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Topics of this lecture
Lecture topics:

I Basic building blocks of the CSG geometry: surfaces and cells

I Cell search routine

I Nests

I Universes and lattices

I Boundary conditions

I Geometry transformations

2nd programming exercise
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Position and direction vectors
The Monte Carlo simulation consists of a large number of particle histories,1 in which the random
walk of an individual particle is followed, or tracked, through the geometry from its birth to eventual
absorption or escape from the geometry.

From here on it is assumed that the tracking takes place in a three-dimensional Cartesian coordi-
nate system. In vector notation, the position and direction of motion are defined by two vectors:

r = xî + yĵ + zk̂ (1)

and
Ω̂ = uî + vĵ + wk̂ (2)

where î, ĵ and k̂ are the unit vectors defining the three-dimensional Cartesian coordinate system.
Direction vector Ω̂ is normalized to unity:

Ω̂ · Ω̂ = 1 (3)

or
u
2

+ v
2

+ w
2

= 1 (4)

Coefficients u, v andw are the direction cosines, i.e. the cosines of the angle that vector Ω̂ forms
with the positive x-, y- and z-axis, respectively.

1The number of simulated histories is typically counted in millions, or in large-scale simulations, billions. This is
several orders of magnitude less than the number of neutrons in an actual reactor, even at low-power operation.
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Position and direction vectors
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Figure 1: Direction vector Ω̂ and direction cosines u = cos ηx, v = cos ηy and w = cos ηz in the
Cartesian coordinate system.
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Surfaces
Monte Carlo transport codes are most typically based on the constructive solid geometry (CSG)
type, in which the geometry is composed of homogeneous material cells, defined using combina-
tions of elementary and derived surface types.

The most elemental building block is the surface, described using algebraic equations, typically
of the quadratic type. The action that puts an arbitrary position r on one or the other side of
a surface is based on a simple test carried out by substituting the coordinates into the surface
equation:

S(r) = S(x, y, z)

 < 0 if the point is inside the surface
= 0 if the point is on the surface
> 0 if the point is outside the surface

(5)

This surface test also fixes the concepts of “inside” and “outside” for each surface type, which is
important when forming the cells from the surface combinations.

The general quadratic surface can be written in parametric form as:

S(x, y, z) = Ax
2

+ By
2

+ Cz
2

+Dxy + Eyz + Fzx+Gx+Hy + Iz + J (6)

where A,B,C,D,E, F,G,H, I and J are constants.2

2There are also non-quadratic surfaces, such as the torus.
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Surfaces
Common examples of quadratic surfaces obtained from the parametrized quadratic equation in-
clude the plane perpendicular to x-axis at x0:

S(x) = x− x0 (7)

sphere centered at (x0, y0, z0) with radius r:

S(x, y, z) = (x− x0)
2

+ (y − y0)
2

+ (z − z0)
2 − r2 (8)

and straight infinite cylinder parallel to z-axis centered at (x0, y0) with radius r:

S(x, y) = (x− x0)
2

+ (y − y0)
2 − r2 (9)

Surface equation for general plane is obtained by dropping the second-order terms in Eq. (6):

S(x, y, z) = Gx+Hy + Iz + J (10)

whereG,H, I and J are constants. The plane can also be defined using three points: (x1, y1, z1),
(x2, y2, z2) and (x3, y3, z3), in which case the constants for Eq. (10) become:

G = y2z3 − y3z2 − y1(z3 − z2) + z1(y3 − y2)

H = z2x3 − z3x2 − z1(x3 − x2) + x1(z3 − z2)

I = x2y3 − x3y2 − x1(y3 − y2) + y1(x3 − x2)

J = −x1(y2z3 − y3z2) + y1(x2z3 − x3z2)− z1(x2y3 − x3y2)

(11)

The three points determine the inward surface direction according to the right-hand rule.
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Surfaces
Surface equations are also used for determining the distance to the nearest material boundary in
the direction of motion. The points where the particle path intersects the surface are obtained by
solving Eq. (5) with condition:

S(r + δΩ̂) = S(x+ δu, y + δv, z + δw) = 0 (12)

i.e. by setting a point located at distance δ from position r in the direction of motion Ω̂ on the sur-
face, and solving for δ. When the equation has multiple solutions, the nearest point corresponds
to the smallest positive value of δ. If all solutions are negative or no solution exists, the surface is
away from the line-of-sight.

