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Measurements and modeling

I Exploratory approach
Problem⇒ Data⇒ Analysis⇒ (Model)⇒ Conclusions

I Measurement analysis is often intertwined with traffic
modeling

I If the observations can be described using an idealized
mathematical model their implications are often easier to
understand

I E.g., input to a queue
I “All models are wrong, but some models are useful”
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Why models?

I Descriptive models for measurements
I Efficient summary of observed data
I E.g., Gaussian with mean 100ms and standard deviation

10ms
I Constructive models for what-if scenarios

I Model that could have produced the observed data
I E.g., The trace could have been produced by a certain

stochastic process
I We are interested in the underlying phenomena instead of

details of data
I In this lecture, we focus on descriptive probability models



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

5/51

Probability models

I Probability captures features that are unknown or difficult
to characterize

I Exact user behavior
I Immense amount of functionalities in the Internet

I Probability allows us to model, reason, and proceed with
inference in an uncertain environment



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

6/51

Modeling process

1. Model selection
I Prefer models with a few parameters over those that have

more parameters (Occam’s razor)
I Model should be parsimonious to avoid over-fitting

2. Parameter estimation
I Choose the parameters that best describe the observed

data
3. Validation

I Descriptive: Compare the distributions
I Constructive: Confirm that the observed data is relatively

likely outcome of the model
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Probability

I Consider an experiment with random outcomes
I Event is a set of outcomes
I Probability

I How likely an event is?
I Long-run proportion of an event in a series of experiments

I Mathematically defined by three axioms, for an event A
i) 0 ≤ P{A} ≤ 1
ii) P{S} = 1, where S is the sample space
iii) A and B disjoint⇒ P{A or B} = P{A}+ P{B}

I Everything else follows from these!
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Useful notions

I Conditional probability:

P{B | A} =
P{A and B}

P{A}
=

P{A ∩ B}
P{A}

.

I Independence: If the two events are independent, then

P{B | A} = P{B}.

I Bayes’ rule: assume S = B1 ∪ B2 ∪ . . . ∪ Bn, where
Bi ∩ Bj = ∅ for i 6= j . Then,

P{Bi | A} =
P{A | Bi} · P{Bi}∑
j P{A | Bj} · P{Bj}

.
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Random variables

I Random variable X is a variable whose value is a
numerical outcome of a random phenomenon

I Coin toss: “heads” X = 1, “tails” X = 0

I Discrete random variable X takes discrete values
{x1, x2, x3, . . .} with probabilities {p1,p2,p3, . . .}

I Continuous random variable X takes continuous values
{x} according to a probability density function f (x) (pdf)

I Probability of event x ∈ (a,b) is the area under pdf,

P{a < X < b} =

∫ b

a
f (x) dx



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

11/51

Expectation and variance of a random variable

I Expectation (mean of a random variable) µ = E(X )

µ =
∑

i

pixi , µ =

∫
x · f (x) dx .

I Variance V(X ) = E((X − µ)2),

V(X ) =
∑

i

pi(xi − µ)2, V(X ) =

∫
(x − µ)2 · f (x) dx .

I Covariance of two random variables

Cov[X ,Y ] = E((X − µx )(Y − µy )).
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Properties of expectation and variance

I For constants a,b, and random variables X and Y

E(aX + bY ) = a E(X ) + b E(Y ).

I For constants a,b, and a random variable X

V(aX + b) = a2 V(X ).

I For independent random variables X and Y

V(X + Y ) = V(X ) + V(Y ).

E(XY ) = E(X ) · E(Y ).



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

13/51

Contents

I Introduction
I Probability

I Distributions for network measurements

I Parameter estimation
I Model validation



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

14/51

Distributional models

Distributional (analytic) models for measurement data have
certain benefits

I Models can be manipulated mathematically, leading to
improved understanding

I Models are concise and easily communicated (only a few
parameters)

I Values of model’s parameters can give insight into the
nature of the underlying data (distribution varies
predictably, when its parameters are varied)

I Models can take into account features that have not been
observed or external knowledge
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Discrete distributions

I Discrete distributions are characterized by the probability
mass function (pmf)

pi = p(xi) = P{X = xi}.

