

 Likelihood is a function of the parameter(s) of the distribution, for which the estimate is

$$\underset{\theta}{\operatorname{arg\,max}} L(x_1, x_2, \dots, x_n; \theta)$$

 Maximum likelihood estimates have many favorable properties, but require often complex non-linear optimization

38/51

Other estimates

- Non-linear least-squares optimization of the density
 - Non-linear optimization methods more generally available in mathematical software
- Statistical software offer many direct ways of fitting parameters for given densities
 - Often based on maximum likelihood
 - General optimization methods can be sensitive to selected starting values
 - Results are affected by outliers

Example

```
> require(MASS)
> fitdistr(logftp, "lognormal")
   meanlog
                  sdlog
 0.52062324
                0.84232334
(0.02663660) (0.01883492)
> h<-hist(logftp,n=20)</pre>
> xhist<-c(min(h$breaks),h$breaks)
                                                                          10
> yhist<-c(0,h$density,0)
                                                          xhist
> xfit<-seq(min(logftp), max(logftp), length=100)
> yfit<-dlnorm(xfit,meanlog=0.52062,sdlog=0.84232)</pre>
> plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)),col=4)
> lines(xfit,yfit,col="red")
```


Example: German tank problem

Suppose that a measurement has given us

- A set of serial numbers of some device
 - ▶ How many devices has been sold?
- A list of user-id's of people using some service
 - How many users the given service has (say globally)?

These questions are examples of the German tank problem.

Example: German tank problem (2)

Assumptions:

- ► The existing serial numbers are 1,..., N (all equally likely)
- ▶ Sampling without replacement, $\{X_i\}$, i = 1, ..., n
- ▶ Task is to estimate *N* based on the given *n* samples

Clearly,
$$n \le m \le N$$
, where $m = \max\{X_i\}$, but ...?

1. Bayesian estimate,

$$\hat{N}=\frac{(m-1)(n-1)}{n-2}.$$

2. Minimum-variance unbiased estimator,

$$\hat{N}=m+\frac{m}{n}-1.$$

Off-line vs. On-line estimation

Off-line estimation

- Collect samples and store them
- Estimate the quantities of interest
- No (strict) memory or time constraints

On-line estimation

- Collect samples in real-time (streaming data)
 - Update estimates at the same time
- Both memory and time constraints (typically)

The latter is important, e.g., for real-time monitoring systems.

Example: On-line estimation

Mean:

Init: 1.
$$S \leftarrow 0$$

Per sample: 1.
$$S \leftarrow S + x_i$$

2.
$$n \leftarrow 0$$

2.
$$n \leftarrow n + 1$$

3.
$$\hat{m} \leftarrow S/n$$

- Two state variables
- Fast constant computation time
- Unfortunately, e.g., median or mode are more difficult! (Why?)

Sometimes(!) sufficient:

$$\left\{ \begin{array}{lll} \mathsf{mean} & \leftarrow & \mathsf{mean} & + & \eta \times (\mathit{x_i} - \mathsf{mean}) \\ \mathsf{median} & \leftarrow & \mathsf{median} & + & \eta \times \mathsf{sgn}(\mathit{x_i} - \mathsf{median}) \end{array} \right.$$

Example: On-line estimation (2)

Moving average (MA):

$$y \leftarrow \frac{x_{i-k} + \ldots + x_i}{k+1}$$

Exponentially Weighted Moving Average (EWMA):

$$y \leftarrow \alpha x_i + (1 - \alpha)y$$

In general, on-line estimation of the streaming data is an interesting topic itself, and there are advanced algorithms for different scenarios. For example,

R. Jain and I. Chlamtac, "The P-Square Algorithm for Dynamic Calculation of Percentiles and Histograms without Storing Observations", Communications of the ACM, October 1985.

Contents

- Introduction
- Probability
- Distributions for network measurements
- Parameter estimation
- Model validation

Checking for model fit

- Visual tools
 - Plot density and histogram in the same figure
 - Plot cdf and ecdf in the same figure
 - Compare data with the distribution in a QQ-plot
 - For highly variable data, log-log complementary distribution could be considered
 - ▶ Plot log(1 F(x)) against log x for CDF and ECDF
- Statistical tests
 - χ²-test
 - Kolmogorov-Smirnov -test

Example

- Our log-normal fit
 - QQ-plot does not support the fit!

>qqplot(logftp,qlnorm((1:1000)/1001,meanlog=0.52062,sdlog=0.84232),col=4)x))

Example Continued

Let's try with Weibull distribution ...

Statistical testing for goodness of fit

- As the model selection is usually subjective, visual tools are generally sufficient for validating the model
- However, there are also statistical tests available for the goodness of fit
 - ► A p-value is computed for null hypothesis "Sample comes from a population with a given distribution"
 - p-value is roughly the probability that given the null hypothesis, we actually observe the data
 - If p-value is small, there is only a small probability that the data is from the distribution and null hypothesis is rejected
 - A large p-value does not automatically mean that the distribution is correct

Literature

- Mark Crovella, Balachander Krishnamurthy, Internet
 Measurement: Infrastructure, Traffic & Applications,
 John Wiley and Sons Ltd, 2006.
- David J. Marchette, Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint, Springer, 2001.
- Pierre Baldi, Paolo Frasconi, Padhraic Smyth, Modeling the Internet and the Web, John Wiley and Sons Ltd, 2003.
- NIST/SEMATECH, Engineering Statistics Handbook, http://www.itl.nist.gov/div898/handbook/index.htm