The distance to general quadratic surface (6) can be written as:

δ =
−L±

√
L2 − 4MK

2M
(13)

where:

K = Ax
2

+ By
2

+ Cz
2

+Dxy + Eyz + Fxz +Gx+Hy + Iz + J

L = 2(Aux+ Bvy + Cwz) +D(vx+ uy) + E(wy + vz) + F (wx+ uz)

+Gu+Hv + Iw

M = Au
2

+ Bv
2

+ Cw
2

+Duv + Evw + Fuw
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Surfaces
For example, the distance to a plane perpendicular to x-axis at x0 is obtained from

x+ δu− x0 = 0⇐⇒ δ =
x0 − x
u

(14)

and the distance to a cylinder parallel to z-axis centered at (x0, y0) with radius r from:

δ =
−L±

√
L2 − 4MK

2M
(15)

where:
K = x

2
+ y

2 − 2(x0x+ y0y) + x
2
0 + y

2
0 − r

2

L = 2(ux+ vy)− 2(x0u+ y0v)

M = u
2

+ v
2

Distance to general plane (10) is given by:

δ = −
Gx+Hy + Iz + J

Gu+Hv + Iw
(16)

which corresponds to the general quadratic equation (13) with coefficients of second order terms
set to zero.
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Surfaces
Monte Carlo codes often provide additional derived surface types, which are formed by combina-
tions of elementary surfaces. For example, a cuboid with boundaries [x1, x2], [y1, y2], [z1, z2]
consists of six planes perpendicular to the coordinate axes:

S :=



S1(x) = x− x1

S2(x) = x− x2

S3(y) = y − y1
S4(y) = y − y2
S5(z) = z − z1
S6(z) = z − z2

(17)

Other derived surface types convenient for reactor modeling include truncated cylinders, and
square and hexagonal prisms.

The surface test and calculation of distance to nearest intersection point for derived surfaces
involve multiple solutions to Eqs. (5) and (12). From the algorithmic point of view these operations
should be seen as functions that return the result regardless of the surface type (elementary or
derived).
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Surfaces
It should be noted, however, that in case of derived surface types, a positive distance returned
by (12) may not correspond to intersection with the actual surface, but rather the continuation of
one of its constituents.

These “false” crossings can be accounted for by additional checks in the distance function or
writing the tracking routine in such way that they can be ignored altogether.

It is important to remember that computers operate on limited arithmetic precision and positions
at or very close to surfaces may cause false results for the surface test and distance calculation!

x

zr

Ω̂

z0

z1
δ4

δ1

δ2
δ3

Figure 2: Particle path intersecting a truncated cylinder in the xz-plane demonstrating the false crossings.
All surface distances in this example are positive and δ4 < δ1 < δ2 < δ3. Points 4 and 3 are not part of
the boundary. The shortest actual distance is δ1, even though the routine may return δ4.
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Surfaces
Third application for surface equations is the calculation of normal vectors, which are needed for
various purposes, including:

I Calculating the surface flux estimator

I Applying reflective boundary conditions

The normal vector is given by the gradient of the surface equation:

n̂(r) =
∇S(r)

|∇S(r)|
, (18)

where

∇S(r) = ∇S(x, y, z) =

(
∂S

∂x

)
î +

(
∂S

∂y

)
ĵ +

(
∂S

∂z

)
k̂ (19)

and

|∇S(r)| = |∇S(x, y, z)| =

√(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2

(20)

For example, the normal vector on an infinite cylinder parallel to z-axis centered at (x0, y0) with
radius r is given by:

S(x, y) = (x− x0)
2

+ (y − y0)
2 − r2 =⇒ n̂(x, y) =

(x− x0 )̂i + (y − y0)ĵ√
(x− x0)2 + (y − y0)2

(21)
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Cells
The next building block in the CSG hierarchy is the cell, which is constructed from the combination
of surfaces, and it defines a homogeneous material region. The construction is based on three
operators:

Intersection: S1 ∩ S2 – Point is inside the cell if it is inside both surface S1 and S2