I Cumulative distribution P{X ≤ x} is given by

F (x) =
∑

i:xi≤x

p(xi).
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Binomial distribution
Number of successes (each with probability p) in n attempts
takes values {0,1,2, . . . ,n}.

Bin(n,p):

P{X = i} =

(
n
i

)
pi (1− p)n−i .

Mean µ: np
Variance σ2: np(1− p)
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Poisson distribution
When n→∞ and p → 0 in binomial distribution so that np = λ
takes values {0,1,2, . . .} ⇒ Poisson distribution.

Poisson(λ):

P{X = i} = λi

i! e−λ.

Mean µ: λ

Variance σ2: λ
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Zipf’s Law

I Consider a set of categorical variables, e.g., URLs of web
pages sorted in decreasing number of references made to
each page

I R number of references to a page
I n rank of the page

I Then, for some constants c and β, Zipf’s law states that

R = c n−β.

I “Discrete power-law distribution”
I Linear in log-log plot

log R = log c − b log n.
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Example: Zipf’s Law Applied To WWW Documents

Source: C.Cunha, A. Bestavros, M. Crovella, Characteristics of WWW Client-based
Traces, Tech. Report BU-CS-95-010, Boston University, 1995.



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

20/51

Continuous distributions

I A continuous random variable has a probability density
function (pdf), denoted by f (x)

I Cumulative distribution function (cdf) defines the
probability P{X ≤ x} and it is denoted by F (x),

F (x) =

∫ x

−∞
f (x) dx .
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Normal distribution N(µ, σ2)

Normal (Gaussian) distribution is denoted by N(µ, σ2) with
mean µ and variance σ2.

Probability density function:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Mean: µ

Variance: σ2
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Exponential distribution Exp(λ)

Exponential distribution with intensity λ is denoted by Exp(λ).

Probability density function:

f (x) = λe−λx , x ≥ 0.

Mean µ: 1/λ
Variance σ2: 1/λ2

Memorylessness property:
P{X > x+t | X > t} = P{X > x}.
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Gamma distribution Gamma(p, λ)

Probability density function:

f (x) =
(λx)p−1

Γ(p)
λe−λx , x ≥ 0,

where

Γ(p) =

∫ ∞
0

tp−1e−t dt .

Mean: p/λ
Variance: p/λ2
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Heavy-tailed distributions

I Heavy-tailed distributions are distributions with a right tail
that decays slower than exponentially

I Evidence found, e.g., in sizes of
I Files stored on Web servers
I Data transferred through the Internet
I Files stored in general-purpose Unix file systems
I I/O traces of file system, disk, and tape activity
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Visual comparison
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Definitions
I Distribution has a heavy tail if for all γ > 0

lim
x→∞

eγxG(x)→∞,

where G(x) = 1− F (x), i.e., the ccdf.
I Distribution has a long tail if

G(x + t) ∼ G(x), as x →∞.

I Distribution has a power tail if for some α and β > 0

G(x) ∼ αx−β, as x →∞.

I In a nutshell:
I Large values likely
I High variability
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Relations

Power-tailed ⊂ Long-tailed ⊂ Heavy-tailed.

Distribution with a short
tail has

lim
x→∞

eγxG(x)→ 0,

for some γ > 0.
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Effects of “heavy tails”

I Expectation paradox:
I The longer we have waited for an event the longer we have

to wait
I Aggregate size of small variables is negligible compared to

the largest one

lim
x→∞

P{X1 + X2 + . . .+ Xn > x}
P{max{X1,X2, . . . ,Xn} > x}

= 1, ∀n ≥ 2.

