A^{30}
 Aalto University
 School of Science

TU-E2040 Management of extemal resources (3-5 cr) Case-workshop \#2

Task 1: Analysing total costs of ownership-Case of KT Apparel lighting

Case: Conducting TCO analysis

You: director of strategic procurement

Company: KT Apparel, high-end specialty retailer

Focus: lamps for lighting the 2.200 stores of the company
12.10.2020

Case KT Apparel

Speciality retailer

- 2200 stores
- Focus on energy management

Identidfied opportunity

- Replace existing lamps with ones with improved energy-efficiency and lighting levels

How do the identified alternatives compare in terms of total costs?

	Current halogen	Alternate halogen
Watts per hour	60	50
Lumens	800	920
Lifespan (hours)	3000	5000
Price (\$)	3.15	5.67

\square Annual store hours: 4.200 hrs
\square Average annual expenditure for halogen lamps in all stores : \$ 1.2 million
\square Annual energy cost for all stores: $\$ 36$ million (of which lighting is a substantial part)
\square TCO calculation for annual cost per socket

Aalto University

Purchase of lamps: Total cost of ownership

- Main elements
- Price
- Acquisition costs
- Delivery costs
- Installation costs
- Cost of use
- Energy costs
- Main drivers
- Energy consumption
- Lifetime of the lamps

Your first task is to calculate the normalized price of the current and alternate halogen

- In the calculation you take account how many lamps are consumed annually in the two options (current/alternative). The result of the calculation is the annual price of lamps per socket.
- What can you notice when comparing normalized prices with the listed prices?

	Current halogen	Alternate halogen
Watts per hour	60	50
Lumens	800	920
Lifespan (hours)	3000	5000
Price (\$)	3.15	5.67

Annual store hours: 4.200 hrs
Average annual expenditure for halogen lamps in all stores :
$\$ 1.2$ million
Annual energy cost for all stores: $\$ 36$ million (of which
lighting is a substantial part)
TCO calculation for annual cost per socket

Sower \& Sower (2015). Better Business Decisions Using Cost Modeling, Second Edition
Aalto University School of Science

Next, calculate the annual delivery costs of current and alternate lamps per socket

```
\square D \mp@code { D e l i v e r y ~ p r o c e d u r e s ~ f o r ~ c u r r e n t ~ a n d ~ a l t e r n a t e ~ l a m p s ~ a r e ~ s i m i l a r ~ a n d ~ p a c k i n g }
    materials, weight and mode of shipment are comparable
\squareAs the new lamp has longer lifespan, the costs for shipping need to be
    calculated
\squareAverage case delivery price: $ 5.00
\squareQuantity per case: 12
```

- The result of the calculation is the annual delivery cost/socket of the two alternatives

Your third total task is to calculate the installation costs of current and alternate halogens

\square Focus on lost sales (maintaining lamps instead of selling)
\square Store associates spend $1 \mathrm{hr} /$ week changing lamps
\square If this time was used for sales, sales would increase $\$ 100$, indicating a profit increase of $\$ 20$ per store per week
\square Total number of stores 2200
DTotal sockets in all stores 272066

	Current halogen	Alternate halogen
Lifespan (hours)	3000	5000

The result of the calculation is the lost profit per socket if the company remains with the current model (if the alternative lamp is NOT selected)

The fourth task is to calculate the energy costs

	Current halogen	Alternate halogen
Watts per hour	60	50

Average costs stores are paying for energy: \$ 0.10/KWh
\square Annual store hours: 4.200 hrs

The results of the calculation is the annual energy cost per socket of current and alternate halogen.

Collect the results of the four calculation into the table below

	Current lamp	Alternate lamp	Difference
Normalized price			
Delivery cost			
Installation cost (as opportunity cost)			
Energy cost			
Total annual cost / socket			

Summary: what are the annual savings if the alternate halogen is selected?

	Socket TCO	Total sockets in stores	TCO cost for all stores
Current		272066	
Alternate		272066	
Annual savings			

The correct result is that the firm will save $\mathbf{\$} \mathbf{2} .024 .171$ if they select the alternate halogen. Check your calculations if your result is different.
Last, discuss the following questions
How does the difference in lighting efficiency of the two alternatives affect TCO? What would be the effects of choosing the alternate halogen on work safety?

Sower \& Sower (2015). Better Business Decisions Using Cost Modeling, Second Edition
Aalto University School of Science