Union: S1 ∪ S2 – Point is inside the cell if it is inside either surface S1 or S2, or both

Complement: \S1 – Point is inside the cell if it is outside surface S1

The intersection and union operator behave very similar to arithmetic multiplication and addition,
respectively, and they share the properties of commutativity (order of operands is exchangeable):

S1 ∪ S2 = S2 ∪ S1

S1 ∩ S2 = S2 ∩ S1

(22)

associativity (two or more similar operations can be grouped in an arbitrary manner):

(S1 ∪ S2) ∪ S3 = S1 ∪ (S2 ∪ S3)

(S1 ∩ S2) ∩ S3 = S1 ∩ (S2 ∩ S3)
(23)

and distributivity (precedence of intersection over union):

(S1 ∪ S2) ∩ S3 = (S1 ∩ S3) ∪ (S2 ∩ S3) (24)

The use of the operators is best illustrated by an example.
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Cells

Example 1: Cell definition in CSG geometry

Consider a 2D pin-cell model of a light water reactor fuel pin surrounded by coolant. The pin
consist of a fuel pellet with an outer diameter of 0.824 cm, enclosed inside a 0.063 cm thick
cladding. The square pitch of the unit cell is 1.330 cm. The surfaces are defined as:

S1(x, y, z) = x
2

+ y
2 − 0.412

2

S2(x, y, z) = x
2

+ y
2 − 0.475

2

S3(x, y, z) = x+ 0.665

S4(x, y, z) = x− 0.665

S5(x, y, z) = y + 0.665

S6(x, y, z) = y − 0.665

(25) x

y

S1

S2

S3 S4

S5

S6

0.824 cm

0.063 cm

1.330 cm

These surfaces are used to define four cells using intersections, unions and complements:

C1 : S1 : Fuel
C2 : (\S1) ∩ S2 : Cladding
C3 : (\S2) ∩ (\S3) ∩ S4 ∩ (\S5) ∩ S6 : Coolant
C4 : S3 ∪ (\S4) ∪ S5 ∪ (\S6) : Outside world

(26)

The last cell, described as the “outside world”, is not a part of the actual geometry, but it needs to
be defined in order to tell the geometry routine that the particle has escaped the system, or that
boundary conditions need to be applied.
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Cells
Testing cells that consist of only intersections and complements is straightforward:

I If all surfaces comprising the cell pass the surface test (taking into account the
complement operators), the point is inside the cell

I If any of the surfaces fails the test, the point is outside the cell

The complement operator can be included by adding flags in the surface intersection list.

The problem with unions is that testing arbitrarily constructed cells with one or several unions
becomes a non-trivial task, requiring either a tree-based or post-fix algorithm.

It is possible to construct geometries, even complicated ones, without using the union operator.
This can be accomplished using derived surface types. In practice this means that any union
operators are performed inside the surface functions instead of within the cell test algorithm.

Most geometries consist of not a single, but of multiple cells, and in order to determine which cell
fills the space at an arbitrary position, the cell search routine must loop over all possibilities until
the conditions for the constituent surfaces are matched.
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Cells

Algorithm 1 Cell search with intersections only

1: for m← 1 to M do . Loop over candidate cells
2: for n← 1 to Nm do . Loop over intersection list
3: c← Sn(x, y, z) . Call surface test routine
4: if Sn(x, y, z) is flagged with ’\’ then . Check complement flag
5: c← \c . Apply complement operator
6: end if
7: if c = FALSE then . Check condition
8: Break loop . Point is outside, test next cell
9: end if

10: end for
11: if n = Nm then . Check if all surfaces passed the test
12: return m . Point is inside cell m
13: end if
14: end for
15: return ERROR . Geometry error: no cell at (x, y, z)
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Nests
Reactor geometries are often comprised of cells nested inside each other, e.g. fuel pins formed
by cylindrical layers of fuel, gas gap, cladding and coolant.

This type of geometries are easy to define, and it may be computationally beneficial to handle
them using a separate algorithm.

The cell search is performed by looping over the surfaces, starting from the innermost zone. Point
(x, y, z) is inside the cell that first passes the surface test for its outer surface.

If all surfaces fail the test, the point is in the outermost zone (extending to infinity).