I Typical flow is small, but typical transferred byte belongs to
a large flow
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Examples of utilizing heavy tails

I Load balancing in distributed systems
I Only a few flows are redirected with a significant effect on

load distribution
I Scheduling in web servers

I Shortest-remaining-processing-time scheduling lets the
small tasks interrupt larger ones and with heavy tails the
benefit becomes large

I Routing and switching in the Internet
I Shortcuts established only for large flows (cf. data centers)



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

30/51

Log-normal distribution, LogNormal(µ, σ2)

Def.: Random variable X follows the LogNormal(µ, σ2)
distribution if log(X ) is distributed as N(µ, σ2).

Probability density function:

f (x) =
1√

2πσ · x
e−

(log x−µ)2

2σ2 .

Mean: eµ+σ
2/2

Variance:
(

eσ
2−1

)
e2µ+σ2

.

Σ2=4

Σ2=1
Σ2=0.25

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

fH
xL



ELEC-E7130 - Internet Traffic Measurements and Analysis
October 4, 2017

31/51

Pareto distribution Pareto(α, k )
Probability density function:
f (x) = αkαx−α−1.

I α is the shape parameter
I k is the scale parameter

Pareto has a power tail,

G(x) =

(
k
x

)α
, x ≥ k .

Mean:
αk
α− 1

Variance:
(

k
α− 1
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Note: mean is infinite for α ≤ 1, and variance for α ≤ 2.
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Weibull distribution, Weibull(α, β)

In Weibull(α, β) distribution α is the shape parameter and β the
scale parameter.
I α < 1 “failure rate

decreases in time”
I α > 1 “failure rate

increases in time”

The pdf has the form
f (x) = αβ−αxα−1e−(x/β)

α
.

Mean: β Γ (1 + 1/α)
Variance: β2 Γ (1 + 2/α)

−β2 Γ (1 + 1/α)2
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Choosing the distribution

I Distribution can be chosen according to “best fit”
I Distribution function can be adopted from a similar

situation
I Often assumed that the distribution function remains valid

in other “similar conditions”, only parameters vary
I Distribution functions can emerge from generative

processes
I E.g., CLT and Gaussian distribution
I Allows taking into account external knowledge on the

variable
I As a result probabilistic modeling of network

measurements is seldom purely objective process ...
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Parameter estimation

I Given a distribution (or distribution family) and data, the
next step is to fit the parameters of the distribution to
match the data

I Estimator is a function of (sample) data that attempts to
estimate an unknown (population) parameter

I We try to optimize the parameters of a density with
respect to some measure of fit
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Estimation

I We briefly outline two practical methods of parameter
estimation

1. Method of moments
2. Maximum likelihood (ML)

I Note that a lot of literature exists on parameter estimation
I Quality of the estimators ignored here . . .
I E.g., sample mean and sample variance of data are “best”

estimates for Normal distribution
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Method of moments

I k :th moment of a random variable: E(X k )

I k:th sample moment of data: mk = 1
n
∑

i xk
i

I Method of moments:
1. Derive as many moments of the distribution as there are

parameters
2. Compute the corresponding sample moments from data
3. Solve the parameters so that the moments and sample

moments are equal
I Simple, but not always available
I The estimates are not necessarily “optimal”
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Maximum likelihood
I Idea is to maximize the probability/likelihood that the

selected distribution has produced the observations
I Likelihood function for independent observations

L(x1, x2, . . . , xn; θ) =
n∏

i=1

f (xi ; θ).

