

Specifications continued + Concept Generation

MEC 3002 Methods in Early Product Development

© Katja Hölttä-Otto 2020

1

We are half way!

		Торіс	Learning objectives:
Wed	9.9.	Introduction - what is Product Development?	
Fri	11.9.	Opportunity Identification & Mission Stmnt	 Understands the different
Wed	16.9.	Opportunities & Identifying customer needs	product development process
Fri	18.9.	Identifying customer needs continued	Is able to use need finding
Wed	23.9.	Interpreting and Organizing customer needs	methods
Fri	25.9.	Product Specifications	Is able to apply user centered
Wed	30.10.	Specifications continued + Concept generation	design methods
Fri	2.10.	Concept generation	Is able to apply concept design
Wed	7.10.	Concept Selection	Is able to define proper
Fri	9.10.	Concept Testing	requirements and constraints
Wed	14.10.	Winds of Change	You choose your own
Fri	16.10.	Winds of Change	objective, and learn
Λ		Iniversity	
A	301001	or Engineering	29.9.2020

© Katja Hölttä-Otto 2020

29.9.2020

5	1	-		•	
_		-	•		
-			4	ļ	

Specification examples 2

A way to increase the reliability and consistency of the device so that drivers can trust and rely on the device to adapt their behavior to it

anions as were as error report
:) 100 % accuracy: Could be determined by making tests
with for example thousands of
car passing and the device

Awa	y to find free parkir	ng slots			
•	Prompt the driver abou available parking places meters of the car.	t the within 200	• <200m		
Find	available parking slots	Information parking slo driver's lo	on of areas with free ots in contrast to cation.	1 km. around the car	
- The ran	e device should detect sp ge of reaction time (2.3 s	aces between s x current sp	n parked cars at minin beed)	mum within the drivers	5

Some creativity methods

Round-robin brainstorming	Attribute listing	Greetings cards	Passive searching	Brainstorming
Rolestorming	Morphological analysis	Unfolding	Storyboarding	Reverse Brainstorming
Role-play	Matrix analysis	Value Engineering	Braindrawing	Starbursting
Electronic Brainstorming	Six thinking hats	Wishing	Brain sketching	The Charette Procedure
Brainwriting	Po (Provocation)	Concept metaphors and	Nominal Group Technique	Crawford slip writing
6_3_5	Talking pictures	analogies	Bodystorming	method
Pool method	The list of 100	Ideation game	Assumption Busting	Chunking
ldea card (pin card) method	Listing	Word tree design by analogy	Brainmapping	Mind-mapping
Post-Up	Heuristic ideation technique	Forward steps	Challenge	PSI
Constrained brainwriting	(HIT)	Backward steps	Essence	Random Words
Electronic Brainwriting	Design Heuristics	Mash-up	Forced Conflict	Sensorial
The spreadsheet technique	TRIZ	Bio-inspired ideation	How-How Diagram	AOKI
Interactive brainwriting	C-Sketch	Designlibs	How to	Vip design
Brainwriting game	Concept generating matrix	Cheatstorming	The Kipling method	EED
Metaphorical thinking	Ideation session	6-3-5 Extended	Lotus Blossom	SIT
Reversal	SDI	Extreme Characters	Remembrance	Concrete stimuli
SCAMPER	Laddering	Fictional Inquiry	Rubber-ducking	Forced analogy
Delphi Method	Synectics	FUTURE WORKSHOP	Take a break	Gallery
			Pause	
55 Aalto Univers	ity gineering			20 0 2020
~				29.9.2020
		© Katja Hölttä-Otto 2020		

Brainstorming	
Brainstorming w mindmapping	
Reverse Branstorming	
Morphological analysis	
SCAMPER	
Random item/word	
6-3-5	
Bodystorming	

Morphological analysis - Example (cont'd) Sketch concepts for multiple • combinations Supply Energy **Increase force** Support Force Lever · Gears 🛰 Manual Bottle neck

Random word/object/picture

Take an item or generate a word Let that inspire ideas

e.g. the fluffy snake is: -soft -green -hairy -long -stuffed with something -contradiction of scary and cute -sheds skin -senses with tongue -borrowed ...

© Katja Hölttä-Otto 2020

Suite of methods

Brainstorming Brainstorming w mindmapping Reverse Branstorming Morphological analysis SCAMPER Random item/word 6-3-5 Bodystorming

Select based on... problem, team, preference etc.

Aalto University School of Engineering

© Katja Hölttä-Otto 2020

29.9.2020 48

 Learn concept generation methods
 Creativity is like any talent - it can be taught and learned


```
53
```


Topics – Ad	ditional methods in Early PD
 Design by analog Bio-inspired des DFE – Design for Inclusive design Early low fidelity Design for additi Empathy map OR a Method of y 	gn Environment prototyping methods (earlier than 3D printing) ve manufacturing your choice (have it approved by Katja first)
Aalto University School of Engineering	29.9.2020 55
	© Kotio Hälttä Otto 2020