Nests are best treated as a special type of universe (see next slide).
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Universes and lattices
Handling of complex geometries can be considerably simplified by dividing the model into multiple
levels. In reactor geometries the natural division is:

1) Core-level

2) Assembly-level

3) Pin-level

The reactor core consists of a regular array of fuel assemblies, many of which are identical and
interchangeable. The same applies to fuel pins inside assemblies.

Instead of modeling each pin and assembly explicitly, they can be described as separate objects
in their own universe. The same object can then be copied into multiple locations by filling cells
with an entire universe.

The use of lattices helps the construction of regular structures, such as the pin layout in fuel
assemblies or the loading pattern of assemblies in the reactor core.

Structuring the geometry into multiple levels not only simplifies the input model, but may also lead
to considerable increase in performance as the number of computationally expensive geometry
operations is reduced.
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Universes and lattices

Figure 3: Pin-, assembly- and core-level geometries in a 1/4 core model of a PWR. Left: The first level is
comprised of universes describing individual fuel pins, control rod guide tubes, etc. Center: The second
level describes fuel assemblies as regular lattices of pins. Right: The last level is comprised of the reactor
vessel, with an assembly lattice inside it. When the cell search routine finds itself inside a cell filled with an
entire universe, it makes a coordinate transformation to the next level, and recursively locates the material
cell at the position.
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Universes and lattices
Most common lattice types are 2D square array and hexagonal “honeycomb”, but the concept can
basically be extended to any regular (or even irregular) structure.

When the point is found inside a lattice, the geometry routine automatically makes a coordinate
transformation between the levels and centers the universe with respect to the lattice cell.

This requires calculating the lattice indexes, which for a Cartesian type is written as:3

i = floor

{
x

px

}
j = floor

{
y

py

}
k = floor

{
z

pz

}
(27)

where i, j and k are the lattice indexes and px, py and pz are the cell widths (pitches). The
“floor” operation refers to truncation of the decimal part.

The universe filling the lattice cell is found from an input table using the lattice indexes. The
coordinate transformation to the new origin is written as:

x
′

= x− ipx
y
′

= y − jpy
z
′

= z − kpz

(28)

3It is assumed here that the lattice is centered at origin and has an odd number of cells in each direction.
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Universes and lattices

Algorithm 2 Cell search with multiple universes and lattices

1: u← u0 . Start from root universe
2: while TRUE do . Loop over universes
3: m← C(u, r) . Call cell search routine for universe u (algorithm 1)
4: if cell m is a material cell then
5: return m . Point is inside cell m
6: else if cell m is filled with universe u′ then
7: u← u′ . Update universe
8: else if cell m is filled with lattice l then
9: (u′, r0)← L(l, r) . Get lattice cell universe and origin

10: r ← r − r0 . Update coordinates
11: u← u′ . Update universe
12: else
13: return mo . Point is outside the geometry
14: end if
15: end while
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Boundary conditions
The geometry model is limited to an outer boundary, beyond which there are no more cells. What
happens to a neutron crossing this boundary depends on the boundary conditions:

I Vacuum (or black) boundary condition – the neutron has escaped the geometry and the
history is terminated

I Reflective (or mirror) boundary condition – the neutron is reflected back into the geometry
at an angle symmetrical with respect to the surface normal

I Periodic boundary condition – the neutron is moved into a symmetry position on the other
side of the geometry

I White boundary condition – the neutron is reflected back into the geometry isotropically
(random direction)

Reflective and periodic boundary conditions can be used create infinite geometries in which the
same structure is repeated over and over again. If the outer boundary is a square or hexagonal
prism, the boundary conditions can also be invoked by a coordinate transformation.

With vacuum boundary conditions it is important that the geometry is non re-entrant, as the neu-
tron is killed immediately after crossing the boundary without the possibility of returning to the
geometry.

This topic is revisited later with particle tracking.
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Boundary conditions

Figure 4: Infinite lattices of identical fuel assemblies generated using repeated boundary conditions. Left:
BWR fuel lattice, with reflective boundary surrounding a single assembly. Right: VVER-440 fuel lattice
with periodic boundary surrounding a single assembly.
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Geometry transformations
Surfaces can be moved and rotated using geometry transformations, which considerably sim-
plifies the input, for example, when the geometry contains cylinders that are not parallel to any
coordinate axis.