I Likelihood is a function of the parameter(s) of the
distribution, for which the estimate is

arg max
θ

L(x1, x2, . . . , xn; θ)

I Maximum likelihood estimates have many favorable
properties, but require often complex non-linear
optimization
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Other estimates

I Non-linear least-squares optimization of the density
I Non-linear optimization methods more generally available

in mathematical software
I Statistical software offer many direct ways of fitting

parameters for given densities
I Often based on maximum likelihood
I General optimization methods can be sensitive to selected

starting values
I Results are affected by outliers
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Example

> require(MASS)

> fitdistr(logftp,"lognormal")

meanlog sdlog

0.52062324 0.84232334

(0.02663660) (0.01883492)

> h<-hist(logftp,n=20)

> xhist<-c(min(h$breaks),h$breaks)

> yhist<-c(0,h$density,0)

> xfit<-seq(min(logftp),max(logftp),length=100)

> yfit<-dlnorm(xfit,meanlog=0.52062,sdlog=0.84232)

> plot(xhist,yhist,type="s",ylim=c(0,max(yhist,yfit)),col=4)

> lines(xfit,yfit,col="red")
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Example: German tank problem

Suppose that a measurement has given us
I A set of serial numbers of some device

I How many devices has been sold?
I A list of user-id’s of people using some service

I How many users the given service has (say globally)?

These questions are examples of the German tank problem.

?m−n
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Example: German tank problem (2)
Assumptions:

I The existing serial numbers are 1, . . . ,N (all equally likely)
I Sampling without replacement, {Xi}, i = 1, . . . ,n
I Task is to estimate N based on the given n samples

Clearly, n ≤ m ≤ N, where m = max{Xi}, but . . . ?
1. Bayesian estimate,

N̂ =
(m − 1)(n − 1)

n − 2
.

2. Minimum-variance unbiased estimator,

N̂ = m +
m
n
− 1.
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Off-line vs. On-line estimation

Off-line estimation
I Collect samples and store them
I Estimate the quantities of interest
I No (strict) memory or time constraints

On-line estimation
I Collect samples in real-time (streaming data)

I Update estimates at the same time
I Both memory and time constraints (typically)

The latter is important, e.g., for real-time monitoring systems.
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Example: On-line estimation
Mean:
Init: 1. S ← 0

2. n← 0

Per sample: 1. S ← S + xi

2. n← n + 1
3. m̂← S/n

I Two state variables
I Fast constant computation time
I Unfortunately, e.g., median or mode are more difficult!

(Why?)

Sometimes(!) sufficient:{
mean ← mean + η × (xi −mean) (cf. EWMA)
median ← median + η × sgn(xi −median)
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Example: On-line estimation (2)

I Moving average (MA):

y ← xi−k + . . .+ xi

k + 1

I Exponentially Weighted Moving Average (EWMA):

y ← αxi + (1− α)y

In general, on-line estimation of the streaming data is an
interesting topic itself, and there are advanced algorithms for
different scenarios. For example,
R. Jain and I. Chlamtac, “The P-Square Algorithm for Dynamic Calculation of

Percentiles and Histograms without Storing Observations”, Communications of the

ACM, October 1985.
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Checking for model fit

I Visual tools
I Plot density and histogram in the same figure
I Plot cdf and ecdf in the same figure
I Compare data with the distribution in a QQ-plot
I For highly variable data, log-log complementary distribution

could be considered
I Plot log(1− F (x)) against log x for CDF and ECDF

I Statistical tests
I χ2-test
I Kolmogorov-Smirnov -test
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Example
I Our log-normal fit

I QQ-plot does not support the fit!

>qqplot(logftp,qlnorm((1:1000)/1001,meanlog=0.52062,sdlog=0.84232),col=4)x))
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Example Continued
Let’s try with Weibull distribution . . .
> fitdistr(logftp,"weibull")

shape scale

1.49738316 2.47066018

(0.03691000) (0.05496849)
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Statistical testing for goodness of fit

I As the model selection is usually subjective, visual tools
are generally sufficient for validating the model

I However, there are also statistical tests available for the
goodness of fit

I A p-value is computed for null hypothesis
“Sample comes from a population with a given distribution”

I p-value is roughly the probability that given the null
hypothesis, we actually observe the data

I If p-value is small, there is only a small probability that the
data is from the distribution and null hypothesis is rejected

I A large p-value does not automatically mean that the
distribution is correct
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