These operations are based on Euclidean transformations, which in the general form can be
written as:

r
′

= Ar + d (29)

where A is the transformation matrix and d is the displacement vector.

For the purpose of particle transport simulations, however, it is sufficient to consider only isometric
transformations, which preserve the length of the vector, or more precisely, the distance between
any two points in space. These transformations are also orthogonal, which means that the angle
between any two vectors remains unchanged.

Isometric transformation matrices can be divided into rotations, for which det(A) = 1 and re-
flections, for which det(A) = −1.

Geometry transformations are applied to particle coordinates and direction cosines before calling
the surface test or distance routines. In addition to surfaces, geometry transformations can be
applied to entire universes.
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Geometry transformations
Rotations with respect to the three Cartesian coordinate axes can be applied using three matrices:

Rx(ϕx) =

1 0 0

0 cosϕx − sinϕx

0 sinϕx cosϕx

 (30)

Ry(ϕy) =

 cosϕy 0 sinϕy

0 1 0

− sinϕy 0 cosϕy

 (31)

Rz(ϕz) =

cosϕz − sinϕz 0

sinϕz cosϕz 0

0 0 1

 (32)

where ϕx, ϕy and ϕz are the rotation angles.

Note that the transformation (29) can also be applied as:

r
′

= A(r + d) (33)

i.e. by applying the displacement before the rotation.
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2nd programming exercise
Mandatory tasks:

I Expand the input routine to read the structures needed for generating CSG geometries.

I Implement surface test and distance functions for elementary surface types: sphere,
infinite cylinder, planes parallel to coordinate axes.

I Implement surface test and distance functions for derived surface types: truncated
cylinder, cuboid, infinite square prism.

I Implement cell search routine capable of handling intersection and complement
operators, without universes, lattices or repeated boundary conditions.

I Demonstrate the implemented routines by calculating the volumes of cells by sampling
random points in the geometry. Consider two cases:4

1) Fuel pin with dimensions given in the example on slide 13

2) Hollow cylinder with inner diameter of 4 cm, inner height 7 cm, wall thickness 0.05 cm,
filled with two materials separated by a horizontal layer at 3.5 cm from the bottom

Cell volume is given by:

Vc =
Nc

N
V (34)

where Nc is the number of points inside the cell, N is the total number of sampled points
and V is the volume of the “bounding box” where the points are sampled.

4For 2D geometries, “volume” refers to volume per unit length, i.e. the cross-sectional area.
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2nd programming exercise
Bonus tasks (in recommended order)

1. Implement a routine that evaluates cell volumes by drawing lines over the geometry
bounding box (ratio Nc/N in (34) is then given by the sum of segment lengths inside the
cell divided by the sum of lengths inside the bounding box). Demonstrate the
implementation by comparing the results and FOM’s to the point sampling routine
(+1 point).

2. Include universes and square lattices in the geometry routine, demonstrate the
implementation with volume calculation (+2 points).

3. Expand the surface routines to additional types: general plane and hexagonal prism,
demonstrate implementation with volume calculation (+1 point).

4. Implement a geometry plotting routine that illustrates 2D cross-sectional slices of the
geometry either as an ASCII map, data read into visualization software or direct graphics
file (+1 point).

5. Implement surface translations and rotations and demonstrate the implementation using
the geometry plotter (+1 point).

6. Implement hexagonal lattices in the geometry routine and demonstrate the
implementation using the geometry plotter (+2 points).

7. Expand the surface routines to elliptical torus. Demonstrate the implementation by
calculating the volume using both methods: sampling points and lines. (+3 points).
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2nd programming exercise
Milestones:

I Implementation of basic geometry routines needed later for particle tracking.

I Expanding input routine to read surface, cell and other geometry definitions.

Methods developed in two of the bonus exercises are needed to complete bonus exercises later
on:

I Volume calculation by drawing lines over the geometry forms the basis of the so-called
surface-tracking routine.

I Universe-based geometry routine is required for modeling heterogeneous reactor
geometries.

Based on last year’s statistics this exercise takes twice the time required to complete exercise 1!


